1.1-1.2密堆积
- 格式:pdf
- 大小:2.23 MB
- 文档页数:28
一般物料的密度和安息角散料在堆放时能够保持自然稳定状态的最大角度(单边对地面的角度),称为“安息角”。
散物料在堆积到这一角度后,再往上堆加这种散物料,就会自然溜下,继续堆加,这个角度保持不变,只会增加高度,同时加大底面积。
在土堆、煤堆、粮食、砂子、石灰等散物料堆放时,就可以看见这种现象,不同种类的散料安息角各不相同,提供参考:松散物料的密度和安息角序号物料名称密度\t/m3运动安息角\(°)静止安息角\(°)1 无烟煤(干、小)0.7~1.0 27~30 27~452 烟煤0.8~1.0 30 35~453 褐煤0.6~0.8 35 35~504 泥煤0.29~0.5 40 455 泥煤(湿)0.55~0.65 40 456 焦炭0.36~0.53 35 507 木炭0.2~0.4 - -8 无烟煤粉0.84~0.89 - 37~459 烟煤粉0.4~0.7 - 37~4510 粉状石墨0.45 - 40~4511 磁铁矿2.5~3.5 30~35 40~4512 赤铁矿2.0~2.8 30~35 40~4513 褐铁矿1.8~2.1 30~35 40~4514 硫铁矿(块)- 4515 锰矿1.7~1.9 - 35~4516 镁砂(块)2.2~2.5 - 40~4217 粉状镁砂2.1~2.2 - 45~5018 铜矿1.7~2.1 - 35~4519 铜精矿1.3~1.8 - 4020 铅精矿1.9~2.4 - 4021 锌精矿1.3~1.7 - 4022 铅锌精矿1.3~2.4 –4023 铁烧结块1.7~2.0 - 45~5024 碎烧结块1.4~1.6 35 –25 铅烧结块1.8~2.2 - -26 铅锌烧结块1.6~2.0 - -27 锌烟尘0.7~1.5 - -28 黄铁矿烧渣1.7~1.8 - -29 铅锌团矿1.3~1.8 - -30 黄铁矿球团矿1.2~1.4 - -31 平炉渣(粗)1.6~1.85 - 45~5032 高炉渣0.6~1.0 35 5033 铅锌水碎渣(湿)1.5~1.6 - 4234 干煤灰0.64~0.72 - 35~4535 煤灰0.7 - 15~2036 粗砂(干)1.4~1.9 - -37 细砂(干)1.4~1.65 30 30~3538 细砂(湿)1.8~2.1 - 3239 造型砂0.8~1.3 30 4540 石灰石(大块)1.6~2.0 30~35 40~4541 石灰石(中块、小块)1.2~1.5 30~35 40~4542 生石灰(块)1.1 25 45~5043 生石灰(粉)1.2 - -44 碎石1.32~2.0 35 4545 白云石(块)1.2~2.0 35 –46 碎白云石1.8~1.9 35 –47 砾石1.5~1.9 30 30~4548 粘土(小块)0.7~1.5 40 5049 粘土(湿)1.7 - 27~4550 水泥0.9~1.7 35 40~4551 熟石灰(粉)0.5 - -52 电石~1.2 - -。
六方最密堆积和晶胞的关系-概述说明以及解释1.引言1.1 概述六方最密堆积和晶胞是固体结构中两个重要的概念。
六方最密堆积是一种最紧密的原子排列方式,具有独特的结构特点和物理性质。
晶胞则是晶体中基本的结构单元,描述了晶体的周期性排列方式。
本文旨在探讨六方最密堆积和晶胞之间的关系,分析它们在固体结构中的相互作用和影响。
通过深入研究这一关系,可以更好地理解晶体的结构和性质,为材料科学领域的研究和应用提供理论支持和指导。
1.2 文章结构本文主要分为三个部分:引言、正文和结论。
在引言部分中,将会对六方最密堆积和晶胞的基本概念进行简要介绍,然后阐明本文的目的和结构。
在正文部分,将详细探讨六方最密堆积的定义和特点,晶胞的概念及其重要性,以及六方最密堆积和晶胞之间的关系。
最后,在结论部分将总结六方最密堆积和晶胞之间的关系,讨论其在材料科学中的应用,并展望未来的研究方向。
整个文章将会逐步展开,从基础概念到具体关系,向读者呈现一个完整的研究框架。
1.3 目的本文旨在探讨六方最密堆积和晶胞之间的关系,通过对六方最密堆积和晶胞的定义、特点以及重要性进行分析和比较,揭示它们之间的联系和相互作用。
我们希望通过本文的研究,能够深入理解六方最密堆积和晶胞在材料科学领域中的重要性和应用价值,为材料科学研究提供新的思路和方法。
