【决赛】2015年迎春杯小中组A卷
- 格式:docx
- 大小:61.76 KB
- 文档页数:3
北京市小学生第十五届《迎春杯》数学竞赛初 赛一、填空题(每小题7分,共42分)1.计算:=⨯÷--217]5.3)3225.8(532[ 。
2.计算:1.025.668625.08599⨯+⨯-⨯= 。
3.如右图,长方形ABCD 的长为6厘米,宽为2厘米。
经过点A 做一条线段AE 把长方形分成两部分,一部分是直角三角形,另一部分是梯形。
如果梯形的面积是直角三角形面积的3倍,那么,梯形的周长与直角三角形周长的差是 厘米。
4.已知D C B A ,,,和A D D B C B C A ++++,,,分别表示l 至8这八个自然数,且互不相等。
如果A 是D C B A ,,,这四个数中最大的一个数,那么A ,是 。
5.有甲,乙两只手表,甲表每小时比乙表快2分钟,乙表每小时比标准时间慢2分钟。
请你判断,.甲表是否准确? 填写“是”或“否")。
6.已知2008被一些自然数去除,得到的余数都是l 0。
这些自然数共有 个。
二、填空题(每小题6分,共36分)1.求满足下面等式的方框中的数: (+322□)÷45324.0433=-,□= 。
2.某种商品,如果进价降低l0%,售价不变,那么毛利率(毛利率=进价进价售价-×100%可增加12%。
原来这种商品售出的毛利率是 。
3.如右图,正方形DEOF 在四分之一圆中,如果圆的半径为1厘米,那么,阴影部分的面积是 平方厘米。
π(取3.14)4.甲、乙两车都从A 地出发经过B 地驶往C 地,A ,B 两地的距离等于B ,c 两地的距l 离。
乙车的速度是甲车速度的80%。
已知乙车比甲车早出发l l 分钟,但在B 地停留了7分钟,甲车则不停地驶往c 地。
最后乙车比甲车迟4分钟到达c 地。
那么,乙车出发后 分钟时,甲车就超过乙车。
5.下面方阵中所有数的和是 。
I6.把l ,2,3,4,5,6,7,8,9按另一种顺序填在下表的第二行的空格中,使得每两个上、下对齐的数的和都是平方数。
2015年“数学花园探秘”科普活动五年级组初试试卷A解析一、填空题Ⅰ(每小题8分,共32分)1.算式5⨯(2014-12)⨯20的计算结果是930-8302.数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果.那么,原来有_________名学生.3.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是_______.4.右图六角星的6个顶点恰好是一个正六边形的6个顶点.那么阴影部分面积是空白部分面积的倍.二、填空题Ⅱ(每小题10分,共40分)5.A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是________.6.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的.那么,原来希希有________张积分卡.7.将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是________.8.甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________种不同的订阅方式.三、填空题Ⅲ(每小题12分,共48分)9.如图,A、B为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动.出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过__________秒钟,乙才第一次到达B.10.如图,分别以一个面积为169的正方形的四条边为底,做4个面积为101.4平方厘米的等腰三角形.图中阴影部分的面积是_________平方厘米.11.如果一个数的数字和与它3倍的数字和相同,却与它2倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是________.12.请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.2015年“数学花园探秘”科普活动初赛试题答案解析1.2.3.4.5.6.7.8.9.10.11.。
2015年“数学花园探秘”科普活动五年级组初试试卷A一、填空题Ⅰ1.算式83093020)122014(5-⨯-⨯的计算结果是______.2.数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果,那么,原来有______名学生.3.在如图所示的每个方框中填入一个数字,使得乘法竖式成立,那么,两个乘数的和是______.4.右图六角星的六个顶点恰好是一个正六边形的6个顶点,那么阴影部分的面积是空白部分面积的______倍.二、填空题Ⅱ5.A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是______.6.珊珊和希希各有若干张积分卡,珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的,那么,原来希希有______张积分卡.7.将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是______.8.甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都定两份不同的报纸,并且知道这三户人家每两户所定的报纸恰好有一份相同,那么三户人家共有______种不同的订阅方式.三、填空题Ⅲ9.如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,甲乙从A出发,丙从B出发,乙顺时针转动,甲、丙逆时针转动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇,那么当丙第一次到达A后,再过______秒钟,乙才第一次到达B.10.如图,分别以一个面积为169平方厘米的正方形的四条边为底,作4个面积为101.4平方厘米的等腰三角形,图中阴影部分的面积是______平方厘米.11.如果一个自然数的数字和与它三倍的数字和相同,却与它二倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是______.。
