高三数学-二项式定理
- 格式:doc
- 大小:358.00 KB
- 文档页数:5
二项式定理二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容。
在高考中,二项式定理的命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。
因此,复时要正确理解二项式定理、二项展开式的概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键。
同时,注意把握二项式与定积分及其它知识的联系。
其中,非标准二项式定理求解特殊项的问题是难点问题。
二项式定理的公式为(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+。
+C(n,k)*a^(n-k)*b^k+。
+C(n,n)*b^n,其中n∈N*。
展开式的第k+1项为C(n,k)*a^(n-k)*b^k。
在求二项展开式的特定项问题时,实质上是考查通项T(k+1)=C(n,k)*b的特点。
一般需要建立方程求k,再将k的值代回通项求解。
注意k的取值范围为k=0,1,2,…,n。
特定项的系数问题及相关参数值的求解等都可依据上述方法求解。
二项式系数是二项展开式中各项的系数,记为C(n,k)。
项的系数是该项中非字母因数部分,包括符号等。
二项式系数具有对称性,在二项展开式中与首末两端等距离的两个二项式系数相等,即C(n,k)=C(n,n-k)。
二项式系数的增减性与最大值是:当k(n+1)/2时,二项式系数逐渐减小。
当n是偶数时,中间一项的二项式系数最大;当n是奇数时,中间两项的二项式系数最大。
各二项式系数的和等于2,即C(n,0)+C(n,1)+…+C(n,n)=2.奇数项的二项式系数之和等于偶数项的二项式系数之和,即C(n,0)+C(n,2)+…=C(n,1)+C(n,3)+…=2^(n-1)。
在高考中,常涉及多项式和二项式问题,主要考查学生的化简能力。
常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题。
赋值法是一种重要的方法,适用于恒等式,用于求形如(ax+b)、(ax+bx+c)(a,b∈R)的式子展开式的各项系数之和。
1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项011222...nn n n n nnnnC a C a b C ab C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r rnC a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=.⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rnC b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r rr n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系知识内容求展开式中的特定项数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr rn nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅,()()312123n n n n C --=⋅⋅,...,()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.) 常数项【例1】 在()2043x y+展开式中,系数为有理数的项共有 项.【例2】 的展开式中共有_____项是有理项.1003(23)+典例分析【例3】 展开式中的常数项为_______(用数字作答).【例4】 ()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项为_________.【例5】 二项式42x +x ⎛⎫ ⎪⎝⎭的展开式中的常数项为_____________,展开式中各项系数和为 .(用数字作答)【例6】 若123a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为220-,则实数a =___________.【例7】 在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是10-,则实数a 的值为 .61034(1)(1x x++【例8】 在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是______.(结果用数值表示)【例9】 如果1nx x ⎛⎫+ ⎪⎝⎭展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .【例10】的展开式中常数项为 (用数字作答)【例11】 若展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例12】 若的展开式中含有常数项,则最小的正整数等于 .【例13】 在的二项展开式中,若常数项为,则等于 (用数字作答)281(12)()x x x+-1()n x x+3(2)n x xn 2()n x x+60n【例14】的展开式中,常数项为15,则 .【例15】 已知的展开式中没有常数项,,且,则______.【例16】 展开式中的常数项为_______(用数字作答).【例17】 已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是 (用数字作答)【例18】 已知,若的展开式中含有常数项,则这样的有( ) A .3个 B .2 C .1 D .021()n x x-n =231(1)()n x x x x+++n ∈*N 28n ≤≤n =123(x x-2()n x x-314-21i =-10()n n ∈N ≤nxx )1(23-n【例19】展开式中的常数项为_______(用数字作答).【例20】 的展开式中整理后的常数项为 (用数字作答).【例21】的展开式中常数项为 (用数字作答)【例22】 已知的展开式的常数项是第项,则的值为( )A .B .C .D .【例23】 在的二项展开式中,若常数项为,则等于 (用数字作答)【例24】的展开式中,常数项为15,则 . 61034(1)(1)x x51(2)2x x+281(12)()x x x+-312nx x ⎛⎫+ ⎪⎝⎭7n 789102()n x x+60n 21()n x x-n =【例25】展开式中的常数项为_______(用数字作答).【例26】 已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是 (用数字作答)【例27】 已知,若的展开式中含有常数项,则这样的有( ) A .3个 B .2 C .1 D .0【例28】 展开式中的常数项为( ) A . B . C . D .【例29】 求展开式中的常数项.123(x x-2()n x x-314-21i =-10()n n ∈N ≤nxx )1(23-n 123x x ⎛- ⎝1320-1320220-220612x x ⎛⎫++ ⎪⎝⎭【例30】 的展开式的常数项是 (用数字作答)【例31】 在的二项展开式中,若常数项为,则等于( )A. B. C. D.【例32】 的展开式中的第项为常数项,那么正整数的值是 .【例33】 若的展开式中存在常数项,则的值可以是( ) A . B . C . D .【例34】 在的展开式中常数项是 ,中间项是.6122x x ⎛⎫- ⎪⎝⎭2nx x ⎫⎪⎭60n 369121nx x ⎛⎫- ⎪⎝⎭5n nx x ⎪⎪⎭⎫ ⎝⎛+31n 10111214261(2)x x-________【例35】 已知的展开式中没有常数项,,且,则______.【例36】 若的展开式中含有常数项,则最小的正整数等于 .【例37】 已知的展开式中第三项与第五项的系数之比为,则展开式中常数项是( ) A . B . C . D .【例38】 若展开式中的二项式系数和为,则等于________;该展开式中的常数项为_________.【例39】 若的展开式中常数项为,则_____,其展开式中二项式系数之和为_________.231(1)()nx x x x+++n ∈*N 28n ≤≤n =3(2n x xn 2nx x ⎛- ⎝3141-145-4521nx x ⎛⎫+ ⎪⎝⎭512n 921ax x ⎛⎫- ⎪⎝⎭84a =【例40】 若展开式的二项式系数之和为64,则展开式的常数项为( ) A .B .C .D .有理项 【例41】 求二项式的展开式中: ⑴常数项;⑴有几个有理项(只需求出个数即可);⑴有几个整式项(只需求出个数即可).【例42】的展开式中共有_______项是有理项.【例43】 二项式的展开式中:⑴求常数项;⑵有几个有理项;⑶有几个整式项.1nx x ⎛⎫+ ⎪⎝⎭102030120153x x 1003(23)+153(x x【例44】 已知在的展开式中,前三项的系数成等差数列 ①求;②求展开式中的有理项.【例45】 二项展开式中,有理项的项数是( ) A . B . C . D .【例46】 在的展开式中任取一项,设所取项为有理项的概率为,则 A .1 B . C . D .