2015年迎春杯冲刺练习题(详解)
- 格式:pdf
- 大小:248.89 KB
- 文档页数:7
2015年“数学花园探秘”科普活动五年级组初试试卷A解析一、填空题Ⅰ(每小题8分,共32分)1.算式5⨯(2014-12)⨯20的计算结果是930-8302.数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果.那么,原来有_________名学生.3.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是_______.4.右图六角星的6个顶点恰好是一个正六边形的6个顶点.那么阴影部分面积是空白部分面积的倍.二、填空题Ⅱ(每小题10分,共40分)5.A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是________.6.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的.那么,原来希希有________张积分卡.7.将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是________.8.甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________种不同的订阅方式.三、填空题Ⅲ(每小题12分,共48分)9.如图,A、B为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动.出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过__________秒钟,乙才第一次到达B.10.如图,分别以一个面积为169的正方形的四条边为底,做4个面积为101.4平方厘米的等腰三角形.图中阴影部分的面积是_________平方厘米.11.如果一个数的数字和与它3倍的数字和相同,却与它2倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是________.12.请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.2015年“数学花园探秘”科普活动初赛试题答案解析1.2.3.4.5.6.7.8.9.10.11.。
2015年“数学花园探秘”科普活动三年级组初试试卷A详解(测评时间:2014年12月20日10:30—11:30)一.填空题(每题8分,共32分)1.(2015年数学花园探秘科普活动三年级初赛)算式201512202357´+-´´´的计算结果是.【答案】2015+-=【分析】原式=1005122021020152.(2015年数学花园探秘科普活动三年级初赛)小明家养了三只母鸡,第一只母鸡每天下一个蛋,第二只母鸡两天下一个蛋,第三只母鸡三天下一个蛋.已知一月一日三只母鸡都下了蛋,那么一月的三十一天内,这三只母鸡一共下了___________个鸡蛋.【答案】58-¸+=个蛋;第三只母鸡下了【分析】第一只母鸡下了31个蛋;第二只母鸡下了(311)2116-¸+=个蛋,所以四只母鸡共下了31161158(311)3111++=个蛋.3.(2015年数学花园探秘科普活动三年级初赛)甲、乙、丙、丁获得了学校创意大赛的前4名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”;丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”.现在知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说慌的好学生,那么四位数ABCD=.【答案】4213【分析】乙和丙相邻又和丁相邻,所以丙、乙、丁三人的名次为连续的3个自然数,只能是1,2,3或2,3,4;所以甲的名次只能是第一或第四,由于甲说自己不是第一,所以甲第四,从而乙第二;丙与乙相邻且不是第三,所以丙第一,丁第三.所以ABCD=4213.4.(2015年数学花园探秘科普活动三年级初赛)如图,蕾蕾家的菜园是一个由4块正方形的菜地和1个小长方形的水池组成的大长方形.如果每块菜地的面积都是20平方米且菜园的长为10米,那么菜园中水池(图中阴影部分)的周长是__________米.【答案】20【分析】水池的周长相当于两个大长方形的长,即10´2=20米.二.填空题(每题10分,共40分)5.(2015年数学花园探秘科普活动三年级初赛)有一种特殊的计算器,当输入一个数后,计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是27,那么,最开始输入的是__________.