2015年“数学花园探秘”科普活动三年级组初试试卷A详解(测评时间:2014年12月20日10:30—11:30)一.填空题(每题8分,共32分)1.(2015年数学花园探秘科普活动三年级初赛)算式201512202357´+-´´´的计算结果是.【答案】2015+-=【分析】原式=1005122021020152.(2015年数学花园探秘科普活动三年级初赛)小明家养了三只母鸡,第一只母鸡每天下一个蛋,第二只母鸡两天下一个蛋,第三只母鸡三天下一个蛋.已知一月一日三只母鸡都下了蛋,那么一月的三十一天内,这三只母鸡一共下了___________个鸡蛋.【答案】58-¸+=个蛋;第三只母鸡下了【分析】第一只母鸡下了31个蛋;第二只母鸡下了(311)2116-¸+=个蛋,所以四只母鸡共下了31161158(311)3111++=个蛋.3.(2015年数学花园探秘科普活动三年级初赛)甲、乙、丙、丁获得了学校创意大赛的前4名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”;丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”.现在知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说慌的好学生,那么四位数ABCD=.【答案】4213【分析】乙和丙相邻又和丁相邻,所以丙、乙、丁三人的名次为连续的3个自然数,只能是1,2,3或2,3,4;所以甲的名次只能是第一或第四,由于甲说自己不是第一,所以甲第四,从而乙第二;丙与乙相邻且不是第三,所以丙第一,丁第三.所以ABCD=4213.4.(2015年数学花园探秘科普活动三年级初赛)如图,蕾蕾家的菜园是一个由4块正方形的菜地和1个小长方形的水池组成的大长方形.如果每块菜地的面积都是20平方米且菜园的长为10米,那么菜园中水池(图中阴影部分)的周长是__________米.【答案】20【分析】水池的周长相当于两个大长方形的长,即10´2=20米.二.填空题(每题10分,共40分)5.(2015年数学花园探秘科普活动三年级初赛)有一种特殊的计算器,当输入一个数后,计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是27,那么,最开始输入的是__________.【答案】26【分析】本题为还原问题,可采用倒推法.一个数得到27,所以这个数为:.6.(2015年数学花园探秘科普活动三年级初赛)在下图中添上2条直线,最多能数出__________个三角形.【答案】10【分析】如图所示,让这两条直线与原有的每条线段都产生一个新的交点,且这两条直线也相交产生一个新的交点,此时三角形个数最多,最多有10个.7.(2015年数学花园探秘科普活动三年级初赛)如图所示,一个圆形托盘上放着三个相同的盘子.笑笑要将7个相同的苹果放在这三个盘子中,每个盘子中至少要放一个.那么笑笑有种放苹果的方法.(托盘旋转后相同的算同一种情况)【答案】5【分析】7=1+1+5=1+2+4=1+3+3=2+2+3,其中1+2+4有两种挂法,如下图所示,所以共5种挂法.1244218. (2015年数学花园探秘科普活动三年级初赛)现在我们有若干个边长为1的小正方形框架,要摆成一个18×15的网格,至少需要 个小正方形框架. 【答案】166【分析】最外一圈每个格均要放小正方形,内部可以隔一个放一个,如图所示,至少需要1815(182)(152)2270104166´--´-¸=-=个小正方形.三.填空题(每题12分,共48分)9. (2015年数学花园探秘科普活动三年级初赛)下列算式中,“迎”、“春”、“杯”、“数”、“学”、“花”、“园”、“探”、“秘”代表1~9中的不同非零数字,那么,“迎春杯”所代表三位数的最大值是__________.(“迎春杯”于1984年创立,本届为2015年“数学花园探秘”)19842015-=---迎春杯数学花园探秘【答案】214【分析】(1)将等式整理得:31+=++迎春杯数学花园探秘,等式两边除以9的余数相同,所以迎春杯除以9的余数只能为7,等式右侧除以9的余数为2;(2)要想迎春杯最大,则数学、花园、探秘应尽量的大,这3个数和最大为968574255++=,所以迎春杯最大不大于25531224-=,由于不同汉字代表不同非零数字,所以“迎”最大为2,“春”最大为1;(3)由于迎春杯除以9的余数为7,若“迎”取2,“春”取1,则“杯”为4,经尝试可得:21431978567+=++,所以迎春杯最大值为214.10. (2015年数学花园探秘科普活动三年级初赛)19名园林工人去植树,4人去A 大街植树,其余15人去B 大街植树.晚上下班,他们回到宿舍. 工人甲说:“我们虽然人少,但和你们用的时间相同.”工人乙说:“虽然我们人多,但我们这条街的长度是你们那条街长度的4倍.”如果他们植树的间隔都一样且每人种的树都一样多,只在路一侧种树且在大街的两端都种,那么,这19名园林工人一共种了__________棵树. 【答案】57【分析】本题默认大街两端均植树,且大街长度恰好是间隔的整数倍.假设植树间隔为1,设A 大街长a ,那么A 大街共植树1a +棵;则B 大街长4a ,共植树4a +1棵,由于每个人种的树一样多,所以(a +1)¸4=(4a +1)¸15,解得a =11,所以共种树a +1+4a +1=5a +2=5´11+2=57棵.11. (2015年数学花园探秘科普活动三年级初赛)从左上角开始,沿着轨道出现的数字依次是1,2,3,1,2,3,…….每行和每列的数字都是1个1,1个2,1个3(另外两个格子不填),那么,第四行的5个数字从左至右组成的五位数是 .(没有数字的格子看作0)【答案】30210【分析】根据“沿着轨道出现的数字依次是1,2,3,1,2,3,……”这个条件容易填出下左图所示的红色数字;接下来考虑“2”,每行“2”可能出现的位置如下左图的红色虚线框所示,可知第4列的“2”只能在第一行,由此可以确定第一行“3”的位置,第五行“3”的位置,这样其余“2”的位置可以确定,最终完成表格如下右图所示:1123000000033210003322211 12. 请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.。