【例47】的展开式中,含的正整数次幂的项共有( ) A .项B .项C .项D .项【例48】 若(,为有理数),则( ) 42nx x n 153x x 3456(11332x x p 10p x dx =⎰67761113123()x x x 4321(5122a b +=+a b a b +=A .B .C .D .系数最大的项【例49】 已知的展开式中前三项的系数成等差数列.⑴求的值;⑵求展开式中系数最大的项.【例50】 展开式中系数最大的项是第几项?【例51】 已知的展开式中,末三项的二项式系数的和等于,求展开式中系数最大的项.【例52】 在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____. A . B . C . D .【例53】 已知的展开式中,二项式系数最大的项的值等于,求.45557080(2n x x n 20(23)x +(13)n x +121132nx x -⎛⎫- ⎪⎝⎭7-728-28lg 8(2)x x x +1120x【例54】 求的展开式中,系数绝对值最大的项以及系数最大的项.【例55】 已知展开式中的倒数第三项的系数为,求: ⑴含的项;⑵系数最大的项.【例56】 设,,的展开式中,的系数为.⑴求展开式中的系数的最大、最小值;⑴对于使中的系数取最小值时的、的值,求的系数.【例57】 已知:的展开式中,各项系数和比它的二项式系数和大. ⑴求展开式中二项式系数最大的项;⑴求展开式中系数最大的项.1032x x 3241nx x 453x m n +∈N ,1m n ,≥()(1)(1)m n f x x x =+++x 19()f x 2x ()f x 2x m n 7x 223(3)n x x +992【例58】 展开式中系数最大的项是第几项?【例59】 关于二项式有下列命题:⑴该二项展开式中非常数项的系数和是:⑴该二项展开式中第六项为;⑴该二项展开式中系数最大的项是第项与第项;⑴当时,除以的余数是.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例60】 在的展开式,只有第项的二项式系数最大,则展开式中常数项为 .(用数字作答)【例61】 设的整数部分和小数部分分别为与,则的值为 .20(23)x +2005(1)x -1619992005C x 100310042006x =2005(1)x -2006200532nx x ⎛ ⎝5)()21*174n n +∈N n M n m ()n n n m M m +【例62】 中,为正实数,且,它的展开式中系数最大的项是常数项,求的取值范围.【例63】 二项式的展开式中,末尾两项的系数之和为,且二项式系数最大的一项的值为,则在内的值为___________.【例64】 如果的展开式中含有非零常数项,则正整数的最小值为_______(用数字作答).【例65】 在二项式的展开式中,存在着系数之比为的相邻两项,则指数的最小值为 .12()m n ax bx +a b ,200m n mn +=≠,a b(1sin )n x +752x (0,2π)232(3)n x x -n ()1nx +57∶()*n n ∈N。
高中数学-二项式定理精讲精练1.二项式定理(1)二项式定理011()C C C C ()n n n k n k k n nn n n n a b a ab a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()na b +的二项展开式,共有____________项,其中各项的系数_____________叫做二项式系数.说明:二项式定理中的,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.在二项式定理中,如果设1,a b x==,则得到公式:0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L .(2)二项展开式的通项 二项展开式中的C kn kk n ab -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第__________项:1C k n k k k n T a b -+=.2.“杨辉三角”与二项式系数的性质(1)杨辉三角当n 依次取1,2,3,…时,()na b +展开式的二项式系数可以表示成如下形式:该表称为“杨辉三角”,它蕴含着许多规律:例如:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两个数字之_______. (2)二项式系数的性质①对称性.与首末两端“等距离”的两个二项式系数_________.事实上,这一性质可直接由公式C C m n mn n -=得到.②增减性与最大值.当12n k +<时,二项式系数是逐渐增大的;当12n k +>时,二项式系数是逐渐减小的,因此二项式系数在中间取得最大值.当n 是偶数时,中间的一项的二项式系数_________最大;当n 是奇数时,中间的两项的二项式系数_________相等且最大.③各二项式系数的和.已知0122(1)C C C C C n k k n nn n n n n x x x x x +=++++++L L .令1x =,则0122C C C C n nn n n n =++++L .也就是说,()na b +的展开式的各个二项式系数的和为_________.K 知识参考答案:1.(1)n +1C ({0,1,2,,})kn k n ∈L (2)1k +2.(1)和(2)①相等②2C nn 1122C,Cn n nn-+③2nK —重点 二项式定理及二项展开式的通项公式K —难点 用二项式定理解决与二项展开式有关的简单问题 K —易错容易混淆项与项的系数,项的系数与项的二项式系数一、二项展开式中特定项(项的系数)的计算求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =L ).一定要记准二项式的展开式,对于较复杂的二项式,有时先化简再展开更简捷. 【例1】已知在的展开式中,第6项为常数项.(1)求含的项的系数;(2)求展开式中所有的有理项.【解析】(1)由通项公式得,因为第6项为常数项,所以时,有,解得,令,得,故所求系数为.(2)根据通项公式,由题意得1023010rr r -∈≤≤∈⎧⎪⎪⎨⎪⎪⎩Z Z ,令,则,即,因为,所以应为偶数,所以可以取,即可以取2,5,8,所以第3项、第6项、第9项为有理项,它们分别为, ,,即22456345,,48256x x . 【名师点睛】第m 项是令1k m +=;常数项是该项中不含“变元”,即“变元”的幂指数为0;有理项是通项中“变元”的幂指数为整数.【例2】(2015陕西)二项式(1)()n x n *+∈N 的展开式中2x 的系数为15,则n = A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n Τx +=,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得6n =或5n =-,因为n *∈N ,所以6n =,故选C .二、与二项式定理有关的求和问题二项式定理011()C C C C ()n n n k n k k n n n n n n a b a a b a b b n --*+=+++++∈L L N 中,,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.我们在求和时,要根据具体问题灵活选取,a b 的值.【例3】在的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项的系数和与偶数项的系数和;(5)x 的奇次项系数和与x 的偶次项系数和. 【解析】设,各项系数和即为,奇数项系数和为,偶数项系数和为,x 的奇次项系数和为,x 的偶数项系数和为.由于(*)是恒等式,故可用“赋值法”求出相关的系数和. (1)二项式系数的和为.(2)令x =y =1,得各项系数和为.(3)奇数项的二项式系数和为.偶数项的二项式系数和为.(4)令x=y=1,得①.令x=1,y=-1(或x=-1,y=1),得②.①+②得,故奇数项的系数和为.①-②得,故偶数项的系数和为.(5)x的奇次项系数和为;x的偶次项系数和为.【名师点睛】二项式定理是一个恒等式,即对,a b的一切值都成立,在做题时,,a b的-,1或0.值一般取1三、整除、求余问题有关整除、求余问题是二项式定理的应用之一,关键在于如何把问题转化为一个二项式问题,注意结合二项式定理和整除、求余的有关知识来解决.∈N)能被25整除.【例4】利用二项式定理证明2n+2·3n+5n-4(n*【解析】因为2n+2·3n=4×(1+5)n,所以2n+2·3n+5n-4,则n ≥2时,2n +2·3n +5n -4能被25整除,当n =1时,2n +2·3n +5n -4=25. 所以,当n *∈N 时,2n +2·3n +5n -4能被25整除. 四、混淆项的系数与项的二项式系数【例5】若28()a x x -的展开式中常数项为1120,则展开式中各项系数之和为 .【错解】28()a x x-的展开式中各项系数之和为012888888C C C C 2++++=L .【错因分析】错解中误把求展开式中各项系数之和理解为求展开式中二项式系数的和,二者是不同的概念.