运放芯片带图
- 格式:doc
- 大小:68.50 KB
- 文档页数:20
低档运放JRC4558。
这种运放是低档机器使用得最多的。
现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。
不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。
对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。
运放之皇5532。
如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。
这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。
5532现在主要分开台湾、美国和PHILIPS生产的,日本也有。
5532原来是美国SIGNE公司的产品,所以质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS 收购后,生产的5532商标使用的都是PHILIPS商标,质量和原品相当,只须4-5元。
而台湾生产的质量就稍微差一些,价格也最便,两三块便可以买到了。
NE5532的封装和4558一样,都是DIP8脚双运放(功能引脚见图),声音特点总体来说属于温暖细腻型,驱动力强,但高音略显毛糙,低音偏肥。
以前不少人认为它有少许的“胆味”,不过现在比它更有胆味的已有不少,相对来说就显得不是那么突出了。
5532的电压适应范围非常宽,从正负3V至正负20V都能正常工作。
它虽然是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。
是属于平民化的一种运放,被许多中底档的功放采用。
不过现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,所以有些不良商家还把4558擦掉字母后印上5532字样充当5532,一般外观粗糙,印字易擦掉,有少许经验的人也可以辨别。
据说有8mA的电流温热才是正宗的音频用5532。
NE5532还有两位兄弟NE5534和NE5535。
几款运放测试感受NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。
op275:和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打磨声卡用(特别是创新的),可以改善硬冷的数码声。
EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差,有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。
要用好比较难。
LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。
AD827:延伸非常好,解析力高,高频华丽,中频纯厚,低频下潜和力度都不错,音场向前后左右拓展,有了凹凸感(这一点比其它运放强),速度快,动态好,感觉很大气,初换上此运放后确实有让人为之一振的感觉。
但久听之下,也发现很多问题,1虽然三频段、音场很宽,气势足,大开大合,但总感觉结构有点松,不够紧溱,2人声部份一般,有时大动态时,人声被配乐声淹没3不够细腻,属于激情有余而柔情不足,4音乐味不够。
不过很多的人喜欢这种风格。
当然买两片来换换口味听还是可以的,按我的感觉,用在AV功放上看DVD大片应该很适合。
OPA2604:感觉象5532的升级版,各方面都有很大提高,解析力不错,音乐味更好,有胆味,声底属于较纯厚且有点刚性,综合素质很不错。
DY649:和2604比,解析力更好,高频部份纤细而又柔美且泛音丰富,声底没2604厚,很清澈、细致的感觉,音乐画面异常清晰,人声部份圆润通透、有种甜甜的感觉,人声(特别是女声)是它的强项。
DY639:整体性稍弱于649,但更具备胆机特性,胆味更浓。
DY669:和2604差不太多,纯厚的声音。
AD712:解析力很好,清晰而又没有音染的声音,一种很透明的感觉,声底细致,低频量稍少。
属于典型的监听风格。
不过可能很多人都不大喜欢这种纯净水的感觉,还是加点味精好,大概是我已前玩过音乐制作的原因吧,习惯了这种纯纯的监听味道,挺感兴趣。
主流功放芯片介绍运放之皇5532。
如果有谁还没有听讲过它名字的话,那就还未称得上是音响爱好者。
那个当年有运放皇之称的NE5532,与LM833、LF353、C A3240一起是老牌四大名运放,只是现在只有5532应用得最多。
5532现在要紧分开台湾、美国和PHILIPS生产的,日本也有。
5532原先是美国SIG NE公司的产品,因此质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS收购后,生产的5532商标使用的差不多上PHILIPS商标,质量和原品相当,只须4-5元。
而台湾生产的质量就略微差一些,价格也最便,两三块便能够买到了。
NE5532的封装和4558一样,差不多上DIP8脚双运放(功能引脚见图),声音特点总体来讲属于温顺细腻型,驱动力强,但高音略显毛糙,低音偏肥。
往常许多人认为它有少许的“胆味”,只是现在比它更有胆味的已有许多,相对来讲就显得不是那么突出了。
5532的电压适应范畴专门宽,从正负3V至正负20V 都能正常工作。