2015 年“数学花园探秘”科普活动六年级组初试试卷 A(测评时间:2014年12月20日8:30—9:30)一、填空题 I (每题8 分,共32 分)1. 计算:2015143199163135115131⨯⎪⎭⎫ ⎝⎛+++++的计算结果是 。
【北京 桦树湾教育 赵晓峰】2. 如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是 。
【北京 优才教育 饶海波】3. A 牌电池的广告语是“一节更比六节强”,意义是A 牌电池比其他电池更耐用.我们就假定1 节A 电池的电量是B 电池的6 倍.有两种耗电速度一样的时钟,现在同时在甲钟里装了4 节A 电池,乙钟里装了3 节B 电池.结果乙时钟正常工作了2 个月就耗尽了, 那么甲时钟还能正常工作 月.【北京 优才教育 刘剑】4. 右图六角星的6 个顶点恰好是一个正六边形的6 个顶点.那么阴影部分面积是空白部分面积的 倍.【北京 资优教育科技中心 陈平】二.填空题(每题10 分,共40 分)5. 一个正整数除以3!后所得结果中因数个数变为原来因数个数的1/3,那么符合条件的 A 最小是 。
【北京 巨人教育 高峻巍】6. 有一批机器,共 500 台,每台使用了同一种类型的零件 6 个.这种一周内报废的零件必须在本周末换新零件.所有新零件第一周末有10%报废,第二周末有30%报废,最后的60%会在第三周末报废,没有零件能使用到第四周.那么,在第三周末需要换新的零件数是 个.【北京 智康教育 尹彪】7. 图中大圆的面积是 120,那么,阴影部分面积是 。
【北京 学而思培优 赵璞铮】8.甲、乙、丙三户人家打算订阅报纸,共有 7 种不同的报纸可供选择,已知每户人家都订三份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有多少种不同的订阅方式.【北京高思教育方非】三.填空题(每题12 分,共48 分)9.如图,A、B 为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A 出发,丙从B 出发;乙顺时针,甲、丙逆时针.出发后12 秒钟甲到B,再过9 秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到A 后,再过秒钟,乙才第一次到B.【北京资优教育科技中心陈平】10.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我2 张,我的张数就是你的2 倍.”希希对珊珊说:“如果你给我3 张,我的张数就是你的3 倍.”珊珊对希希说:“如果你给我4 张,我的张数就是你的4 倍.”希希对珊珊说:“如果你给我5 张,我的张数就是你的5 倍.”后来发现以上四句话恰有两句正确,两句不正确,最后希希给了珊珊几张积分卡之后她们的张数就一样多了.那么,原来希希有张积分卡。
2015年“迎春杯”数学花园探秘网试试卷(六年级)一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为 .2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的 倍.3.(8分)图中共有 个格点可以与A和B这两点构成等腰三角形的三个顶点.二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是 .5.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是 .6.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为 元才能使她每月售货的利润率不低于20%.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是 .8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD垂直于DC.那么四边形ABCD的面积是 平方厘米.四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成 片.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是 .2015年“迎春杯”数学花园探秘网试试卷(六年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为 396 .【解答】解:求最大质数和那么从最大是数字开始枚举.根据乘积一定时一个数字大则另一个数字小.199不是2,3,5,7,11,17,19的倍数,如果有超过19的因数那么一定对应比较小的数字,所以199是质数.197同理验证也是质数.最大是199+197=396.故答案为:396.2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的 72 倍.【解答】解:圆柱的侧面积=2πrh,设大圆柱的侧面积为S大,小圆柱的侧面积为S小,由题意得S大=12S小;h大=2h小∴r大=6r小;则大圆柱的体积:V大=πr大2h大=π(6r小)2×2h小=72πr小2h小=72V小故答案为:72.3.(8分)图中共有 5 个格点可以与A和B这两点构成等腰三角形的三个顶点.【解答】解:画图如下:根据上图可知,可以与A和B这两点构成等腰三角形的顶点有:C、D、E、F、G共5个点.答:图中共有 5个格点可以与A和B这两点构成等腰三角形的三个顶点.故答案为:5.二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是 484 .【解答】解:在1220后加3个0,得1220000,1220000除以2014等于605余1530,为保证该数为2014的倍数,需要在1220000的基础上加上2014﹣1530=484.