【正解】28()a x x -的展开式的通项为82282188C ()C ()r r r r r r rr T x a x a x---+=-=-,令8-2r =0,解得r =4,则·(-a 2)4=1120,解得a 2=2,故2882()()a x x x x-=-,令x =1,则展开式中各项系数之和为(1-2)8=1.【名师点睛】一个二项展开式的第1k +项的二项式系数是C kn ,所有的二项式系数是一组仅与二项式的次数n 有关的1n +个组合数,与,a b 的取值无关,且是正数;而第1k +项的系数则是二项式系数C kn 与数字系数的积,可能为负数.只有当数字系数为1时,二项式系数恰好就是项的系数.1.10(1)x +的二项展开式中的一项是A .45B .290xC.3120x D.4252x2.二项式102xx⎛-⎪⎝⎭的展开式的二项式系数和为A.1B.1-C.102D.03.化简得A.B.C.D.4.二项式的展开式中只有一项的系数为有理数,则的可能取值为A.6B.7C.8D.95.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中的常数项为A.6B.9C.12D.186.设a∈Z,且0≤a<13,若512012+a能被13整除,则a=A.0B.1C.11D.127.()73x -的展开式中,x 5的系数是_________.(用数字填写答案)8.已知,则.9.已知,在的展开式中,第二项系数是第三项系数的.(1)求的值;(2)求展开式中二项式系数最大的项; (3)若+,求的值.10.设,求下列各式的值:(1)a 0.(2)a 1+a 2+a 3+a 4+…+a 100. (3)a 1+a 3+a 5+…+a 99.(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2. (5)|a 0|+|a 1|+…+|a 100|.11.若()332d a x x x -=+⎰,则在的展开式中,的幂函数不是整数的项共有A .13项B . 14项C .15项D . 16项12.若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .13.设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++Λ2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .14.程序框图如图所示,若输入0s =, 10n =, 0i =,则输出的为__________.15.已知展开式的二项式系数之和为256,展开式中含项的系数为112.(1)求的值;(2)求展开式中含项的系数.16.(四川)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为A .-15x 4B .15x 4C .-20i x 4D .20i x 4 17.(新课标全国Ⅰ)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)18.(山东)若ax 25x的展开式中x 5的系数是—80,则实数a =_______.1.C 【解析】由通项公式110C k k k T x +=可知,当3k =时,有34120T x =.2.C 【解析】展开式的二项式系数和为012101010101010C C C C 2++++=L .故选C.3.B 【解析】根据题意,可知,故选4.B 【解析】展开式的通项为=,而展开式中只有一项的系数为有理数,则为有理数,即为有理数,即为3的倍数,为2的倍数.若,则的可能取值为7.选B.5.B 【解析】由题意可得,令x=1,则,又各项的二项式系数之和为,所以,解得.所以该二项式展开式的通项为.令,得该二项式展开式的常数项为.故选B.6.D 【解析】201220120201212011201112012201220122012201251(521)C 52C 52C 52C a a a =-=-+-++++L , 由于020121201120111201220122012C 52C 52C 52-+-L 含有公因数52,故能被52整除,即能被13整除,要使512012+a 能被13整除,又a ∈Z ,且0≤a <13,则113a +=,故12a =.故选D.7.-189 【解析】由二项式定理得()71713C rrr rr T x -+=-,令r = 5得x 5的系数是2573C 189-=-.8.-5 【解析】,由二项式定理得,故,所以.9.【解析】(1)由题意得,解得.(2)由(1)知,二项式系数最大的值为,二项式系数最大的项为第四项,则.(3)=,令,得.10.【解析】(1)令x=0,则展开式为a0=2100.(2)令x=1,可得(*),所以.(3)令x=-1,可得.与(2)中(*)式联立相减得.(4)原式=(a0+a2+…+a100)+(a1+a3+…+a99)](a0+a2+…+a100)-(a1+a3+…+a99)].(5)因为,所以a2k -1<0(k∈N*).所以|a 0|+|a1|+|a 2|+…+|a100|=a0-a1+a2-a3+…+a100.11. C 【解析】,由得,当时,的幂函数不是整数,即共有15项,选C.12.【解析】26()baxx+展开式的通项为266123166C()()Cr r r r r r rrbT ax a b xx---+==,令1233,r-=得3r=,所以,由63336C20a b-=得1ab=,从而2222a b ab+≥=,当且仅当a b=时,22a b+的最小值为.13.【解析】由图易知0121,3,4a a a===,则1221211C3,C()4n na aa a====,即23(1)42nan na⎧=⎪⎪⎨-⎪=⎪⎩,解得3a=.14.1024 【解析】由程序框图可知,该程序执行的是求0121010101010C C C C++++L的和,易知012101010101010C C C C21024++++==L.15.【解析】(1)由二项式系数之和为,可得,设含的项为第项,则,故,即,则,解得,,.(2)由(1)知,故含项的系数为.16.A 【解析】二项式6(i)x +的展开式的通项为616C i r r rr T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.17.10【解析】5(2)x x +的展开式的通项为555255C (2))2C r rrr rr x x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=. 18.2-【解析】因为5102552155C ()(C r r rr r rr T ax a x x---+==,所以由510522r r -=⇒=,因此2525C 80 2.a a -=-⇒=-。
二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。
在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。
本文将介绍二项式定理的概念、基本公式以及一些常见的应用。
一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。
简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。
基本公式:根据二项式定理,我们可以得到二项式的展开式。
对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。
C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。
二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。
通过展开式,我们可以计算出结果,以及每一项的系数。
例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。
对于排列组合问题,可以使用组合数来解决。
而组合数又可以使用二项式定理来计算。
例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。
由于组合数可以用二项式定理来计算,我们可以直接得到结果。
二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。