它尽管是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。
是属于平民化的一种运放,被许多中底档的功放采纳。
只是现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,因此有些不良商家还把4558擦掉字母后印上5 532字样充当5532,一样外观粗糙,印字易擦掉,有少许体会的人也能够辨不。
据讲有8mA的电流温热才是正宗的音频用5532。
NE5532还有两位兄弟NE5534和NE5535。
5534是单运放,由于它分开了单运放,没有了双运放之间的相互阻碍,因此音色不但柔和、温顺和细腻,而且有较好的音乐味。
它的电压适应范畴也专门宽,低到正负5V的电压也能保持良好的工作状态。
由于往常闻名的美国BGW-150功放采纳5534作电压鼓舞时,专门让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,因此现在一样都认为如果让正电源高出0. 7V音质会更好。
集成运算放大器内部电路 -----运放输出级及芯片举例集成运算放大器的输出级电路对集成运放输出级的基本要求:能高效率地向负载提供足够大的信号电压和电流,且有尽可能小的输出电阻。
为此,大多采用互补对称型射极输出器。
V 1:NPN管V 2: PNP管静态时,两管均截止,输入和输出端直流电位为零。
1电路组成二. 基本工作原理U Omax =±(U CC -U CEsat )I Omax =(U CC —U CEsat ) /R L交越失真产生的原因及波形三. 克服交越0.7-0.70.7V .0.7V .克服交越失真---加预偏置克服交越失真的实际的电路1224112421()(1)B E A B B E U R U R R R U I I I R ≈+=+=≈克服交越失真克服交越失真集成运放电路举例有缘学习更多关注桃报:奉献教育(店铺)或+谓ygd3076集成运算放大器F007原理图共集-共基有源负载差动放大器偏置电路有源负载复合管共射放大器互补跟隨输出级保护电路相位补偿电容CMOS 集成运算放大器5G145735G14573是一种通用型CMOS 集成运放,它包含有四个相同的运放单元。
由于四个运放按相同工艺流程做在一块芯片上,因而具有良好的匹配及温度一致特性,为多运放应用的场合提供了方便。
V 040/20V 180/20V 2158/20V 330/20V 430/20I V2+-U i -+I V0I r R V 550/12V 650/12V 7198/12I V1+U DD (+7.5V )U o - U SS(-7.5V )C 宽长比W/L 放大管(NMOS)负载管(PMOS)放大管(PMOS)负载管(NMOS)有源负载差分放大器有源负载共源放大器偏置电路(比例电流源)有缘学习更多关注桃报:奉献教育(店铺)或+谓ygd3076集成运算放大器内部电路-----输出级及运放芯片举例谢谢收看和听讲,欢迎下次再相见!。
常用运放芯片实物和引脚功能图_TL081/082/084运放引脚功能及贴片封装形式(1)运放芯片的3种型号序列(部分器件有此序列)如TL081、TL082、TL084,分别为8引脚单运放;8引脚双运放;14引脚四运放集成器件。
封装型式一般为塑封双列直插和贴片双列,环列封装形式比较少见。
图1 TL081/082/084运放引脚功能及贴片封装形式而常见常用,仅为下述两种器件。
世界上有几个人?有两个人,男人和女人,不失为一个智慧的回答。
常用运放芯片有几片,只有两片,8脚和14脚的双运放和四运放集成器件(8脚封装单运放器件和环列式封装器件应用较少),把此两种芯片引脚功能记住,检修中就不需要随时去查资料了。
图2 常用运放芯片实物和引脚功能图如上图。
其封装一般为塑封双列直插DIP8/DIP14和塑封贴片工艺封装SO8/SO14两种形式,随着电子线路板小型化精密化要求的提高,贴片元件的应用占据主流,直插式器件逐渐淡出人们的视野。
但无论何种封装模式,其引脚功能、次序都是一样的,所以仅需记准8脚(双运放)和14脚(四运放)两种运放的引脚功能就够了。
(2)运放芯片的3种温度序列任何一种集成IC器件,按应用温度范围不同,都可细分为3种器件,如LM358,实际上有LM158、LM258、LM358三种型号的产品,其引脚功能、内部结构、工作原理、供电电压等等都无差别,仅仅是应用温度范围差异甚大。
LM158 适应工作温度-50℃~125℃,军工用品(1类);LM258 适应工作温度-25℃~85℃,工业用品(2类);LM358 适应工作温度0℃~70℃,农用品(3类)。
单看参数,似乎LM258适用于山东地区,若用于东北地区,其参数有些不足。
而LM358仅能适用于江南地区。
而事实上并非如此,如低于2类品规格参数被淘汰到3类品的器件,可能是-24℃~84℃温度范围以内的产品,仅次于2类品,比3类品的温度指标实际上要高许多的。
在家电元件市场能购到的多为3类品。
稳压1117,RT9173、RT9199、W83310、RT9181、UP6103•1.三端稳压器117降压1117,3.3代表类型(3.3V输出)ADJ,可调节•开关电源工作原理:PWM 芯片控制 MOS 的高速开关来调节电压,当开关打开时电压上升,而关闭时则电压下降,电感电容组成 LC 储能电路。
通过高速切换 MOS 的开和关,控制 MOS 导通时间来控制电压的准位。
如图 T代表一个周期,T1 为开启状态,T2 为关闭状态,只要控制 T1 和 T2 的时间就可以控制电压的高低。