【答案】26【分析】本题为还原问题,可采用倒推法.一个数得到27,所以这个数为:.6.(2015年数学花园探秘科普活动三年级初赛)在下图中添上2条直线,最多能数出__________个三角形.【答案】10【分析】如图所示,让这两条直线与原有的每条线段都产生一个新的交点,且这两条直线也相交产生一个新的交点,此时三角形个数最多,最多有10个.7.(2015年数学花园探秘科普活动三年级初赛)如图所示,一个圆形托盘上放着三个相同的盘子.笑笑要将7个相同的苹果放在这三个盘子中,每个盘子中至少要放一个.那么笑笑有种放苹果的方法.(托盘旋转后相同的算同一种情况)【答案】5【分析】7=1+1+5=1+2+4=1+3+3=2+2+3,其中1+2+4有两种挂法,如下图所示,所以共5种挂法.1244218. (2015年数学花园探秘科普活动三年级初赛)现在我们有若干个边长为1的小正方形框架,要摆成一个18×15的网格,至少需要 个小正方形框架. 【答案】166【分析】最外一圈每个格均要放小正方形,内部可以隔一个放一个,如图所示,至少需要1815(182)(152)2270104166´--´-¸=-=个小正方形.三.填空题(每题12分,共48分)9. (2015年数学花园探秘科普活动三年级初赛)下列算式中,“迎”、“春”、“杯”、“数”、“学”、“花”、“园”、“探”、“秘”代表1~9中的不同非零数字,那么,“迎春杯”所代表三位数的最大值是__________.(“迎春杯”于1984年创立,本届为2015年“数学花园探秘”)19842015-=---迎春杯数学花园探秘【答案】214【分析】(1)将等式整理得:31+=++迎春杯数学花园探秘,等式两边除以9的余数相同,所以迎春杯除以9的余数只能为7,等式右侧除以9的余数为2;(2)要想迎春杯最大,则数学、花园、探秘应尽量的大,这3个数和最大为968574255++=,所以迎春杯最大不大于25531224-=,由于不同汉字代表不同非零数字,所以“迎”最大为2,“春”最大为1;(3)由于迎春杯除以9的余数为7,若“迎”取2,“春”取1,则“杯”为4,经尝试可得:21431978567+=++,所以迎春杯最大值为214.10. (2015年数学花园探秘科普活动三年级初赛)19名园林工人去植树,4人去A 大街植树,其余15人去B 大街植树.晚上下班,他们回到宿舍. 工人甲说:“我们虽然人少,但和你们用的时间相同.”工人乙说:“虽然我们人多,但我们这条街的长度是你们那条街长度的4倍.”如果他们植树的间隔都一样且每人种的树都一样多,只在路一侧种树且在大街的两端都种,那么,这19名园林工人一共种了__________棵树. 【答案】57【分析】本题默认大街两端均植树,且大街长度恰好是间隔的整数倍.假设植树间隔为1,设A 大街长a ,那么A 大街共植树1a +棵;则B 大街长4a ,共植树4a +1棵,由于每个人种的树一样多,所以(a +1)¸4=(4a +1)¸15,解得a =11,所以共种树a +1+4a +1=5a +2=5´11+2=57棵.11. (2015年数学花园探秘科普活动三年级初赛)从左上角开始,沿着轨道出现的数字依次是1,2,3,1,2,3,…….每行和每列的数字都是1个1,1个2,1个3(另外两个格子不填),那么,第四行的5个数字从左至右组成的五位数是 .(没有数字的格子看作0)【答案】30210【分析】根据“沿着轨道出现的数字依次是1,2,3,1,2,3,……”这个条件容易填出下左图所示的红色数字;接下来考虑“2”,每行“2”可能出现的位置如下左图的红色虚线框所示,可知第4列的“2”只能在第一行,由此可以确定第一行“3”的位置,第五行“3”的位置,这样其余“2”的位置可以确定,最终完成表格如下右图所示:1123000000033210003322211 12. 请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.。
2015 年“数学花园探秘”科普活动六年级组初试试卷 A(测评时间:2014年12月20日8:30—9:30)一、填空题 I (每题8 分,共32 分)1. 计算:2015143199163135115131⨯⎪⎭⎫ ⎝⎛+++++的计算结果是 。
【北京 桦树湾教育 赵晓峰】2. 如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是 。