二项式定理[考试要求] 会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1na n-1b+…+C rna n-rb r+…+C nnb n(n∈N*);(2)通项公式:Tr+1=C rna n-rb r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n ,C1n,…,C nn.2.二项式系数的性质(1)0≤r≤n时,C rn 与C n-rn的关系是C rn=C n-rn.(2)二项式系数先增后减中间项最大当n为偶数时,第n2+1项的二项式系数最大,最大值为Cn2n;当n为奇数时,第n+12项和n+32项的二项式系数最大,最大值为.3.各二项式系数和(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C nn=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1 n +C3n+C5n+…=2n-1.[常用结论](1)C0n=1;(2)C nn=1;(3)C mn=C n-mn;(4)C mn+1=C m-1n+C mn.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)C rna n-rb r是(a+b)n的展开式中的第r项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( )(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.( )(4)通项Tr+1=C rna n-rb r中的a和b不能互换.( )[答案] (1)×(2)×(3)√(4)√二、教材习题衍生1.(1-2x)4展开式中第3项的二项式系数为( ) A .6 B .-6 C .24D .-24A [(1-2x)4展开式中第3项的二项式系数为C 24=6.故选A.] 2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( )A .5B .-20C .20D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r (-2y)r.根据题意,得⎩⎨⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.]3.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( )A .1B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________. 8 [令x =1,则a 0+a 1+a 2+a 3+a 4=0;令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]考点一 二项式展开式的通项公式的应用形如(a +b)n 的展开式问题二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b)n 的展开式的通项公式T r +1=C r n an -r b r(r =0,1,2,…,n)求通项.②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.[典例1-1] (1)(多选)若⎝ ⎛⎭⎪⎫2x 2-3x 5的展开式中含x α(α∈R)项,则α的值可能为( ) A .-5 B .1 C .2D .7(2)若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.(3)(2019·浙江高考)在二项式(2+x)9的展开式中,常数项是________;系数为有理数的项的个数是________.(1)ABD (2)-2 (3)16 2 5 [(1)易知⎝⎛⎭⎪⎫2x 2-3x 5的展开式的通项T r +1=C r 5(2x 2)5-r·⎝ ⎛⎭⎪⎫-3x r =C r 525-r (-3)r x 10-3r ,其中r =0,1,2,…,5.令r =1,则10-3r =7;令r =3,则10-3r =1;令r =5,则10-3r =-5.令10-3r =2,则r =83∉N ,所以α的值可能为7,1,-5,故选ABD.(2)⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x-r 2=C r 5a 5-r ·x10-52r ,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. (3)由题意,(2+x)9的通项为T r +1=C r 9(2)9-r x r (r =0,1,2,…,9),当r =0时,可得常数项为T 1=C 09(2)9=162;若展开式的系数为有理数,则r =1,3,5,7,9,有T 2, T 4, T 6, T 8, T 10共5个项.]点评:已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.形如(a +b)n (c +d)m 的展开式问题求解形如(a +b)n(c +d)m的展开式问题的思路(1)若n ,m 中一个比较小,可考虑把它展开得到多个,如(a +b)2(c +d)m =(a 2+2ab +b 2)(c +d)m ,然后展开分别求解.(2)观察(a +b)(c +d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x 2)5(1-x)2.(3)分别得到(a +b)n ,(c +d)m 的通项公式,综合考虑.[典例1-2] (1)(2020·全国卷Ⅰ)⎝ ⎛⎭⎪⎫x +y 2x (x +y)5的展开式中x 3y 3的系数为( )A .5B .10C .15D .20(2)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3(3)若(x 2-a)⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A .13B .12C .1D .2(1)C (2)D (3)D [(1)因为(x +y)5的展开式的第r +1项T r +1=C r 5x5-r y r,所以⎝⎛⎭⎪⎫x +y 2x (x +y)5的展开式中x 3y 3的系数为C 35+C 15=15.故选C. (2)能够使其展开式中出现常数项,由多项式乘法的定义可知需满足:第一个因式取x 2项,第二个因式取1x 2项得x 2×1x2×C 45(-1)4=5;第一个因式取2,第二个因式取(-1)5得2×(-1)5×C 55=-2,故展开式的常数项是5+(-2)=3,故选D.(3)由题意得⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝ ⎛⎭⎪⎫1x k =C k 10x 10-2k ,⎝⎛⎭⎪⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-aC 210=120-45a =30,由此解得a =2,故选D.]点评:求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.形如(a +b +c)n 的展开式问题求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解.(2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.[典例1-3] (1)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是________.(用数字作答)(1)-160 (2)-120 [(1)⎝ ⎛⎭⎪⎫x +4x -43=⎝⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x)6-k·⎝⎛⎭⎪⎫-2x k=(-2)k ·C k 6x 3-k.令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6表示6个因式x 2-2x +y 的乘积,在这6个因式中,有3个因式选y ,其余的3个因式中有2个选x 2,剩下一个选-2x,即可得到x 3y 3的系数,即x 3y 3的系数是C 36C 23×(-2)=20×3×(-2)=-120.]点评:二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.[跟进训练]1.若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( )A .±2B .12C .-2D .±12A [⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式的通项为T k +1=C k 6(x 2)6-k ·⎝ ⎛⎭⎪⎫1ax k =C k 6⎝ ⎛⎭⎪⎫1a k x 12-3k ,令12-3k =0,得k =4.故C 46·⎝ ⎛⎭⎪⎫1a 4=1516,即⎝ ⎛⎭⎪⎫1a 4=116,解得a =±2,故选A.]2.(2021·全国统一考试模拟演练)(1+x)2+(1+x)3+…+(1+x)9的展开式中x 2的系数是( )A .60B .80C .84D .120D [(1+x)2+(1+x)3+…+(1+x)9=1+x 2[1-1+x8]1-1+x=1+x10-1+x2x.所以x 2的系数为C 310=120,故选择D.]3.⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为( ) A .30 B .60 C .90D .120B [展开式中含xy 的项来自C 16(-y)1⎝⎛⎭⎪⎪⎫x -13x 5,⎝ ⎛⎭⎪⎪⎫x -13x 5展开式通项为T r +1=(-1)r C r5x5-43r ,令5-43r =1⇒r =3,⎝⎛⎭⎪⎪⎫x -13x 5展开式中x 的系数为(-1)3C 35,所以⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60,故选B.] 