第二章 流体静力学1
- 格式:ppt
- 大小:6.71 MB
- 文档页数:5
第一节流体流体静压强及其特性一流体静压强的定义ΔPⅠΔAⅡⅡ作用在受压面整个面积上的压力称为总压力或压力作用在单位面积上的压力是压力强度,简称压强Ap p ∆∆=(2-1-1)App A ∆∆=→∆0lim(2-1-2)当面积ΔA 无限缩小时,则得某点的静压强,为:压强的国际制单位是N/m 2或Pa ;工程单位tf/m 2是或kgf/cm 2。
第一节流体流体静压强及其特性二流体静压强的特性pABCp 1τzxydz dxdyP xP yP nP zdydzp P x x 21⋅=dzdxp P y y 21⋅=dxdyp P z z 21⋅=dAp P n n ⋅=xx f dxdydz F ⋅⋅=61ρyy f dxdydz F ⋅⋅=61ρzz f dxdydz F ⋅⋅=61ρ0)cos(=+∧-x n x F x n P P 061)cos(21=⋅+∧-⋅x n x f dxdydz x n dA p dydz p ρdydzx n dA 21)cos(=∧nx p p =压强方向的假设压强大小计算ΔhΔlΔA第一节流体流体静压强及其特性结论流体静压强的方向与作用面垂直,并指向作用面任意一点各方向的流体静压强大小相等,与作用面的方位无关第二节流体静压强的分布规律p 1p 2Gα0cos 12=⋅--αG P P 0cos 12=∆⋅--αγldA dA p dA p h p p ∆=-γ12hp p γ+=0一液体静压强的基本方程式hp p γ+=12p 0hpph11200z1h2z2z011hppγ+=)(11zzpp-+=γγ/1110zpzp+=+γγ22hppγ+=)(22zzpp-+=γγ/1220zpzp+=+γγCzp=+γ结论:压强水头,压强必须为相对压强位置水头测压管水头,同一容器的静止液体中各点测压管水头相等。
测压管水头表示单位重量流体具有的单位势能。
测压管水头线上的各点,其压强与当地大气压相等。
第二章 流体静力学本章研究流体在静止状态下的力学规律。
静止:1、流体整体对于地球没有相对运动的叫绝对静止;2、整体相对于地球有相对运动,而流体各质点没有相对运动,称为相对静止。
第1节、作用在流体上的力作用在流体上的力可分为质量力和表面力两类。
一、质量力:作用在流体的每一个质点上,大小与流体M 成正比,对于均质流体与体积V 也成正比。
最常见两类:重力等由于力场引起的惯性力:直线加速运动:达朗伯尔力曲线运动:离心力单位质量的质量力称为单位质量力,常用它来衡量质量力的大小。
设,,x y F F F z 分别表示质量力F v 在x ,y ,z 三轴上的分量,而用X ,Y ,Z 分别表示单位质量力在三坐标轴上的投影,则x x y y z z F F X M V F F Y M V F F Z M V ρρρ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩设流体只受重力作用,设z 轴铅直向上,则00X Y Mg Z g M⎧⎪=⎪=⎨⎪⎪=−=−⎩ 即单位质量力在数值上就等于加速度,并与加速度量纲相同。
二、表面力:作用在所取流体分离体的表面上的力,并与受作用的流体表面积成比例,单位表面积上的表面力称为应力。
按表面力作用在表面上的方向不同:法向力:与表面法线方向一致切向力:沿表面切线方向作用在上的平均法向应力和平均切向应力分别表示为:SΔ图2-1 作用在流体上的力nn n FP S F SττΔ⎧=⎪⎪Δ⎨Δ⎪=⎪Δ⎩S Δ趋于0(向A 点)并取极限,则可得流体由A 点处的法向应力和切向应力为:lim lim n nS S F dF P S dSF dF S dSτττΔ→∞Δ→∞Δ⎧==⎪⎪Δ⎨Δ⎪==⎪Δ⎩τ是由于流体的粘性和流体具有相对运动而产生的,流体处于静止时,切向应力不再存在,流体表面上就只有法向力,又因流体不能承受拉力,所以法向应力只能指向流体表面的内法线方向,即为流体的静压强。
