第十一章计算流体力学基础
- 格式:ppt
- 大小:762.00 KB
- 文档页数:15
计算流体力学知识点计算流体力学这玩意儿,听起来是不是有点高大上,有点让人摸不着头脑?其实啊,它就藏在我们生活的方方面面,就像一个神秘的小伙伴,时不时地跳出来给我们一些惊喜或者挑战。
咱们先来说说啥是计算流体力学。
简单来讲,它就是一门专门研究流体流动的学问。
比如说,水流过河道、风吹过城市、汽车在空气中飞驰,这些都涉及到流体的流动。
那计算流体力学就是用数学和计算机的方法,来搞清楚这些流动是怎么回事,会产生啥影响。
我记得有一次,我去公园里散步。
那天风挺大的,湖边的柳枝被吹得左摇右摆。
我就突然想到,这风不就是一种流体嘛!它的速度、方向还有力量,都在不断地变化。
如果用计算流体力学的知识来分析,就能算出风在经过不同的障碍物时,速度会怎么降低,压力会怎么变化。
计算流体力学里有一个特别重要的概念,叫控制方程。
这就像是流体流动的“宪法”,规定了它们得怎么动。
比如说连续性方程,它说的是流入一个区域的流体质量,得等于流出这个区域的流体质量,就跟咱们过日子一样,收入和支出得平衡。
还有动量方程,它描述了流体的受力和运动之间的关系,就像你推一个箱子,用的力越大,箱子跑得就越快。
在实际应用中,计算流体力学可厉害了。
比如说在航空航天领域,设计飞机的外形就得靠它。
飞机在天上飞,周围的空气就是流体。
通过计算流体力学的模拟,可以知道怎么设计飞机的翅膀、机身,才能让飞机飞得更快、更稳,还能省油。
汽车行业也是一样,要让汽车的外形更符合空气动力学,减少风阻,提高速度和燃油效率,都得靠计算流体力学来帮忙。
还有能源领域,像火力发电厂的冷却塔,里面热气腾腾的水蒸气往外冒,怎么让这些水蒸气排放得更顺畅,提高发电效率,也得靠计算流体力学来优化设计。
在数值解法这一块,有限差分法、有限体积法和有限元法是常用的几招。
有限差分法就像是把流体流动的区域切成一个个小格子,然后在这些格子上算数值。
有限体积法呢,则是关注每个小体积里的物理量守恒。
有限元法就像是搭积木,把流动区域分成一个个小单元来计算。
流体力学基础pdf
流体力学是研究流体运动和变形规律的物理学科。
它主要包括流体的力学性质、流体的连续性方程、动量方程、能量方程以及流体的边界条件等内容。
在流体力学中,流体被认为是连续、可变形的介质,其运动和变形受到压力、速度、密度等参数的影响。
流体力学的基本方程包括连续性方程、动量方程和能量方程。
连续性方程描述了流体质点的质量守恒,即质量的流入流出必须相等。
动量方程描述了流体质点的动量守恒,即力对流体产生加速度的关系。
能量方程描述了流体质点的能量守恒,考虑了压力能、动能和内能之间的转化。
流体力学应用广泛,包括但不限于飞行器气动力学、水力学、空气动力学、海洋工程、地下水流动、天气预报等领域。
利用流体力学理论和方法,可以研究流体运动的规律、优化设计和改善流体系统的性能。
在实际应用中,流体力学常常涉及复杂的数学模型和计算方法。
数值模拟方法如有限体积法、有限元法和计算流体力学方法等被广泛应用于流体力学问题的求解。
此外,实验观测和理论分析也是研究流体力学问题的重要手段。
总之,流体力学是一门重要的物理学科,研究流体运动和变形规律,对于工程和科学领域都具有重要的应用价值。
流体⼒学教案第11章⽓体的⼀维⾼速流动第⼗⼀章⽓体的⼀维⾼速流动前⾯各章研究了不可压缩流体的运动,即认为流体在流动中其密度不变。
所得到的不可压缩流体的运动规律,不仅适⽤于液体的运动,也适⽤于流速不⾼的⽓体运动。
当然,严格说任何流体都是可压缩的。
不过,在我们通常所研究的流体运动中,液体的密度变化⾮常⼩,往往可以忽略不计;⽽⽓体在低速运动时,其密度变化也不⼤,若忽略其变化,把密度作为常数来处理,可使问题⼤为简化,⽽⼜不致引起⼤的误差。
例如,通常在常温下空⽓流速低于70m/s时,其密度变化不⾼于2%,以⽪托管测量⽓体流速为例,忽略密度变化所引起的误差不超过1%。
当流速增⾼时,⽓体的密度变化就会增⼤,若再按不可压缩流体处理,所引起的误差就会增⼤。
所以,对于⽓体的⾼速流动,必须考虑其密度的变化,按可压缩流体处理。
故研究⽓体的⾼速流动,通常称为可压缩流体动⼒学,⼜叫⽓体动⼒学。
§11-1声速和马赫数⼀、流体的可压缩性与微弱扰动的传播在可压缩性介质中,压强扰动以波的形式传播,其传播速度的⼤⼩与介质的压缩性有关。