考点二 二项式系数的和与各项的系数和问题(1)系数和问题常用“赋值法”求解赋值法是指对二项式中的未知元素赋值,从而求得二项展开式的各项系数和的方法.求解有关系数和题的关键点如下:①赋值,观察已知等式与所求式子的结构特征,确定所赋的值,常赋的值有:-1,0,1等.②求参数,通过赋值,建立参数的相关方程,解方程,可得参数值. ③求值,根据题意,得出指定项的系数和.(2)二项式系数和:(a +b)n的展开式中二项式系数的和为C 0n +C 1n +…+C nn =2n. [典例2] (1)在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120(2)若(x +2+m)9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1 [(1)令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n ,所以⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和为4n,又二项式系数和为2n,所以4n2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x 5-r⎝ ⎛⎭⎪⎫3x r =C r 53r x5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90,故选C.(2)令x =0,则(2+m)9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m)9·m 9=39, ∴m(2+m)=3, ∴m =-3或m =1.]点评: (1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号).(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.[跟进训练]1.在二项式(1-2x)n 的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为( )A .-960B .960C .1 120D .1 680C [因为偶数项的二项式系数之和为2n -1=128,所以n -1=7,n =8,则展开式共有9项,中间项为第5项,因为(1-2x)8的展开式的通项T r +1=C r 8(-2x)r =C r 8(-2)r x r,所以T 5=C 48(-2)4x 4,其系数为C 48(-2)4=1 120.]2.(a +x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x)(1+x)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.]考点三 二项式系数的性质二项展开式系数最大项的求法如求(a +bx)n (a ,b ∈R)的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1, 从而解出k 来,即得.二项式系数的最值问题[典例3-1] 设m 为正整数,()x +y 2m 展开式的二项式系数的最大值为a ,()x +y 2m +1展开式的二项式系数的最大值为b ,若15a =8b ,则m =________.7 [()x +y 2m 展开式中二项式系数的最大值为a =C m 2m ,()x +y 2m +1展开式中二项式系数的最大值为b =C m +12m +1,因为15a =8b ,所以15C m 2m =8C m +12m +1,即152m !m !m !=82m +1!m !m +1!,解得m =7.]项的系数的最值问题[典例3-2] 已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,二项式系数最大的项为________,系数的绝对值最大的项为________.-8 064 -15 360x 4 [由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n=32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x)5⎝ ⎛⎭⎪⎫-1x 5=-8 064. 设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x)10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k C k 10·210-k·x 10-2k ,令⎩⎨⎧C k 10·210-k ≥C k -110·210-k +1,C k10·210-k ≥C k +110·210-k -1, 得⎩⎨⎧C k 10≥2C k -110,2C k10≥C k +110,即⎩⎨⎧11-k≥2k,2k +1≥10-k 解得83≤k≤113.∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.]点评:二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C nn ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.[跟进训练]1.二项式⎝⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7D [根据⎝⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x 20的展开式的通项为T r +1=C r 20·(3x)20-r ·⎝ ⎛⎭⎪⎪⎫13x r =(3)20-r ·C r 20·x20-4r 3,要使x 的指数是整数,需r 是3的倍数且0≤r≤20,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.]2.已知(1+3x)n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.C 715(3x)7和C 815(3x)8[由已知得Cn -2n+C n -1n+C n n=121,则12n·(n-1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x)7和T 9=C 815(3x)8.]。
第三节二项式定理1.能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理2.二项式系数的性质1.二项式(x+y)n的展开式的第k+1项与(y+x)n的展开式的第k+1项一样吗?提示:尽管(x+y)n与(y+x)n的值相等,但它们的展开式形式是不同的,因此应用二项式定理时,x,y的位置不能随便交换.2.二项式系数与项的系数一样吗?提示:不一样.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.1.(x -y )n 的二项展开式中,第r 项的系数是( )A .C r nB .C r +1nC .C r -1nD .(-1)r -1C r -1n 解析:选D 本题中由于y 的系数为负,故其第r 项的系数为(-1)r -1C r -1n .2.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28 D .21解析:选D 依题意可知,二项式(1+x )7的展开式中x 2的系数等于C 27×15=21.3.C 16+C 26+C 36+C 46+C 56+C 66的值为( )A .62B .63C .64D .65解析:选B 因为C 16+C 26+C 36+C 46+C 56+C 66=(C 06+C 16+C 26+C 36+C 46+C 56+C 66)-C 06=26-1=63.4.⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则n 等于________.解析:∵展开式中只有第6项的二项式系数最大, ∴n =10. 答案:105.(A.嘉兴模拟)(x +1)9的展开式中x 3的系数是________.(用数字作答) 解析:依题意知:(x +1)9的展开式中x 3的系数为C 69=C 39=9×8×73×2×1=84.答案:841.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题.2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n 项; (2)求二项展开式中的特定项;(3)已知二项展开式的某项,求特定项的系数.[例1] (1)(A.浙江高考)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210(2)(A.四川高考)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10(3)(A.湖南高考)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20(4)使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6 D .7[自主解答] (1)由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.