【北京 优才教育 饶海波】3. A 牌电池的广告语是“一节更比六节强”,意义是A 牌电池比其他电池更耐用.我们就假定1 节A 电池的电量是B 电池的6 倍.有两种耗电速度一样的时钟,现在同时在甲钟里装了4 节A 电池,乙钟里装了3 节B 电池.结果乙时钟正常工作了2 个月就耗尽了, 那么甲时钟还能正常工作 月.【北京 优才教育 刘剑】4. 右图六角星的6 个顶点恰好是一个正六边形的6 个顶点.那么阴影部分面积是空白部分面积的 倍.【北京 资优教育科技中心 陈平】二.填空题(每题10 分,共40 分)5. 一个正整数除以3!后所得结果中因数个数变为原来因数个数的1/3,那么符合条件的 A 最小是 。
【北京 巨人教育 高峻巍】6. 有一批机器,共 500 台,每台使用了同一种类型的零件 6 个.这种一周内报废的零件必须在本周末换新零件.所有新零件第一周末有10%报废,第二周末有30%报废,最后的60%会在第三周末报废,没有零件能使用到第四周.那么,在第三周末需要换新的零件数是 个.【北京 智康教育 尹彪】7. 图中大圆的面积是 120,那么,阴影部分面积是 。
【北京 学而思培优 赵璞铮】8.甲、乙、丙三户人家打算订阅报纸,共有 7 种不同的报纸可供选择,已知每户人家都订三份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有多少种不同的订阅方式.【北京高思教育方非】三.填空题(每题12 分,共48 分)9.如图,A、B 为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A 出发,丙从B 出发;乙顺时针,甲、丙逆时针.出发后12 秒钟甲到B,再过9 秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到A 后,再过秒钟,乙才第一次到B.【北京资优教育科技中心陈平】10.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我2 张,我的张数就是你的2 倍.”希希对珊珊说:“如果你给我3 张,我的张数就是你的3 倍.”珊珊对希希说:“如果你给我4 张,我的张数就是你的4 倍.”希希对珊珊说:“如果你给我5 张,我的张数就是你的5 倍.”后来发现以上四句话恰有两句正确,两句不正确,最后希希给了珊珊几张积分卡之后她们的张数就一样多了.那么,原来希希有张积分卡。
2015年“迎春杯”数学花园探秘网试试卷(六年级)一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为 .2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的 倍.3.(8分)图中共有 个格点可以与A和B这两点构成等腰三角形的三个顶点.二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是 .5.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是 .6.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为 元才能使她每月售货的利润率不低于20%.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是 .8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD垂直于DC.那么四边形ABCD的面积是 平方厘米.四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成 片.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是 .2015年“迎春杯”数学花园探秘网试试卷(六年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为 396 .【解答】解:求最大质数和那么从最大是数字开始枚举.根据乘积一定时一个数字大则另一个数字小.199不是2,3,5,7,11,17,19的倍数,如果有超过19的因数那么一定对应比较小的数字,所以199是质数.197同理验证也是质数.最大是199+197=396.故答案为:396.2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的 72 倍.【解答】解:圆柱的侧面积=2πrh,设大圆柱的侧面积为S大,小圆柱的侧面积为S小,由题意得S大=12S小;h大=2h小∴r大=6r小;则大圆柱的体积:V大=πr大2h大=π(6r小)2×2h小=72πr小2h小=72V小故答案为:72.3.(8分)图中共有 5 个格点可以与A和B这两点构成等腰三角形的三个顶点.【解答】解:画图如下:根据上图可知,可以与A和B这两点构成等腰三角形的顶点有:C、D、E、F、G共5个点.