第二节、流体静压强及其特性流体静压强有两个特性:1、流体静压强的方向垂直于作用面并指向流体内部;2、平衡流体中任意点处的静压强的大小与其作用面的方位无关,只是该点位置坐标的函数,即p=f (x ,y ,z )。
第⼆章-流体静⼒学⼀、学习导引1、流体静⽌的⼀般⽅程(1)流体静⽌微分⽅程x p f x ??=ρ1,y p f y ??=ρ1,zpf z ??=ρ1 (2)压强微分)(dz f dy f dx f dp z y x ++=ρ(3)等压⾯微分⽅程0=++dz f dy f dx f z y x2、液体的压强分布重⼒场中,液体的位置⽔头与压强⽔头之和等于常数,即C pz =+γ如果液⾯的压强为0p ,则液⾯下深度为h 处的压强为h p p γ+=03、固体壁⾯受到的静⽌液体的总压⼒物体受到的⼤⽓压的合⼒为0。
计算静⽌液体对物⾯的总压⼒时,只需考虑⼤⽓压强的作⽤。
(1)平⾯壁总压⼒:A h P c γ= 压⼒中⼼Ay J y y c cc D += 式中,坐标y 从液⾯起算;下标D 表⽰合⼒作⽤点;C 表⽰形⼼。
(2)曲⾯壁总压⼒:222z y x F F F F ++=分⼒:x xc x A h F γ=,y yc y A h F γ=,V F z γ=4、难点分析(1)连通器内不同液体的压强传递流体静⼒学基本⽅程式的两种表达形式为C pz =+γ和h p p γ+=0。
需要注意的是这两个公式只适⽤于同⼀液体,如果连通器⾥⾯由若⼲种液体,则要注意不同液体之间的压强传递关系。
(2)平⾯壁的压⼒中⼼压⼒中⼼的坐标可按式Ay J y y c cc D +=计算,⾯积惯性矩c J 可查表,计算⼀般较为复杂。
求压⼒中⼼的⽬的是求合⼒矩,如果⽤积分法,计算往往还简便些。
(3)复杂曲⾯的压⼒体压⼒体是这样⼀部分空间体积:即以受压曲⾯为底,过受压曲⾯的周界,向相对压强为零的⾯或其延伸⾯引铅垂投影线,并以这种投影线在相对压强为零的⾯或其延伸⾯上的投影⾯为顶所围成的空间体积。
压⼒体内不⼀定有液体。
正确绘制压⼒体,可以很⽅便地算出铅垂⽅向的总压⼒。
(4)旋转容器内液体的相对静⽌液体随容器作等⾓速度旋转时,压强分布及⾃由⾯的⽅程式为c z gr p +-=)2(22ωγc gr z +=2220ω恰当地选取坐标原点,可以使上述表达式简化。
第2章流体静力学第2章流体静力学第二章静水力学流体静力学主要研究流体在静止状态下的平衡规律及其工程应用。
由于静止状态下流体之间及流体与物面之间的作用是通过静压力的形式来表现的。
所以,本章的中心问题是研究静止状态下静压力的分布规律,进而确定静止流体作用物面上的总压力,用以解决工程实际问题。
静水力学中的静止是指流体粒子之间没有相对运动的状态。
因此,流体静止包括以下两种情况:所谓的绝对静止,即流体作为一个整体与地球没有相对运动;流体作为一个整体对地球有相对运动,但流体粒子之间没有相对运动。
流体静止时,流体质点之间没有相对运动,所以粘滞性在静止流体中显现不出来。
因此,本章所得到的流体平衡规律对理想流体和实际流体均适用。
§2-1静水压力及其特性一、静压力在静止的流体中,没有剪切应力。
因此,流体中的表面力是沿受力表面法向的正压力或法向力。
设在作用微元面积△a上的法向力为△p,则极限δp(2-1)δa?0δa就是流体单位面积上所受到的垂直于该表面的力,即物理学中的压强,称为流体静压力,简称压力,用p表示。
其单位为n/m2,称为帕斯卡,简称帕(pa)。
作用在某一面积上的静压力的合力称为总压力,以p表示,其单位为牛顿(n)。
常用的压力单位有:PA、bar、ATM、mmHg和mh2o。
换算关系为1bar=1×105pa;1atm=1.01325×105pa;1atm=760mmhg;1atm=10.34mh2o;1mmhg=133.28pa;1mh2o=9800pa。
可以看出,静压单位非常小,所以工程实践中常用的单位是kPa(103pa)或MPa(106pa)。
p=lim二、静压力的两个重要特性其中一个特点是:静压遵循作用面内部法线的方向,即它垂直指向作用面。
证明:一方面,流体静止时只有法向力,没有切向力,静压力只能沿法线方向;另一方面,流体不能承受拉力,只能承受压力。
所以,静压力唯一可能的方向就是内法线方向。