故答案为:4845.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是 19864 .【解答】解:依题意可知首先是一个两位数乘以2得到是三位数中不可能是200多,所以是100多那么第一个乘数的十位数字就是5.个位数字是乘以2没有进位的那么就是小于4的数字.所以必定是50﹣54的数字.当该两位数是54时,第三行是无法填出的.当该两位数是53时,三位因数最大是362,乘积为19186.当该两位数是52时,三位因数最大是382,乘积为19864.当该两位数是51,50时,没有符合条件的数字.故答案为:198646.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为 1824 元才能使她每月售货的利润率不低于20%.【解答】解:根据分析,平均每台洗衣机的成本为:1200+20+(10000+5000)÷50=1520(元);利润率为20%时,则售价为:1520×(1+20%)=1824(元).故答案是:1824.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是 1155 .【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是 1155.故答案为:1155.8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD垂直于DC.那么四边形ABCD的面积是 65 平方厘米.【解答】解:根据分析,如图所示,设CE=x,则AC=x+8在Rt△ABC中,由勾股定理得:AB2+BC2=AC2在Rt△ADC中,AD2+DC2=AC2即:AB2+BC2=AD2+DC292+92=(x+8)2+x2得:x2+8x=49∴x(x+8)=49S△ADC=×AD×CD=x(x+8)=×49=S△ABC=×AB×BC=×9×9=S四边形ABCD=S△ADC+S△ABC=+=65故答案为:65四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成 11 片.【解答】解:根据分析,如图;11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的还至少可以分成三个边长为3的正方形,最后剩下中间的8个小方格,再分,至少可以分成一个边长为2的小正方形,和4个边长为1的小正方形.综上,共可以分成:1+2+3+1+4=11个正方形.故答案是:11.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是 35126 .【解答】解:首先确定四个角上的数字,盘面外的数字7和5,可以确定相应的数字,再用类似的方法,即可得出图中的结论.所以第四行从左往右的前5个数字组成的五位数是35126.故答案为35126.。
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是.2.(8分)如图中共能数出个长方形.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是平方厘米.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共个.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有个.10.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有种不同的覆盖方法.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作次.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是1715 .【解答】解:2015﹣20×15=2015﹣300=1715故答案为:1715.2.(8分)如图中共能数出11 个长方形.【解答】解:根据分析可得,4+7=11(个)答:图中共能数出11个长方形.故答案为:11.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120 厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是59387 .【解答】解:根据题意可知:首先确定结果的首位数字一定是5,因为百位数字有0,无借位所以结果中千位数字一定是9.在剩下的数字0,2,3,4,6,7,8中.看尾数符合的组合有7+5=12,8+5=13两组.当尾数是8+5组合时,没有满足条件的数字.当尾数是7+5=12的组合时.十位数字需要向百位借位才满足条件,同时百位数字相差1.分析可得:故答案为:59387二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是5120 .【解答】解:根据分析,若丙说的话是真的,则他拿的是奇数,而显然矛盾,故他拿的是偶数而且不是0,故他拿的是2;剩下一个偶数,和两个奇数,故还有两个人说的话是真话,有一个人说的是假话,而和2差1的只有1,故乙拿的是1,而没有相差1的数只有5,故甲拿的是5,剩下的是0显然就是丁拿的了,故答案是:5120.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是126 平方厘米.【解答】解:6×6×3.5=36×3.5=126(平方厘米)答:图中阴影部分的面积是 126平方厘米.故答案为:126.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共20 个.【解答】解:设单独出售星际飞船共x个,单独出售机甲为y个,打包销售共个8x+26y+×33=370化简得:17x﹣19y=283因为x和y都是小于31的整数,同时17x大于283,那么x>16的整数.枚举法即可解得x=20,y=3.故答案为:208.