答:图中共有 5个格点可以与A和B这两点构成等腰三角形的三个顶点.故答案为:5.二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是 484 .【解答】解:在1220后加3个0,得1220000,1220000除以2014等于605余1530,为保证该数为2014的倍数,需要在1220000的基础上加上2014﹣1530=484.故答案为:4845.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是 19864 .【解答】解:依题意可知首先是一个两位数乘以2得到是三位数中不可能是200多,所以是100多那么第一个乘数的十位数字就是5.个位数字是乘以2没有进位的那么就是小于4的数字.所以必定是50﹣54的数字.当该两位数是54时,第三行是无法填出的.当该两位数是53时,三位因数最大是362,乘积为19186.当该两位数是52时,三位因数最大是382,乘积为19864.当该两位数是51,50时,没有符合条件的数字.故答案为:198646.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为 1824 元才能使她每月售货的利润率不低于20%.【解答】解:根据分析,平均每台洗衣机的成本为:1200+20+(10000+5000)÷50=1520(元);利润率为20%时,则售价为:1520×(1+20%)=1824(元).故答案是:1824.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是 1155 .【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是 1155.故答案为:1155.8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD垂直于DC.那么四边形ABCD的面积是 65 平方厘米.【解答】解:根据分析,如图所示,设CE=x,则AC=x+8在Rt△ABC中,由勾股定理得:AB2+BC2=AC2在Rt△ADC中,AD2+DC2=AC2即:AB2+BC2=AD2+DC292+92=(x+8)2+x2得:x2+8x=49∴x(x+8)=49S△ADC=×AD×CD=x(x+8)=×49=S△ABC=×AB×BC=×9×9=S四边形ABCD=S△ADC+S△ABC=+=65故答案为:65四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成 11 片.【解答】解:根据分析,如图;11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的还至少可以分成三个边长为3的正方形,最后剩下中间的8个小方格,再分,至少可以分成一个边长为2的小正方形,和4个边长为1的小正方形.综上,共可以分成:1+2+3+1+4=11个正方形.故答案是:11.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是 35126 .【解答】解:首先确定四个角上的数字,盘面外的数字7和5,可以确定相应的数字,再用类似的方法,即可得出图中的结论.所以第四行从左往右的前5个数字组成的五位数是35126.故答案为35126.。
2015年新洲区部分学校九年级迎春考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1、下列四个实数中,最大的数为( )A.0C.-2D.252、函数y =中自变量x 的取值范围是( ) A.x ≤2 B.x ≥2C.x >2D.x <23、下列计算错误的是( )A.(5)(3)2---=- B.-= 3=±3=4、在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A.1.65,1.70B.1.70,1.70C.1.70,1.65D.3,45、下列计算正确的是( ) A.236()a a = B.223aa a-=- C.632aa a ÷= D.2(4)(4)4a a a +-=-6、如右图,在平面直角坐标系中,以原点O 为位似中心,现将△ABO 扩大到原来的2倍,得到△A′B′O .若点A 的坐标是(1,2),则点A '的坐标是( ) A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)7题图7、分别由六个大小相同的正方体组成的甲、乙两个几何体如图所示,它们的三视图中完全一致的是( )A.主视图B.俯视图C.左视图D.