通过给负载馈电的时间改变供电电压当K闭合,则小灯泡获得12V电压;当K断开,小灯泡获得0V电压。
若K闭合1秒,断开一秒,重复动作1分钟,则在1分钟内小灯泡获得的平均电压:1分钟/(1开+1关)*12V=6.0V。
改变导通和截止的时间比例(占空比)就可以改变小灯泡获得的平均电压。
但这个电压不连续。
为了获得一个持续的电压。
电路加入滤波器件。
通常由窜连电感和并联的滤波电路来实现。
即上管导通下管闭合。
电感及电容端电压不能突变的特性使得上下管的导通给电感及电容提供了源源不断的电压经由电路构成回路,提供稳定的电流。
• 478主板平台内存供电一般比较器+场效应管的方式。
775以上的内存供电采用PWM方式供电。
供电芯片通常有RT9202、RT9214、RT9218等•RT9202引脚定义采用 12V 和 5V 供电的 RT9202 工作流程:1:5V 给 5 脚供电,5V 给上管供电,12V 经过 R4 给 1 脚供电,5V 经过 R1 给 7 脚供电;2:2 脚 UGATE 驱动上管导通;3:上管给电感 L2 和电容 C3 充电;4:当 L2 和 C3 成的储能电路电压经过 R2 和 R3 分压反馈给 FB 脚电压超过 0.8V 时,RT9202 关闭上管打开下管5:下管导通构成储能电路的放电回路,当电路经过分压后反馈给 FB 的电压低于 0.8V 时,RT9202 控制关闭下管打开上管,继续充电;6:2-5 循环。
LM324 是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-” 为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
运放用芯片LF147/347四JFET输入运算放大器输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。
±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。
LF155/255/355JFET输入运算放大器输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。
±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。
LF353双JFET输入运算放大器输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。
±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。
LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。
±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A);共模输入电压±15V(LF411)、±19V(LF411A)。
LF412/412A双低漂移、JFET输入运算放大器输入失调电压1mV(LF412)、500mV(LF412A);LF441/441A低功耗、JFET输入运算放大器输入失调电压1mV(LF441)、300μV(LF441A);温度漂移10μV/℃(LF441)、7μA(LF441A);偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声35nV/(Hz^1/2)(1kHZ);消耗电流250μA(LF441)、200μA(LF441A);±18V 电源(LF441)、±22V(LF441A);差模输入电压±30V(LF441)、±38V(LF441A);共模输入电压±15V(LF441)、±19V(LF441A)。
LF442/442A低功耗、JFET输入运算放大器输入失调电压1mV(LF442)、500μV(LF442A);温度漂移7μA(LF441A);偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声35nV/(Hz^1/2)(1kHZ);消耗电流500μA(LF442)、400μA(LF442A);±18V 电源(LF442)、±22V(LF442A);差模输入电压±30V(LF442)、±38V(LF442A);共模输入电压±15V(LF441)、±19V(LF442A)。
LF444/444A低耗、四JFET输入运算放大器输入失调电压3mV(LF444)、2mV(LF444A);温度漂移10μV/℃;偏置电流10pA;增益带宽GB=1MHz;转换速率1V/μs;噪声35nV/(Hz^1/2)(1kHZ);消耗电流800μA(LF444)、600μA(LF444A);±18V电源(LF444)、±22V(LF444A);差模输入电压±30V(LF444)、±38V(LF444A);共模输入电压±15V(LF444)、±19V(LF444A)。
LM378音频放大器单片双功率放大器可接8Ω或16Ω负载,每通道输出功率4W。
纹波抑制70dB;通道间隔离75dB,输入阻抗3MΩ,内含限流电路;具有热保护功能。
LM382前置放大器工作电压范围9V至40V;等效输入噪声0.8μV;开环增益100dB;电源抑制比120dB;单位增益带宽为15MHz;功率带宽为75kHZ,20Vpp;有短路保护功能。