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).【解答】解:根据分析,从第二行第一个开始推导,故第一个应填1;第二个指向右边两空,只能填1或2,若填1,因第三个指向右边一个数故只能填1,故第四个箭头只能填1,而第四个箭头指向下面两个数,若为1则第三行第四个箭头只能填3,而第三行第四个指向上面两个数,不能填3,故矛盾,所以第二个指向只能填2;第二行第三个指向右边,而右边只有一个数,故只能填1;而第二行第四个指向下面两个,又前面第二个指向说明,第四个数和第三个数不同,故四个数只能填2.所以,第二行应填入的数是:1212,如图:故此四个数为:1212,故答案是:1212.三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有735 个.【解答】解:设后来的每一份分别为:a,2a,3a,4a,5a,6a.那么他们原来就是a+150,2a﹣10,3a﹣20,4a﹣30,5a﹣40,6a﹣50.根据后面的数字得到公差为5a﹣40﹣(4a﹣30)=a﹣10.那么根据根据公差2a﹣10前面应该是a﹣20.所以a+150为数列的最大值.a+150﹣(a﹣10)=160.那么6a﹣50=160.所以a=35.故后来的数量为35,70,105,140,175,210.总数为35+70+105+140+175+210=735(个)故答案为:73510.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有20 种不同的覆盖方法.【解答】解:将正六边形棋盘分为内外两部份(分法见下图),接下来分类讨论:①内外两部份分开各自密铺:外面环形有2种密铺法,里面小正六边形也有2种密铺法,故此时有2×2=4种;②里面有2个三角形与外面相邻的环形上2个三角形相接密铺,这2个三角形必须相邻或相对:当这2个三角形相邻时,共有6种密铺法;当这2个三角形相对时,共有3种密铺法;此时共有6+3=9种;③里面有4个三角形与外面相邻的环形上4个三角形相接密铺,由于里面剩下的2个三角需要组成菱形,所以剩下这2个三角形相邻,故此时有6种密铺法:④里面有6个三角形与外面相邻的环形上6个三角形相接密铺时,此时有1种密铺法;综上,此题一共有4+9+6+1=20种.故答案为:20.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作10 次.【解答】解:根据分析,逆向推导:①777←770←700←755←778←988←944←995←455←441←221←111;②777←770←700←773←433←449←599←554←144←122←111,③777←770←700←755←778←988←999←990←900←955←996←366 ←333←330←300←337←677←661←331←211←229←119←299←227←④777←770←700←755←778←988←999←990←900←991⑤777←770←700←易知,至少需要操作10次.故答案是:10.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:11:40;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
2015年“数学花园探秘”科普活动
小学中年级组决赛试卷A
1.算式)168421(135++++⨯⨯的计算结果是______.
2.右图中7个小正方形拼成一个大长方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是______.
3.小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说: 小数:“我的名次比小学好;
小学:“我的名次比小花好”;
小花:“我的名次不如小园”;
小园:“我的名次不如探秘”;
探秘:“我的名次不如小学”;
已知小数、小学、小花、小园、探秘分别获得第A 、B 、C 、D 、E 名且他们都是从不说慌的好学生,那么五位数 ______=ABCDE .
4. 有一根绳子,第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是______厘米.(绳子之间无缝隙、绳粗以及转弯处模耗都忽咯不计)
二、填空题Ⅱ
5.期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上学生,发给每位学生2支签学笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有
______名学生.
6.右图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数______=ABCD .
7.小明和小强常去图书馆看书,小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一);小强是一月份的筹一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月______号.
8.请在下图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字,那么下图中第二行从左左到右所填数字依次组成的四位数是______.(右图是一个3×3
的例子)
三、填空题Ⅲ.
9.一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合
共有______种.
10.二十世纪(1900年~199年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在______年.
11甲和乙在一张20×15的棋盘上玩游戏.开始时把一个皇后放在棋盘除丁右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或者斜线走若干格,但只能往右、上
或右上走;谁把皇后挪到了右上角的格子,谁就获胜,那么在这个棋盘上,有______个起始格是让甲有必胜策略的.。