三视图8、如图,已知:∠MON=30 °,点A 1 、A 2 、A 3 …在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3 、△A 3B 3A 4 …均为等边三角形,若OA 1=1 ,则△A 6B 6A 7的边长为( )A. 6B. 12C. 32D. 649、如图,⊙O 是锐角△ABC 的外接圆,半径为8,△ABC 的三条边对应边分别为a,b,c ;则Aa∠sin =( ).A 、8B 、16C 、22D 、C∠sin b10、如图,OD 是△ABC 的外接圆⊙O 的半径,点P 在OD 上,OP=2PD, EF 是经过点P 的任意一条弦,若∠A=30°,BC=6,则EF 长不可能是( )。
2015年“迎春杯”数学花园探秘网试试卷(五年级)一、填空题Ⅰ(每题8分,共24)1.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.2.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.3.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF是正六边形,面积为360,那么四边形AGDH的面积是.二、填空题Ⅱ(每题10分,共30分)4.(10分)如图,3×3的表面中有16小黑点,一个微型机器人从A点出发,沿格线运动,经过其他每个黑点恰好一次,再回到A点,共有种不同的走法.5.(10分)在所有正整数中,因数的和不超过30的共有个.6.(10分)如图是挨在一起的大、中、小三个圆,半径分别为9cm,3cm,1cm;中圆顺时针向下沿着大圆内侧滚动;小圆逆时针向上沿着中圆内侧滚动,速度都是沿着圆周方向每秒1厘米.如果小圆上固定着一个箭头,那么中圆滚动一周回到出发点的过程中,箭头的旋转角度(小圆绕着自身中心)是度.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,从正方形ABCD四条边向外各作一个等边三角形(△ABF、△ADE、△CDH、△BCG),已知正方形ABCD的边长是10,则图中阴影部分面积是.8.(15分)(如图1)6×6的方格中,每行每列2、0、1、5四个数字各出现一次,空格把每行每列的数字隔成四位数、三位数、两位数或者一位数.右边和下面的数表示该行或列里的几个数字之和,0不能作为多位数的首位.(图2是一个1、2、3、0四个数字各出现一次的例子)那么,大正方形两条对角线上所有数字之和是.四、亲子互动操作题Ⅳ(每题18分,共36分)9.(18分)手工课上,老师发给学生红、黄、蓝3种颜色的纸带,每种颜色的纸带都有足够多,老师要求选4条纸带有先后顺序地摆放,后面的纸带只能整体放在已摞放纸带的上面;4条纸带都放好之后,从上往下看的轮廓如图,4个交叉点位置的颜色分别是红、蓝、黄、黄(如图).那么,不同的放置方法有种.(只要有某一步选的纸带颜色不同,或者有某一步放置的位置不同,就算不同的放置方法.10.(18分)如图的9个圆圈间,连有10条直线,每条直线上有3个圆圈,甲先乙后轮流选择一个未被选择的圆圈;如果谁选的圆圈中有3个在同一直线上,谁就获胜.现在,甲选择了“1”,乙接着可选择“5”.甲要获胜,接下来的一步能够选择的编号总乘积是.2015年“迎春杯”数学花园探秘网试试卷(五年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共24)1.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到8对孪生质数.【解答】解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.2.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了140分钟.【解答】解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.3.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF是正六边形,面积为360,那么四边形AGDH的面积是160.【解答】解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC:S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC+S△CGD)×2=360﹣(+40)×2=160.故答案是:160二、填空题Ⅱ(每题10分,共30分)4.(10分)如图,3×3的表面中有16小黑点,一个微型机器人从A点出发,沿格线运动,经过其他每个黑点恰好一次,再回到A点,共有12种不同的走法.