堆焊
- 格式:doc
- 大小:64.00 KB
- 文档页数:6
堆焊重量计算公式
堆焊重量计算公式是一种用于确定堆焊金属重量的公式。
堆焊是一种常见的焊接技术,它通过将额外的金属添加到工件表面,来修复、增强或改变其性能。
为了确保正确评估材料成本和工艺需求,计算堆焊重量是至关重要的。
为了计算堆焊重量,可以使用以下公式:
堆焊重量(kg)= 长度(cm) ×宽度(cm) ×厚度(cm) ×密度(g/cm³) ×堆焊面积系数
在这个公式中,长度、宽度和厚度代表堆焊的尺寸,单位为厘米(cm)。
密度代表堆焊金属的密度,单位为克/立方厘米(g/cm³)。
堆焊面积系数是一个可根据堆焊类型和工艺添加的修正系数。
使用该公式,可以根据堆焊的尺寸和堆焊金属的密度,计算出堆焊的重量。
这样,可以更好地评估堆焊成本,并优化焊接工艺。
需要注意的是,密度的数值可以根据所使用金属材料的种类来确定。
不同材料的密度各不相同,因此在计算堆焊重量时,应根据具体的金属材料选择正确的密度数值。
综上所述,堆焊重量计算公式是通过考虑堆焊的尺寸、堆焊金属的密度和堆焊面积系数来计算堆焊重量的公式。
这个公式能够帮助焊接工程师和制造商评估堆焊的成本,并进行工艺优化。
堆焊后处理方法
堆焊后的处理方法主要包含以下步骤:
1. 清洗:对焊接区域进行清洗,去除残余的焊渣和杂质,以确保后续处理的质量。
2. 热处理:根据材料和焊接工艺的要求,进行适当的热处理。
热处理可以消除焊接过程中产生的残余应力,改善焊接接头的机械性能,如强度、韧性等。
3. 机械加工:对焊接区域进行机械加工,如打磨、车削等,以获得所需的尺寸和形状。
4. 无损检测:使用无损检测技术,如超声波检测、射线检测等,对焊接接头进行检测,以确保其质量和安全性。
5. 表面处理:根据需要,对焊接区域进行表面处理,如喷涂、电镀等,以提高其耐腐蚀性能和外观质量。
以上步骤完成后,堆焊后的处理工作就完成了。
需要注意的是,具体的处理方法应根据材料、焊接工艺、使用要求等因素进行选择和调整。
同时,处理过程中应遵循相关标准和规范,确保处理质量和安全性。
堆焊重量计算公式(一)堆焊重量计算公式1.概述堆焊是一种常见的金属加工技术,用于在构件表面进行修复和保护。
在进行堆焊过程中,需要计算焊接材料的重量,以便正确选择焊接材料的用量和控制成本。
本文将介绍几种常用的堆焊重量计算公式,并提供示例说明。
2.公式一:堆焊重量计算公式堆焊重量计算公式主要根据焊道的尺寸和密度来计算。
公式如下:W = V * ρ其中,W表示焊接材料的重量,V表示焊道的体积,ρ表示焊接材料的密度。
3.公式二:堆焊重量计算公式(复杂焊道)对于复杂形状的焊道,可以使用以下公式计算焊接材料的重量:W = (A1 * ρ1 + A2 * ρ2 + ... + An * ρn)其中,A1、A2…An表示焊道不同部分的面积,ρ1、ρ2…ρn表示相应部分的密度。
4.举例说明假设需要对一个钢质构件进行修复堆焊,焊道的尺寸如下: - 焊道1:长10cm,宽5cm,高2cm - 焊道2:直径3cm,高度4cm 假设焊接材料的密度为/cm³,则可以使用公式一计算堆焊重量:W = V * ρW = (10cm * 5cm * 2cm + π * ()² * 4cm) * /cm³W = 100cm³ * /cm³ + ³ * /cm³W = 780g +W ≈因此,对于这个焊接任务,需要使用约的焊接材料。
5.总结本文介绍了堆焊重量计算的相关公式,并通过示例说明了如何计算焊接材料的重量。
在实际应用中,根据焊接任务的特点选择合适的公式进行计算,可以帮助准确控制焊接材料的用量,提高堆焊的效率和质量。
表面堆焊技术摘要堆焊是为了增大或恢复零部件尺寸或使焊件表面获得具有特殊性能的合金层而进行的焊接, 是一种重要的但又常常不被理解的减少磨损的方法。
堆焊的最大优点是能充分发挥材料的性能优势, 达到节约用材和延长零部件使用寿命等目的。
常用的堆焊方法有, 手工电弧堆焊、氧乙炔焰堆焊、埋弧自动堆焊、气体保护堆焊、等离子弧堆焊、振动电弧堆焊、激光堆焊等。