例如,声⾳即为⼀微弱的压强性不同,可压缩性⼩的传播速度⾼,可压缩性⼤的传播速度低。
由此可见,声速值反映了流体可压缩性的⼤⼩。
图11-1 微弱扰动的传播下⾯说明微弱扰动波的传播过程。
如图11-1所⽰,管中充满可压缩流体,左端装有⼀活塞,原处于静⽌状态。
当活塞突然以速度d V向右运动时,活塞附近的流体⾸先被压缩,其压强产⽣⼀微⼩增量d p,密度也有⼀微⼩增量d ;同时,这⼀层流体质点也以速度d V 向前运动。
这⼀层被压缩了的流体随之⼜压缩其前⽅邻近的⼀层流体,使其也产⽣⼀个微⼩增量d p 、d ρ和d V 。
这样⼀层⼀层向前传播,形成了⼀个已受扰动和未受扰动区域的分界⾯,这个分界⾯以速度a 向前运动。
在扰动分界⾯尚未到达的区域,即未受扰动区,⽓体质点的速度为V =0,其压强、密度和温度分别为p 、ρ和T ;在扰动分界⾯之后,即已受扰动的区域,⽓体的各物理参数分别为d V 、p p d +、ρρd +和T T d +。
计算流体力学入门第一章基本原理和方程1.计算流体力学的基本原理1.1为什么会有计算流体力学1.2计算流体力学是一种科研工具1.3计算流体力学是一种设计工具1.4计算流体力学的冲击-其它方面的应用1.4.1汽车和发动机方面的应用1.4.2工业制造领域的应用1.4.3土木工程中的应用1.4.4环境工程中的应用1.4.5海军体形中的应用(如潜艇)在第一部分,作为本书的出发点,首先介绍计算流体力学的一些基本原理和思想,同时也导出并讨论流体力学的基本控制方程组,这些方程组是计算流体力学的物理基础,在理解和应用计算流体力学的任何一方面之前,必须完全了解控制方程组的数学形式和各项的物理意义,所有这些就是第一部分的注意内容。
1.1 为什么有计算流体力学时间:21世纪早期。
地点:世界上任何地方的一个主要机场。
事件:一架光滑美丽的飞机沿着跑道飞奔,起飞,很快就从视野中消失。
几分钟之内,飞机加速到音速。
仍然在大气层内,飞机的超音速燃烧式喷气发动机将飞机推进到了26000ft/s-轨道速度-飞行器进入地球轨道的速度。
这是不是一个充满幻想的梦?这个梦还没有实现,这是一个星际运输工具的概念,从20世纪八十年代到九十年代,已经有几个国家已经开始这方面的研制工作。
特别的,图1.1显示的是一个艺术家为NASD设计的飞行器的图纸。
美国从八十年代中期开始就进行这项精深的研究。
对航空知识了解的人都知道,象这种飞行器,这样的推进力使飞机飞的更快更高的设想总有一天会实现。
但是,只有当CFD发展到了一定程度,能够高效准确可靠的计算通过飞行器和发动机周围的三维流场的时候,这个设想才能实现,不幸的是地球上的测量装置-风洞-还不存在这种超音速飞行的飞行体系。
我们的风洞还不能同时模拟星际飞行器在飞行中所遇到的高Ma和高的流场温度。
在21世纪,也不会出现这样的风洞,因此,CFD就是设计这种飞行器的主要手段。
为了设计这种飞行器和其它方面的原因,出现了CFD-本书的主要内容。
计算流体力学基础及其应用课程设计1. 课程概述本课程旨在介绍计算流体力学的基础知识和应用。
计算流体力学是研究流体运动和传热等问题的重要分支,已成为现代工程设计和科学研究中不可或缺的工具。
本课程主要内容包括流体力学基础、数值模拟方法和模拟应用等方面。
2. 课程教学目标本课程旨在培养学生掌握计算流体力学的基础知识和数值模拟方法,具有分析和解决流体力学问题的能力,能够运用计算流体力学方法进行流体问题的模拟和预测。
3. 课程教学内容3.1. 流体力学基础课程将首先介绍流体力学的基础概念、量纲和基本方程。
学生将学习流体力学的基本原理和基本方程,并理解这些方程对流体运动的描述和控制。
3.2. 数值模拟方法课程将介绍数值模拟方法,包括有限差分法、有限元法和谱方法等。
学生将了解这些方法的原理和优缺点,并学会如何进行数值模拟以解决流体问题。
3.3. 模拟应用课程将介绍计算流体力学在实际工程设计和科学研究中的应用。
学生将学会如何运用计算流体力学方法进行流体问题的模拟和预测,掌握如何利用计算流体力学解决实际问题的技能。
4. 课程教学方法本课程采用理论教学和实践操作相结合的教学方法。
理论教学主要采用课堂讲授、案例分析和在线学习等方式;实践操作主要采用仿真实验和课程设计等方式,帮助学生掌握流体力学基本概念和数值模拟方法,培养学生解决工程实际问题的能力。