【解答】解:如图,,机器人从A点出发,先经过B点,最后从C点回到A点一共有6种不同的走法,因为6×2=12(种),所以一共有12种不同的走法.答:一共有12种不同的走法.故答案为:12.5.(10分)在所有正整数中,因数的和不超过30的共有19个.【解答】解:根据分析,此正整数不超过30,故所有不超过30的质数均符合条件,有2、3、5、7、11、13、17、19、23、29共10个;其它非质数有:1、4、6、8、9、10、12、14、15共9个满足条件,故满足因数的和不超过30的正整数一共有:10+9=19个.故答案为:19.6.(10分)如图是挨在一起的大、中、小三个圆,半径分别为9cm,3cm,1cm;中圆顺时针向下沿着大圆内侧滚动;小圆逆时针向上沿着中圆内侧滚动,速度都是沿着圆周方向每秒1厘米.如果小圆上固定着一个箭头,那么中圆滚动一周回到出发点的过程中,箭头的旋转角度(小圆绕着自身中心)是2520度.【解答】解:大圆和中圆的半径比是3:1,那说明大圆的周长是小圆周长的3倍,如果中圆沿着大圆的周长做顺时针直线滚动,会绕自己圆心旋转3圈;现在中圆在大圆内部逆时针旋转1圈,所以中圆总计绕自己圆心顺时针转了2圈;同样的道理,小圆在中圆内部逆时针旋转一圈,实际上绕自己的圆心逆时针旋转了2圈,所以当小圆绕中圆3圈的时候,自己实际上绕自己圆心转动了6圈.因为它小圆转动的同时,中圆绕大圆逆时针转了一圈,所以小圆一共逆时针旋转了7圈.360×7=2520故答案为:2520三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,从正方形ABCD四条边向外各作一个等边三角形(△ABF、△ADE、△CDH、△BCG),已知正方形ABCD的边长是10,则图中阴影部分面积是50.【解答】解:根据分析,△FCD为等腰三角形,∠FBC=150°,则∠BFC=15°,∠BMF =90°,△BMF与△BMC面积相等,△ABC与△BMC面积相等,则△ABN的面积与△FCB的面积相等,则所求中间阴影部分的面积相当于正方形ABCD的面积减去△FCB和△ADH的面积,△FCB的面积为10×5÷2=25,则阴影部分的面积=100﹣25×2=50.故答案是:50.8.(15分)(如图1)6×6的方格中,每行每列2、0、1、5四个数字各出现一次,空格把每行每列的数字隔成四位数、三位数、两位数或者一位数.右边和下面的数表示该行或列里的几个数字之和,0不能作为多位数的首位.(图2是一个1、2、3、0四个数字各出现一次的例子)那么,大正方形两条对角线上所有数字之和是18.【解答】解:观察第五行,第三列可知,521,152或150必须邻,再根据第一行可知,2015必须相邻,由此可以确定第一行,第五行,第三列(如图所示),再结合题意,认真思考,即可得出图中结论.因为5+5+5+1+2=18,故答案为18.四、亲子互动操作题Ⅳ(每题18分,共36分)9.(18分)手工课上,老师发给学生红、黄、蓝3种颜色的纸带,每种颜色的纸带都有足够多,老师要求选4条纸带有先后顺序地摆放,后面的纸带只能整体放在已摞放纸带的上面;4条纸带都放好之后,从上往下看的轮廓如图,4个交叉点位置的颜色分别是红、蓝、黄、黄(如图).那么,不同的放置方法有12种.(只要有某一步选的纸带颜色不同,或者有某一步放置的位置不同,就算不同的放置方法.【解答】解:右下角的黄色只能最后放,先放左上角,共有3种方法,再放红和蓝共有两种方法,则有3×2=6种方法;先放左下角,共有3种方法;先放右上角,共有3种方法;综上所述,共有6+3+3=12(种)方法.故答案为12.10.(18分)如图的9个圆圈间,连有10条直线,每条直线上有3个圆圈,甲先乙后轮流选择一个未被选择的圆圈;如果谁选的圆圈中有3个在同一直线上,谁就获胜.现在,甲选择了“1”,乙接着可选择“5”.甲要获胜,接下来的一步能够选择的编号总乘积是504.【解答】解:依题意可知:①走2,那么乙必须走3,甲必须走7,乙必须走4,甲必须走6,乙必须走9,甲无法获胜.②走3,那么乙走2甲走8,无论乙怎么走,甲获胜.③走4,乙走8,甲走2,无论乙怎么走,甲获胜.④走6,甲乙轮流的顺序是6324789或6284739,甲都可以获胜.⑤走7,那么乙走4,甲必须走6,乙接着走8,甲走2获胜;乙接着走2,甲走8获胜;乙接着走3,甲走9获胜;乙走9,甲走3获胜;乙如果走8或者2,甲走2或者8获胜.乙如果走3或者9,甲走4必胜,乙如果走6,甲走4必胜.⑥走8,乙必须走4,甲必须走6,乙必须走3,甲走7,乙走9,甲不能获胜.⑦走9,乙走2或者8,甲走对立的8或者2,甲必胜;乙走3,甲走7,乙走8,乙必胜.故:3×4×6×7=504.故答案为:504.。