目前应用最为广泛的是手工电弧堆焊和氧乙炔焰堆焊。
关键词:堆焊;轧辊;阀门;应用现状目录摘要 (I)目录 ........................................................................................................................................ I I1 绪论 (1)2 表面堆焊技术的工作原理 (2)3 表面堆焊技术的工艺流程 (4)4 表面堆焊技术的发展现状 (4)5 结语 (9)参考文献 (9)1 绪论1.1引言堆焊是指将具有一定使用性能的合金材料借助一定的热源手段熔覆在母体材料的表面,以赋予母材特殊使用性能或使零件恢复原有形状尺寸的工艺方法。
因此,堆焊既可用于修复材料因服役而导致的失效部位,亦可用于强化材料或零件的表面,其目的都在于延长零件的使用寿命、节约贵重材料、降低制造成本。
因此,国内外制造业对堆焊技术的发展十分重视,IIW 以及各工业发达国家的相关学术机构均设置了专门委员会,以协调和促进堆焊技术的发展[1]。
堆焊技术在我国起源于20 世纪50 年代末,几乎与焊接技术同步发展。
发展初期主要用于修复领域,即恢复零件的形状尺寸,60 年代已经将恢复形状尺寸与强化表面及表面改性相结合,改革开放后堆焊技术的应用领域进一步扩大,堆焊技术从修理业扩展到制造业,90 年代受先进制造技术理念的影响,堆焊方法与智能控制技术和精密磨削技术相结合的近净形技术(Near Net Shape)引起了制造业的广泛关注,这也是堆焊技术从技艺走向科学的重要标志[2]。
堆焊作为材料表面改性的一种经济而快速的工艺方法,越来越广泛地应用于各个工业部门零件的制造修复中。
为了最有效地发挥堆焊层的作用,希望采用的堆焊方法有较小的母材稀释、较高的熔敷速度和优良的堆焊层性能,即优质、高效、低稀释率的堆焊技术。
简介duī hàn用电焊或气焊法把金属熔化,堆在工具或机器零件上的焊接法。
通常用来修复磨损和崩裂部分。
英文: overlay welding概述应用目前,生产中采用的堆焊方法非常多,现将几种堆焊方法的稀释率和熔敷速率对比如[表] 所示。
几种堆焊方法特点比较堆焊方法稀释率(%)熔敷速度(kg/h)埋弧堆焊单丝 30~60 4.5~11.3多丝 15~25 11.3~27.2串联电弧 10~25 11.3~15.9单带极 10~20 12 ~ 36多带极 8~15 22 ~ 68等离子弧堆焊自动送粉 5~15 0.5~6.8手工送丝 5~15 0.5~3.6自动送丝 5~15 0.5~3.6双热丝 5~15 13~27熔化极气体保护电弧堆焊其中:自保护电弧堆焊 10~40 0.9~5.415~40 2.3~11.3带极电渣堆焊 10~14 15~75从表3可看出,带极堆焊有较高的熔敷速度,等离子弧堆焊有较低的稀释率。
近年来,在此基础上,研究工作者进一步开发了既高效又低稀释率的先进的带极堆焊技术和等离子弧堆焊技术。
冷焊堆焊技术冷焊堆焊技术是利用高频电火花放电原理,对工件进行无热堆焊,来修补金属工件的表面缺陷与磨损,能保证工件的完好性;也可以利用其强化功能对工件进行强化处理,实现工件的耐磨性、耐热性、耐蚀性等。
冷焊堆焊设备对金属制品工件修补后不变形、不退火、溶接强度高、抗耐磨。
可通过金相、拉伸及硬度测试,同时焊材与基体的冶金结合保证了焊接的牢固性。
常用于精密铸件的针孔、气孔、毛刺、飞边、磕碰、划伤、崩角、塌角、砂眼、裂纹、磨损、内陷、制造错误、制造缺陷、焊接缺陷的修复与机械表面强化。
冷焊技术的应用领域1、模具制造行业塑料模表面的打毛,增加美感和使用寿命;头盔塑料模具分型面堆焊修复;铝合金压铸模具分流锥表面强化;模具腔超差、磨损、划伤等修复与强化。
2、塑料橡胶工业橡塑机械零部件修复,橡胶、塑料件用的模具超差、磨损与修补。