5. 课程考核本课程的考核方式包括作业和课程设计两部分。
作业主要涉及理论知识和数值模拟方法的掌握程度;课程设计则要求学生结合实际工程问题,运用所学知识进行数值模拟,包括计算流体力学模拟和结果分析等。
6. 参考文献1.李克平. 计算流体力学基础和应用[J]. 数学建模与计算, 2005,8(1): 62-69.2.王豫锟. 计算流体力学基础[M]. 科学出版社, 2004.3.宋俊汝, 陈裕昌, 贾谊飞. 计算流体力学综述[J]. 强度与环境,2005, 32(1): 1-8.4.黄坚峰. 计算流体力学基础和应用[M]. 安徽科学技术出版社, 2011.7. 总结本课程主要介绍了计算流体力学的基础知识和应用,通过理论教学和实践操作相结合的方式,帮助学生掌握流体力学基本概念和数值模拟方法,并培养学生分析和解决流体问题的能力。
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
For personal use only in study and research; not for commercial use一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。
实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。
通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。
N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。
流体计算理论基础讲解(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--流体计算理论基础1 三大基本方程连续性方程连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下:()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ 可以写成:()0div u tρρ∂+=∂ 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。
若流体不可压缩,密度为常数,于是:0u v w x y z∂∂∂++=∂∂∂ 若流体处于稳态,则密度不随时间变化,可得出:()()()0u v w x y zρρρ∂∂∂++=∂∂∂ 动量守恒定律该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程:()()()()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F tz x y z τττρρτττρρτττρρ∂⎧∂∂∂∂+=-++++⎪∂∂∂∂∂⎪⎪∂∂∂∂∂⎪+=-++++⎨∂∂∂∂∂⎪⎪∂∂∂∂∂+=-++++⎪∂∂∂∂∂⎪⎩式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表面上的粘性应力τ的分量。
x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。
对于牛顿流体,粘性应力τ与流体的变形率成比率,有:x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ∂∂∂⎧=++⎪∂∂∂⎪∂∂∂⎪=++⎨∂∂∂⎪∂∂∂⎪=++⎪∂∂∂⎩其中,μ为动力粘度,λ为第二粘度,一般可取23λ=-,将上式代入前式中为:()()()()()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S ty w p div uw div gradw S tz ρρμρρμρρμ⎧∂∂+=-+⎪∂∂⎪∂∂⎪+=-+⎨∂∂⎪⎪∂∂+=-+⎪∂∂⎩ 其中:()()/()/()/grad x y z =∂∂+∂∂+∂∂μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取:23λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。