LM386音频功率放大器工作电压范围4~12V或5~18V;静态电流4mA;电压增益20~200;基准接地输入;低失真。
LM387/ LM387A前置放大器工作电压范围9~30V (LM387)或9~40V(LM387A);输入噪声为0.8mV (LM387)、0.65mV (LM387A);开环增益104dB;电源抑制比110dB;输入电压摆幅(VCC-2VP-P);单位增益带宽为15MHz;功率带宽为75kHZ,20Vpp。
LM388音频放大器电压增益20~200;可调工作电压范围,最低为4V;基准接地输入;低失真。
LM392运算、比较放大器输入失调电压2mV;温度漂移7μV/℃;偏置电流50nA;消耗电流570mA;±1.5~±16V电源;可单电源工作;功耗57mW(LM392N)、830mW(LM392H);A为比较放大器;B为运算放大器。
LM4250低功耗、可编程运算放大器输入失调电压3mV;偏置电流7.5nA;增益带宽为GB=200kHz;转换速率200mV/μs;消耗电流11μA;±1~±18V电源;差模输入电压±30V;共模输入电压±15V;程控电流150μA。
类型号:NJM4250、CF4250。
LM6161/6261/6361 运算放大器工作电压范围4.75~32V;转换速率300V/μs;电源电流5mA;差分增益小于0.1%;相差0.1°;输入失调电压5mV;输入偏置电流2μA;输入电阻325kΩ;RSRR=CMRR=94dB。
LM6162/6262/6362 运算放大器工作电压范围4.75~32V;电源电流5mA;差分增益小于0.1%;相差0.1°;转换速率300V/μs;输入失调电压3mV;输入偏置电流2.2μA;RSRR=93dB ,CMRR=100dB。
LM6164/6264/6364 运算放大器工作电压范围4.75~32V;电源电流5mA;差分增益小于0.1%;相差0.1°;转换速率300V/μs;输入失调电压2mV;输入偏置电流2.5mA;RSRR=96dB ,CMRR=105dB;增益带宽175MHz。
LM6165/6265/6365 运算放大器工作电压范围4.75~32V;转换速率300V/μs;增益带宽725MHz。
电源电流5mA;差分增益小于0.1%;相差0.1°;输入失调电压1mV;输入偏置电流2.5mA;PSRR=104dB ,CMRR=102dB。
LM6171 电压反馈放大器工作电压范围±5.0~±15V;转换速率3600V/μs;电源电流2.5mA;输入失调电压1.5mV;开环增益90dB;输入偏置电流1mA;PSRR=95dB ,CMRR=110dB。
共模输入电阻40MΩ;差动输入电阻4.9MΩ。
LM6172 电压反馈放大器工作电压范围±5.0~±15V;单位增益带宽110MHz。
转换速率3000V/μs;电源电流4.6mA;输出电流50mA/通道;输入失调电压0.4mV;输入偏置电流1.2μA;共模输入电阻40MΩ;差动输入电阻4.9MΩ。
PSRR=95dB ,CMRR=110dB。
LM6181 电流反馈放大器工作电压范围±5.0~±15V或7.0~32V;输出电压±10V;转换速率2000V/μs;输入失调电压2mV;输入反相偏置电流2μA;输入同相偏置电流0.5μA;输出电流130mA;电流电流7.5mA;PSRR=80dB ,CMRR=60dB;可替换EL2020、OP160、AD844、LT1223、HA5004。
LM6182 电流反馈放大器工作电压范围±18V或7.0~32V;闭环带100MHz;转换速率2000V/μs;差分增益0.05%;相差0.04°;输入电压±10V;输入失调电压2mV;输入反相偏置电流2μA;输入同相偏置电流0.75μA;输出电阻0.2Ω;PSRR=80dB ,CMRR=60dB;同相输入电阻10MΩ。
LM709 通用运算放大器输入失调电压600μV;温度漂移1.8μV/℃;偏置电流100nA;消耗电流2.3mA;±18V电源;差模输出电源±5V,共模输出电源±10V,类似型号:MC1709、μA709、CF709。
LM7121 电压反馈放大器或5.0~36V电源;单位增益带宽175MHz;带宽235MHz;电源电流为5.3mA。
转换速率1300V/μs;输入失调电压0.9mV;输入偏置电流5.2μA;共模输入电阻10MΩ;差模输入电阻3.4MΩ;-PSRR=81dB ,CMRR=93dB;+PSRR=86dB。
LM7131 单电源运算放大器工作电压范围±2.7~±12V或±5.0V;电源电流7.0mA(5.0V时)和6.5mA(3.0V 时);4MHz时谐波失真0.1%;增益带宽70MHz;带宽90MHz-3dB,输出电流40mA到50Ω负载;输入偏置电流20μA;电压增益60dB;PSRR=75dB ,CMRR=70dB.LM7171 电压反馈放大器工作电压范围±5.0~±15V;单位增益带宽200MHz;转换速率4100V/μs;电源电流6.5mA;开环增益85dB,输出电流100mA;差分增益0.01%;相差0.02°输入失调电压0.3mV;输入偏置电流3.3μA;共模输入电阻40 MΩ;差模输入电阻3.4MΩ;PSRR=90dB ,CMRR=104dB。
LM725 高精度运算放大器输入失调电压0.5mV;温度漂移500nV/℃;偏置电流50pA;噪声2μVRMS;消耗电流40μA;±3.0~±22V电源;差模输入电压±5V;共模输入电压±22V;调零端与+V间电压为±0.5V。