此外,我们也希望能够为未来关于六方最密堆积和晶胞的研究提供一定的参考和借鉴,推动相关领域的发展和进步。
2.正文2.1 六方最密堆积的定义和特点六方最密堆积是一种密排结构,也称为紧密填充结构或堆积结构。
在这种结构中,原子或离子按照特定的规律排列,以使得它们之间的间隙最小化,从而实现最大的密度。
在六方最密堆积中,每个原子或离子的周围都被临近原子或离子所包围,形成了紧密的结构。
六方最密堆积有以下几个特点:1. 紧密堆积:六方最密堆积是一种最紧密的堆积结构,原子或离子之间的间隙非常小,使得整个结构具有高度的紧凑性。
2. 六方对称性:六方最密堆积具有六方对称性,即在堆积方向上,原子或离子被排列成六边形的堆积序列,这种对称性对于晶体的稳定性和性质具有重要意义。
C100混凝土弹性模量影响因素的研究分析摘要:本文通过对影响高强混凝土弹性模量的各因素进行对比试验,分析高性能混凝土粗骨料、砂率、水胶比、坍落度等因素对C100高性能混凝土弹性模量的影响。
关键词:弹性模量粗骨料砂率水胶比坍落度在混凝土工程实际应用中,除了以强度、坍落度作为主要控制指标外,还经常规定混凝土的弹性模量,混凝土结构设计规范GB50010-2002第4.1.5条规定C30混凝土受压和受拉时的弹性模量为:3.00X104 MPa。
在计算钢筋混凝土的变形,裂缝扩展及大体积混凝土的温度应力时,都需要知道混凝土的弹性模量。
如目前我国高铁高性能混凝土的28d弹性模量要求达到3.55×104MPa,既35.5GPa。
同时在实际工程中,也出现过混凝土强度满足要求但弹性模量偏低,使混凝土构件变形较大而不能正常使用的问题,甚至会导致混凝土结构失稳而发生工程质量事故。
因此,研究哪些因素会影响混凝土弹性模量是非常必要的。
本次试验主要研究混凝土粗骨料、砂率、水胶比、坍落度等因素对C100高性能混凝土弹性模量的影响。
1 试验采用的原材料1.1 水泥采用大连小野田P.O42.5级水泥,水泥性能见表1-1表1-1 水泥性能品种及生产厂家大连小野田强度等级 P.O42.5抗压强度实测值(MPa) 3d 28.328d 59.6抗折强度实测值(MPa) 3d 6.028d 10.1凝结时间(min)初凝 150终凝 2251.2细集料采用沈阳浑河产河砂,性能见表1-2表1-2细集料性能项目细度模颗粒级表观密堆积密数配度度含泥量泥块含孔隙率(%)量(%)(%)。
面心立方堆积构成四面体空隙的粒子的位置-概述说明以及解释1.引言1.1 概述面心立方堆积是固体物理学中常见的结构排列方式,其具有密堆积度高、结构稳定等特点。
在面心立方堆积结构中,四面体空隙是一种常见的空隙结构,其在材料科学和晶体学等领域有着重要的应用价值。
本文旨在探讨面心立方堆积构成四面体空隙的粒子在空隙中的位置分布规律,通过分析粒子之间的相互作用和空间排布关系,揭示粒子在四面体空隙中的稳定位置,并探讨其对材料性能等方面的影响。
通过对这一现象的研究,可以更深入地理解固体材料的结构与性质之间的关系,为材料设计与制备提供理论指导。
综上所述,本文将探讨面心立方堆积构成四面体空隙的粒子位置分布规律,旨在拓展对固体材料微观结构的认识,并为相关领域的研究提供理论支持和启示。
1.2 文章结构文章结构部分包括了整篇长文的组织框架,帮助读者更好地理解文章的内容和逻辑发展。
本文的结构主要分为引言、正文和结论三个部分。
在引言部分,我们将简要介绍面心立方堆积构成四面体空隙的背景和意义,以及文章的写作目的和结构安排。
在正文部分,将详细探讨面心立方堆积的特点、四面体空隙的构成以及粒子在四面体空隙中的位置。
通过对这些内容的深入分析,读者将能够更清晰地理解粒子在四面体空隙中的位置关系。
最后,在结论部分,我们将对整篇文章进行总结,概括面心立方堆积构成四面体空隙的粒子位置的关键点,并探讨其应用和展望。
最终得出结论,总结本文的主要观点和研究成果。
1.3 目的本文旨在探讨面心立方堆积结构中四面体空隙的构成及其中粒子的位置关系。
通过深入分析和研究,我们希望能够深入了解这一特殊结构下粒子的排列规律,为相关领域的研究提供参考和启示。
同时,通过对粒子位置的研究,也可以为材料科学、晶体学等领域的应用提供理论支持,促进相关领域的发展和进步。
通过本文的研究,可以更好地理解和利用面心立方堆积构成的材料结构,为材料设计和工程应用提供有益的参考和指导。
2.正文2.1 面心立方堆积的特点面心立方堆积是一种常见的结构,在晶体学和材料科学领域中被广泛研究和应用。