3、航空、航天业飞机发动机零部件、涡轮、涡轮轴修复或修补,火箭喷嘴表面强化修理,飞机外板部件修复,人造卫星外客强化或修复,钛合金件的局部渗碳强化,铁基高温合金件的局部渗碳强化,镁合金的表面渗A1等防腐蚀涂层,镁合金件局部缺陷堆焊修补,镍基/钴基高温合金叶片工件局部堆焊修复,如:叶片叶冠阻尼面与叶尖的磨损和导叶的烧蚀等。
4、汽车与机车的制造与维修行业汽车制造和维修工业中,用于凸轮、曲轴、活塞、汽缸、刹车盘,叶轮,轮毂,离合器、摩擦片、排气阀等补差和修复,汽车体的表面焊道缺陷补平修正。
5、船舶、电力行业电曲轴、轴套、轴瓦、电气元件、电阻器等修复,电气铁路机车轮与底线轨道连接片的焊接,电镀厂导电辊、金属氧化处理铜铝电极的制作焊接。
6、机械工业修正超差工件和修复机床导轨、各种轴、凸轮、水压机、油压机柱塞、气缸壁、轴颈、扎辊、齿轮、皮带轮、弹簧成形用的芯轴、塞规、环规、各类辊、杆、柱、锁、轴承等。
7、铸造工业铁、铜、铝铸件砂眼气孔等缺陷的修补,铝模型磨损修复。
[1]宽带极电渣堆焊技术(1)产生背景石油化工行业的加氢反应器、原流合成塔、煤液化反应器及核电站的厚壁压力容器等内表面均需大面积堆焊耐高温,抗氧及硫化氢等腐蚀的不锈钢衬里。
70年代,在该领域内,国内外大量采用了带极埋弧堆焊(SAW)技术。
带极的宽度也从窄带向60mm、90mom、120mm、150mm的宽带方向发展。
该技术在稀释率和熔敷速度上比丝极埋弧焊有了长足的进步,但随着压力容器日趋大型化、高参数化,促使堆焊技术向更优质更高效的方向发展。
70年代初,德国首先发明,后被日、美、前苏联等国进一步完善的带极电渣堆焊技术由于它具有比带极埋弧难焊更高的生产效率、更低的稀释率和良好的焊缝成形等优点,近年来在国内外得到迅速发展和较普遍的应用。
(2)技术内容和技术关键带极电渣夫焊是利用导电熔渣的电阻热熔化堆焊材料和母材的,除引现阶段外,整个堆焊过程应设有电弧产生。
为了获得稳定的电渣堆焊过程,有以下几个技术关键:1)焊接电源在电渣堆焊过程中,渣池的稳定性对堆焊质量影响极大,而电压的波动又是影响渣池稳定性的最关键因素,故希望堆焊过程电压波动最小,因此要求选用恒压特性的直流电源。
此外,电源应具有低电压,大电流输出、控制精度高、较强的补偿网路电压波动的能力和可靠的保护性能。
电源的额定电流视所用带宽而异,一般对60mm×0.5mm带极,额定电流为1500A,90m m×0.5mm为2000A,120mm×0.5mm为25O0A。
2)焊剂获得稳定电渣过程的另一个必要条件是焊剂必须具有良好的导电性。
一般电渣堆焊焊剂的电导率需达2~3Ω-1cm-1,为普通埋弧焊焊剂的4~5倍。
目前国内外采用的电渣焊剂多为烧结型。
焊剂电导率的大小,取决于焊剂组分中氯化物(NaF、CaF2、Na3AIF6等)的多少,当氯化物(质量分数)少于40%,堆焊过程为电弧过程,在40%~50%范围大致是电弧、电渣联合过程;当氯化物大于50%后,可形成全电渣过程。
CaF2既是良好的导电材料又是主要的造渣剂,因此CaF2通常是电渣堆焊焊剂的主要成分。
除了导电性外,焊剂还需有良好的堆焊工艺性(脱渣、成形、润湿性)及良好的冶金特性(合金元素烧损小,不利元素增量少),适宜的粒度(一般比埋弧焊焊剂粒度细)。
目前满足上述要求,已用于生产的焊剂种类很多,如有国外的FJ-1(日本)、EST122(德国)、Sandvik37S(美国);国产的SJ15、SHD202等等。
3)磁控装置对于宽带极(带极宽度大于60mm)电渣堆焊,由于磁收缩效应,会使堆焊层产生咬边,随着带极宽度增加,堆焊电流增大,咬边现象越重,因此必须采用外加磁场的方法来防止咬边的产生(磁控法)。
如图所示。
同时必须合理布置磁极位置,选择合理的激磁电流大小,外加磁场太强或太弱均会影响堆焊焊道的成形(图2)。
二个磁极的磁控电流应可分别调整。
比如对于非预热的平焊位置的工件,当带极为60mm×0.5mm时,磁控装置的南、北极控制电流分别为1.5A和3.5A;对于90mm×0.5mm的带极则分别为3A和3.5A。
4)工艺参数的控制采用合理的堆焊工艺参数是保证电渣堆焊过程稳定,焊缝质量良好的有效手段。