(2)只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C.(3)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2·(-2y )3=-20x 2y 3,故x 2y 3的系数为-20,选A.(4)T r +1=C r n(3x )n -r·x -32r =C r n ·3n -r ·xn -r -32r =C r n ·3n -r·xn -5r 2(r =0,1,2,…,n ),若T r +1是常数项,则有n -52r =0,即2n =5r (r =0,1,…,n ),当r =0,1时,n =0,52,不满足条件;当r =2时,n =5.[答案] (1)C (2)C (3)A (4)B互动探究若本例(2)中的条件“n ∈N *”改为“n ≥3”,其他条件不变,则展开式中的有理项最少有________项.解析:由本例(2)中的自主解答可知:T r +1=C r n3n -rxn -5r2(r =0,1,2,…,n ).即当⎝⎛⎭⎪⎫n -5r 2为整数时,T r +1为有理项.显然当n =3时,r 的取值最少,有r =0,r =2, 即有理项为T 1、T 3两项. 答案:2求二项式展开式有关问题的常见类型及解题策略(1)求展开式中的第n 项.可依据二项式的通项公式直接求出第n 项; (2)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(3)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r +1项,由特定项得出r 值,最后求出其参数.1.若二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中第5项是常数项,则正整数n 的值可能为( )A .6B .10C .12D .15解析:选C T r +1=C r n(x )n -r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r n x n -3r 2,当r =4时,n -3r 2=0,又n ∈N *,所以n =12.2.(A.金华模拟)⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.解析:⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式x 的项为2x ·C 4410(-x )4+x C 0414(-x )0=2x +x =3x .所以x 的系数为3.答案:3[例2] (1)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8(2)若C 3n +123=C n +623(n ∈N *)且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)n a n =________.[自主解答] (1)由题意得:a =C m 2m ,b =C m 2m +1, 所以13C m 2m =7C m 2m +1,∴132mm !·m !=72m +1mm +1,∴72m +1m +1=13,解得m =6,经检验为原方程的解,选B.(2)由C 3n +123=C n +623,得3n +1=n +6(无整数解)或3n +1=23-(n +6),解得n =4,问题即转化为求(3-x )4的展开式中各项系数和的问题,只需在(3-x )4中令x =-1即得a 0-a 1+a 2-…+(-1)n a n =[3-(-1)]4=256.[答案] (1)B (2)256方法规律 赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f 1f 12,偶数项系数之和为a 1+a 3+a 5+…=f 1f 12.1.设(1+x )n =a 0+a 1x +…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 3B .20x 3C .21x 3D .35x 3解析:选B 在(1+x )n =a 0+a 1x +…+a n x n 中,令x =1得2n =a 0+a 1+a 2+…+a n .令x =0,得1=a 0,∴a 1+a 2+…+a n =2n -1=63,∴n =6.而(1+x )6的展开式中系数最大的项为T 4=C 36x 3=20x 3.2.(A.丽水模拟)若(1-2x )2 014=a 0+a 1x +…+a 2 013x 2 013+a 2 014x 2 014(x ∈R ),则a 12+a 222+…+a 2 01322 013+a 2 01422 014的值为( ) A .2 B .0 C .-1 D .-2解析:选C 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 01322 013+a 2 01422 014=0,∴a 12+a 222+…+a 2 01322 013+a 2 01422 014=-1.—————————————[课堂归纳——通法领悟]——————————————1个公式——二项展开式的通项公式通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点:(1)C r n an -r b r是第r +1项,而不是第r 项; (2)通项公式中a ,b 的位置不能颠倒;(3)通项公式中含有a ,b ,n ,r ,T r +1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”.3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”;(2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;(3)展开式中第r +1项的二项式系数与第r +1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.前沿热点(十六)与二项式定理有关的交汇问题1.二项式定理作为一个独特的内容,在高考中总有所体现,常常考查二项式定理的通项、项的系数、各项系数的和等.2.二项式定理作为一个工具,也常常与其他知识交汇命题,如与数列交汇、与不等式交汇、与函数交汇等.因此在一些题目中不仅仅考查二项式定理,还要考查其他知识,其解题的关键点是它们的交汇点,注意它们的联系即可.[典例](B.陕西高考)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15[解题指导] 先寻找x >0时f (x )的取值,再寻找f [f (x )]的表达式,再利用二项式定理求解.[解析] x >0时,f (x )=-x <0,故f [f (x )]=⎝⎛⎭⎪⎫-x +1x 6,其展开式的通项公式为T r +1=C r6·(-x )6-r·⎝ ⎛⎭⎪⎫1x r=(-1)6-r ·C r 6·(x )6-2r ,由6-2r =0,得r =3,故常数项为(-1)3·C 36=-20.[答案] A[名师点评] 解决本题的关键有以下几点: (1)正确识别分段函数f (x ); (2)正确判断f (x )的符号; (3)正确写出f [f (x )]的解析式; (4)正确应用二项式定理求出常数项.(A.安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n ·1a 2=a 2=4,故⎩⎪⎨⎪⎧na =3,n n -1a2=8,可得⎩⎨⎧n =9,a =3.答案:31.在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40 解析:选D T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r ·C r 5·x10-3r, 令10-3r =1,得r =3.所以x 的系数为(-1)3·25-3·C 35=-40.2.在(1+x )2-(1+3x )4的展开式中,x 的系数等于( ) A .3 B .-3 C .4 D .-4解析:选B 因为(1+x )2的展开式中x 的系数为1,(1+3x )4的展开式中x 的系数为C 34=4,所以在(1+x )2-(1+3x )4的展开式中,x 的系数等于-3.3.(A.金华模拟)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .168解析:选D (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.4.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40解析:选D 由题意,令x =1得展开式各项系数的和为(1+a )·(2-1)5=2,∴a =1.∵二项式⎝⎛⎭⎪⎫2x -1x 5的通项公式为T r +1=C r 5(-1)r ·25-r·x 5-2r ,∴⎝⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中的常数项为x ·C 35(-1)322·x -1+1x·C 25·(-1)2·23·x =-40+80=40.5.