典型离子晶体地各种堆积-填隙模型的堆积球和填隙球的半径比-概述说明以及解释1.引言1.1 概述离子晶体在自然界中广泛存在,并且在许多领域中具有重要的应用价值。
研究离子晶体的结构堆积方式对于理解其物理化学性质以及开发新型功能材料具有重要意义。
在离子晶体的结构中,堆积模型是其中一种重要的研究对象。
堆积模型是指离子晶体中离子排列的方式和顺序。
通过研究和分析不同类型的离子堆积模型,可以了解离子晶体的几何构型、离子间距以及孔隙结构等重要特征。
在典型离子晶体中,常见的堆积模型包括六方最密堆积、立方最密堆积和体心立方堆积等。
填隙模型是一个与堆积模型密切相关的概念。
填隙模型描述了离子晶体中离子球和填隙球之间的相互作用关系。
填隙球指的是在堆积模型中离子之间形成的孔隙,而离子球则是指堆积模型中的离子。
通过研究填隙模型,可以进一步了解离子晶体中的空位、孔径大小以及离子的配位数等重要性质。
本文将重点研究填隙模型的堆积球和填隙球的半径比。
理论上,填隙球的半径与堆积球的半径之间存在一定的关系,这对于准确描述离子晶体的结构和性质非常重要。
通过实验和模拟方法,我们将探讨不同离子晶体中填隙球和堆积球的半径比的变化规律,以期揭示离子晶体材料中的微观结构和宏观性质之间的关联性。
本研究具有重要的理论和实践意义。
首先,对填隙模型的深入研究可以为离子晶体的结构设计和制备提供理论指导。
其次,填隙模型的研究可以为新型功能材料的开发和设计提供参考。
最后,对填隙球和堆积球半径比的研究有助于揭示离子晶体的结构特征与其性质之间的内在联系,为相关领域的进一步研究提供基础和支持。
由于离子晶体的复杂性和多样性,填隙模型的研究还存在一些挑战和尚未解决的问题。
未来的研究可以进一步探索不同离子晶体中填隙球和堆积球的半径比的影响因素,并寻求更精确的描述方法和模型。
希望本研究能够为离子晶体结构与性质的研究提供新的思路和方法,促进相关领域的进一步发展。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文按照以下结构进行展开:第二部分为正文,共分为两个小节。
晶体的密堆积发表时间:2011-05-25T11:09:13.997Z 来源:《魅力中国》2011年4月上作者:王铁群[导读] 新课程、新教材、新高考,研究新教材,研究新高考,新教材中存在很多疑难问题。
王铁群(河南省宜阳一高河南洛阳 471000)中图分类号:G633.8 文献标识码:A 文章编号:1673-0992(2011)04-0000-01摘要:新课程、新教材、新高考,研究新教材,研究新高考,对于广大教师来说时不我待,新教材中存在很多疑难问题,仁者见仁智者见智。
化学选修三《物质结构与性质》第三章,是本模块较难的内容,对学生要求较低,教师授课时要把握好尺度。
关键词:新课程晶体结构密堆积晶胞空间利用率学生在学习化学教材《选修三》第三章时,因为前面教材对这方面的知识涉及很少,对于晶体的堆积方式感到十分困惑,所以笔者针对这个问题进行分析。
由于金属键、离子键、范德华力等没有方向性和饱和性,所以在金属晶体,离子晶体,和一些分子型晶体中,组成晶体的微粒总是趋向于相互配位数高,能充分利用空间的密度大的紧密堆积结构,密堆积方式因充分利用了空间,而使体系的势能尽可能降低,而结构稳定。
为了研究方便,将晶体中的原子,离子等视为具有一定体积的圆球。
空间利用率:单位体积中圆球所占体积的百分数配位数:一个圆球周围的圆球数目一、等径圆球的密堆积把组成金属单质晶体的原子看作是等经圆球。
单层密堆积中只有一种方式,(见人教版教材中图3-22)这种堆积方式中,每个球的配位数为6,在第一层上堆积第二层时,要形成最密堆积,必须把球放在第二层的空隙上。
这样,仅有半数的三角形空隙放进了球,而另一半空隙上方是第二层的空隙。
第一层上放了球的一半三角形空隙,被4个球包围,形成四面体空隙;另一半其上方是第二层球的空隙,被6个球包围,形成八面体空隙。
第二层堆积时形成了两种空隙:四面体空隙和八面体空隙。
那么,在堆积第三层时就会产生两种方式:①六方密堆积(A3密堆积)在等径圆球密置双层之上再放一层,有两种方式,其中之一是和三层中球的位置在密置双层的正四面体空隙之上,即第三层与第一层重复,即采用ABAB…方式堆积(如图a)从中可以抽出六方晶胞,所以称为六方密堆积,(亦叫A3密堆积)配位数为12,空间利用率为74.05%,金属Zn、Mg、Be等属于这种结构。