影响带极电渣堆焊质量的工艺参数最主要的有焊接电压、电流和焊接速度,其次还有干伸长,焊剂层厚度,焊道间搭接量、焊接位置等。
①精确控制焊接电压对带极电渣堆焊具有重要意义,当电压太低,有带极粘连母材的倾向。
电压太高,电弧现象明显增加,熔池不稳定,飞溅也增大,推荐的焊接电压可在20~30V之间优选。
②焊接电流对带极电渣堆焊质量影响也较大。
焊接电流增加,焊道的熔深、熔宽、堆高均随这增加,而稀释率略有下降,但电流过大,飞溅会增加。
不同宽度的带极应选择不同的焊接电流,比如对φ75mm×0.4mm的带极,电流可在1000~1300A之间优选。
③随着焊接速度的增加,焊道的熔宽和堆高减小,熔深和稀释率增加,焊速过高,会使电弧发生率增加,为控制一定的稀释率,保证堆焊层性能,焊接速度一般控制在15~17cm /min。
④带级电渣堆焊时,母材倾角会影响稀释率和焊道成形,一般推荐采用水平位置或稍带坡度(1º~2º)的上坡焊为宜。
⑤其他一些参数的推荐值为:带极伸出长度为25~35mm,焊剂厚度25~35mm,焊道搭接量5~l0mm。
(3)优缺点及应用范围带极电渣堆焊与带极埋弧堆焊比有以下优点:1)熔敷效率高,在中等电流下,比埋弧焊高50%;2)熔深浅而均匀,母材稀释率低,一般可控制在10%以下,比埋弧焊小一倍、单层堆焊即可满足性能要求。
3)堆焊层成形良好,不易有夹渣等缺陷,表面质量优良,表面不平度小于0.5mm(埋弧堆焊时大于lmm)故表面无需机械加工,省料省时。
4)带极中合金元素烧损和不利元素增量极少,堆焊层的塑性和韧性高于埋弧难焊。
5)由于接头熔合区的碳扩散层窄,马氏体带宽度小,故接头熔合区性能优于带极埋弧堆焊。
正由于带极电渣堆焊有上述优点,近年来国内外在加氢控制反应器、煤气工程热壁交换炉、核电站设备中压力容器的内表面大面积堆焊中均得到了广泛应用。
由于电渣带圾堆焊自身的一些特点,它也有定的应用范围:带极电渣堆焊热输入较高,故一般用于堆焊50~200mm的厚壁工件,推荐适用的工件最小直径和壁厚如表1所示。
表 1 推荐适用于带极电渣堆焊的最小直径和壁厚电极尺寸最小基体厚度最小曲面直径外表面内表面60×0.5 40 250 45090×0.5 80 500 900电火花堆焊工艺在电厂关键部件修复应用中国农业机械化科学研究院表面技术研究所汪瑞军黄小鸥摘要电力工业作为国民经济的基础产业,一直是国家发展的重点对象。
本文采用电火花堆焊工艺成功修复汽轮机发电机转子密封段轴径磨损缺陷,并顺利通过两年半运行试验。
另外还完成汽轮机汽缸密封面修复、热网循环主轴磨损面修复。
到目前为止,采用该工艺已成功修复相关类型转子近二十根,相关部件几十件,获得巨大经济效益和社会效益。
关键词电火花堆焊、电厂、磨损、修复1.引言电力工业作为国民经济的基础产业,一直是国家发展的重点对象。
近二十年是我国电力发展史上发展最快,成就最大的时期。
截止到1998年,我国电力装机容量达到277 289MW,全年发电量达11 576亿千瓦小时,全国大型火力发电厂(装机容量1000MW以上)已达68家[1]。
随着电厂数量增加、单机容量和参数不断提高,机组维护、修复也日趋复杂重要。
作为汽轮机发电机组心脏部件——发电机转子,其运行精度高,运转速度快,制造成本高,一旦损坏,将直接导致整个机组输出功率下降甚至瘫痪。
曾采用热喷涂、氩弧焊、贴片机、电刷镀等多种工艺进行修复 [2],但修复后的实际实用效果均不令人满意。
本文采用中国农业机械化科学研究院表面工程技术研究所研制生产的DZ-1400型电火花堆焊设备(简称 ESD)对磨损的发电机转子密封段轴径现场修复,获得满意效果和成功经验,现已完成近二十根磨损转子轴径的修复,其中修复后运行时间最长的已超过两年半。
实践证明,电火花堆焊工艺在电厂部件的修复中发挥重要作用,产生出巨大经济效益和社会效益。
2.发电机转子轴径的磨损[3]0.125mm。
一但轴径磨损或拉伤,密封层中油压难以维持均衡,氢气就会泄露,轴径与瓦间密封层被完全破坏,转子的高速运转受到阻碍,严重时可导致机组不能工作。