在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -3=0,则自然数n 的值是( )A .7B .8C .9D .10解析:选B 易知a 2=C 2n ,a n -3=(-1)n -3·C n -3n =(-1)n -3C 3n ,又2a 2+a n -3=0,所以2C 2n +(-1)n -3C 3n =0,将各选项逐一代入检验可知n =8满足上式. 6.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12解析:选D 512 012+a =(13×4-1)2 012+a ,被13除余1+a ,结合选项可得a =12时,512 012+a 能被13整除.7.(A.新课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:二项展开式的通项公式为T r +1=C r 10x10-r a r,当10-r =7时,r =3,T 4=C 310a 3x 7,则C 310a 3=15,故a =12. 答案:128.(A.山东高考)若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.解析:T r +1=C r 6(ax 2)6-r ⎝ ⎛⎭⎪⎫b x r =C r 6a 6-r b r x 12-3r ,令12-3r =3,得r =3,故C 36a 3b 3=20,所以ab =1,a 2+b 2≥2ab =2,当且仅当a =b =1或a =b =-1时,等号成立.答案:29.(B.浙江高考)设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:因为⎝ ⎛⎭⎪⎪⎫x -13x 5的通项T r +1=C r 5(x )5-r ·⎝⎛⎭⎪⎪⎫-13x r =(-1)r C r 5x 5-r 2x -r 3=(-1)r C r 5x15-5r 6. 令15-5r =0,得r =3,所以常数项为(-1)3C 35x 0=-10.即A =-10. 答案:-1010.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|. 解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)∵(1-2x )7展开式中a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7) =1 093-(-1 094)=2 187. 11.若某一等差数列的首项为C11-2n 5n-A2n -211-3n,公差为⎝ ⎛⎭⎪⎫52x -253x 2m的展开式中的常数项,其中m 是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值.解:设该等差数列为{a n },公差为d ,前n 项和为S n . 由已知得⎩⎨⎧11-2n ≤5n ,2n -2≤11-3n ,又n ∈N *, ∴n =2,∴C 11-2n 5n -A 2n -211-3n =C 710-A 25=C 310-A 25=10×9×83×2-5×4=100, ∴a 1=100.∵7777-15=(76+1)77-15=7677+C 177·7676+…+C 7677·76+1-15 =76(7676+C 177·7675+…+C 7677)-14=76M -14(M ∈N *),∴7777-15除以19的余数是5,即m =5.∴⎝ ⎛⎭⎪⎫52x -253x 2m 的展开式的通项是T r +1=C r 5·⎝ ⎛⎭⎪⎫52x 5-r ⎝ ⎛⎭⎪⎫-253x 2r =(-1)r C r 5⎝ ⎛⎭⎪⎫525-2rx 53r -5(r =0,1,2,3,4,5),令53r -5=0,得r =3,代入上式,得T 4=-4,即d =-4,从而等差数列的通项公式是a n =100+(n -1)×(-4)=104-4n .设其前k 项之和最大,则⎩⎨⎧104-4k ≥0,104-4k +10,解得k =25或k =26,故此数列的前25项之和与前26项之和相等且最大,S 25=S 26=a 1+a 252×25=100+104-4×252×25=1 300.12.从函数角度看,组合数C r n 可看成是以r 为自变量的函数f (r ),其定义域是{r |r ∈N ,r ≤n }.(1)证明:f (r )=n -r +1rf (r -1); (2)利用(1)的结论,证明:当n 为偶数时,(a +b )n 的展开式中最中间一项的二项式系数最大.解:(1)证明:∵f (r )=C r n=n !rn -r,f (r -1)=C r -1n =n !r -1n -r +1,∴n -r +1r f (r -1)=n -r +1r ·n !r -1n -r +1=n !rn -r.则f (r )=n -r +1rf (r -1)成立. (2)设n =2k , ∵f (r )=n -r +1rf (r -1),f (r -1)>0, ∴f r f r -1=2k -r +1r . 令f (r )≥f (r -1),则2k -r +1r≥1,则r ≤k +12(等号不成立).∴当r =1,2,…,k 时,f (r )>f (r -1)成立.反之,当r =k +1,k +2,…,2k 时,f (r )<f (r -1)成立. ∴f (k )=C k 2k 最大,即(a +b )n 的展开式中最中间一项的二项式系数最大. [冲击名校]1.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-1解析:选D 已知(1+ax )(1+x )5的展开式中,x 2的系数为C 25+a C 15=5,则a =-1.2.(A.湖州模拟)⎝ ⎛⎭⎪⎫2x +a x 6的展开式中1x 2的系数为-12,则实数a 的值为________.解析:二项式⎝ ⎛⎭⎪⎫2x +a x 6展开式中第r +1项为T r +1=C r 6·(2x )6-r⎝ ⎛⎭⎪⎫a x r=C r 6·26-r ·a r ·x 3-r ,当3-r =-2,即r =5时,含有1x2的项的系数是C 56·2·a5=-12,解得a =-1.答案:-1。
二项式定理高中1. 引言在高中数学中,我们学习了许多重要的数学定理和公式。
其中,二项式定理是一个非常重要且实用的定理,它在代数表达式的展开和组合数学中起着关键作用。
本文将详细介绍二项式定理的定义、推导过程、应用以及相关例题。
2. 定义二项式定理是指对于任意实数a 和b 以及非负整数n ,以下等式成立:(a +b )n =C n 0⋅a n ⋅b 0+C n 1⋅a n−1⋅b 1+C n 2⋅a n−2⋅b 2+...+C n n ⋅a 0⋅b n其中,C n k 表示从n 个元素中选取k 个元素的组合数。
3. 推导过程为了更好地理解二项式定理,我们可以通过数学归纳法来推导它。
首先考虑当n=1时,等式左边为(a +b )1=a +b ,右边为C 10⋅a 1⋅b 0+C 11⋅a 0⋅b 1=a +b 。
两边相等。
假设当n=k 时等式成立,即:(a +b )k =C k 0⋅a k ⋅b 0+C k 1⋅a k−1⋅b 1+C k 2⋅a k−2⋅b 2+...+C k k ⋅a 0⋅b k我们需要证明当n=k+1时等式也成立。
首先展开(a +b )k+1,可以得到:(a +b )k+1=(a +b )⋅(a +b )k根据假设,我们可以将(a +b )k 展开为:(a +b )k+1=(a +b )⋅[C k 0⋅a k ⋅b 0+C k 1⋅a k−1⋅b 1+C k 2⋅a k−2⋅b 2+...+C k k ⋅a 0⋅b k ]展开后,我们可以得到:(a +b )k+1=C k 0⋅a (k+1)⋅b (0+1)+C k 1⋅a (k−1+1)×b (1+1)+......+C (n−2)(n−2)×a (0+2)×b (n−2)+2+⋯+C n−3×a ×b ×(b n )⋯+C n ×(a n )×b 0将上述等式与(a+b)k+1展开的结果进行比较,可以发现每一项都与二项式定理中的对应项相等。
10.3二项式定理强化训练
【基础精练】
1.在二项式(x 2-1
x
)5的展开式中,含x 4的项的系数是 ( )
A .-10
B .10
C .-5
D .5
2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( )
A .45
B .55
C .70
D .80 3.在( 1x +
51
x
3
)n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数
是
( )
A .330
B .462
C .682
D .792
4.如果⎝
⎛⎭
⎪⎫
3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( )
A .10
B .6
C .5
D .3
5.在⎝ ⎛
⎭⎪⎫
2x -y 25的展开式中,系数大于-1的项共有 ( )
A .3项
B .4项
C .5项
D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( )
A .第2n +1项
B .第2n +2项
C .第2n 项
D .第2n +1项和第2n +2项
7.若(x 2+1
x
3)n 展开式的各项系数之和为32,则其展开式中的常数项是________.
8.( x +2
x
2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用
数字作答) 9.若⎝ ⎛
⎭
⎪⎫2x -
229
的展开式的第7项为214,则x =________.
10.已知(x -
124
x
)n 的展开式中,前三项系数的绝对值依次成等差数列.
(1)证明:展开式中没有常数项;
(2)求展开式中所有有理项.
11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求:
(1)a0+a1+a2+a3+a4;
(2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;
(3)a1+a3+a5;
(4)(a0+a2+a4)2-(a1+a3+a5)2.
【拓展提高】
1.在(3x-2y)20的展开式中,求:
(1)二项式系数最大的项;
(2)系数绝对值最大的项;
(3)系数最大的项.
【基础精练参考答案】
1.B 【解析】:T k +1=C k 5x 2(5-k )(-x -1)k =(-1)k C k 5x 10-3k
(k =0,1,…,5),由10-3k =4得k =2.含x 4的项为T 3,其系数为C 25=10.
2.C 【解析】:由二项式定理得:
(1+2)5
=1+C 1
52+C 2
5(2)2
+C 3
5(2)3
+C 4
5(2)4
+C 5
5·(2)5
=1+52+20+202+20 +42=41+292,
∴a =41,b =29,a +b =70.
3.B 【解析】:∵二项式的展开式的所有项的二项式系数和为2n ,而所有偶数项的二项式系数和与所有奇数项的二项式系数和相等.由题意得,2n -1=1 024,∴n =
11,∴展开式共有12项,中间项为第六项、第七项,系数为C 511=C 611=462.
4.C 【解析】:∵T k +1=C k n (3x 2)
n -k ·⎝ ⎛⎭
⎪⎫-2x 3k =(-1)k ·C k n 3
n -k ·2k ·x 2n -5k , ∴由题意知2n -5k =0,即n =5k
2,∵n ∈N *, k ∈N,
∴n 的最小值为5.
5.B 【解析】:⎝
⎛
⎭⎪⎫2x -y 25
的展开式共有6项,其中3项(奇数项)的系数为正,大于
-1;第六项的系数为C 55
20
⎝ ⎛⎭
⎪⎫-125
>-1,故系数大于-1的项共有4项.
6.A 【解析】:由二项展开式的通项公式T k +1=41k n C + (-x )k =(-1)k 41k
n C +x k ,可
知系数为(-1)k 41k n C +,与二项式系数只有符号之差,故先找中间项为第2n +1项和第2n +2项,又由第2n +1项系数为(-1)2n 41k n C +=41k n C +,
第2n +2项系数为(-1)2n
+1
2141n n C ++=-21
41
n n C ++<0,故系数最大项为第2n +1项.
7.10【解析】:展开式中各项系数之和为
S =C 0n +C 1n +…+C n n =2n
=32,∴n =5.
T k +1=5k C ()
52
k
x - (1x
3)k =5k C 1023k k x --=5k
C 105k x -,
∴展开式中的常数项为T 3=C 25=10. 8. 10 253【解析】:∵T k +1=C k 5x
5-k
·(2x
2)k =C k 5x 5-3k ·2k
,
由5-3k =2,∴k =1,∴x 2的系数为10.
令x =1得系数和为35
=243.
9. -13【解析】:由T 7=C 6923x ⎝ ⎛⎭⎪⎫-226=214, ∴x =-13
.
10.【解析】依题意,前三项系数的绝对值是1,C 1n (12),C 2n (12)2
,
且2C 1n ·12=1+C 2n (12
)2
,
即n 2-9n +8=0,∴n =8(n =1舍去), ∴展开式的第k +1项为C k 8(
x )8-k (-124
x
)k
=(-12)k C k 8·x 8-k 2·x -k 4=(-1)k
·C k 82k ·x 16-3k 4.
(1)证明:若第k +1项为常数项, 当且仅当
16-3k
4
=0,即3k =16, ∵k ∈Z,∴这不可能,∴展开式中没有常数项. (2)若第k +1项为有理项,当且仅当16-3k
4
为整数, ∵0≤k ≤8,k ∈Z,∴k =0,4,8, 即展开式中的有理项共有三项,它们是:
T 1=x 4,T 5=358x ,T 9=
1256
x -2
. 11.【解析】设f (x )=(2x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5, 则f (1)=a 0+a 1+a 2+…+a 5=1,
f (-1)=a 0-a 1+a 2-a 3+a 4-a 5=(-3)5=-243.
(1)∵a 5=25=32,
∴a 0+a 1+a 2+a 3+a 4=f (1)-32=-31. (2)|a 0|+|a 1|+|a 2|+…+|a 5| =-a 0+a 1-a 2+a 3-a 4+a 5 =-f (-1)=243.
(3)∵f (1)-f (-1)=2(a 1+a 3+a 5), ∴a 1+a 3+a 5=
244
2
=122.
(4)(a 0+a 2+a 4)2-(a 1+a 3+a 5)2
=(a 0+a 1+a 2+a 3+a 4+a 5)(a 0-a 1+a 2-a 3+a 4-a 5) =f (1)×f (-1)=-243. 【拓展提高参考答案】
(3)由于系数为正的项为奇数项,故可设第2k -1项系数最大,于是
22222222424242020
22222222202220203232,3
232k k k k k k k k k k k k
C C ----------⎧⎪⎨⎪⎩≥C ≥C 化简得2
2
1014310070.10163924k k k k ⎧-⎪⎨+-⎪⎩≤≥0
又k 为不超过11的正整数,可得k =5,即第2×5-1=9项系数最大,T 9=C 8
20·312
·28
·x 12
·y 8
.。