对架空输电线路防雷保护技术进行
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
输电线路的防雷技术措施随着经济的发展,对输电线路供电可靠性的要求越来越高。
同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。
据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。
尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。
要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。
1雷害原因分析输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。
雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。
直击雷又分为反击和绕击,都严重危害线路安全运行。
在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。
反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。
绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。
目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
实际运行经验表明:山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。
山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘是最有效的防雷措施。
架空输电线路防雷措施架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。
架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的详细措施现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;2)通过对导线的耦合作用可以减小线路绝缘子的电压;3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此,110kV及以上电压等级的输电线路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。
2安装避雷针安装避雷针也是架空输电线路常用的一种防雷措施。
但是在实际应用却存在以下问题:1)由于避雷针而导致雷击概率增大2)保护范围小国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得非常确定的保护区域”。
电力架空输电线路防雷措施摘要:架空线防雷是一个长期而复杂的系统工程,其主要目标是通过加强其抗雷能力,减少其雷击跳闸,从而保证电网的正常运营。
线路防雷方式的选择要综合考虑线路所受雷击的种类,采取相应的防护措施,并综合考虑线路重要程度、系统运行方式、线路穿越区域的雷电强度;根据地形地貌特征、土壤电阻率的高低情况,结合当地现有线路的运营经验,进行综合对比,因地制宜;采取适当的避雷措施。
关键词:电力架空;输电线路;防雷措施;引言为了更好地满足人民的用电需求,必须保证电力网络的安全性、可靠性和有效性。
但随着电力系统的不断建设与完善,因雷击造成的用电事故也有上升的趋势,迫切需要对其进行防范;从而保证电力系统的安全、稳定,更好地满足人民群众的用电需要。
1.架空输电线路遭雷击的特点和原因分析1.1架空輸电线路遭雷击的特点在雷雨季节,由于架空输电线路处于复杂的环境中,极易遭受闪电攻击,严重影响了线路的安全与稳定性。
对电线造成的特殊危险是,当电流通过导线时,由于电流过大,会产生发热,如果温度超过了导线所能承受的极限,那么导线就会被烧毁,从而失去保护,从而造成绝缘子的闪络和击穿。
一般来说,架空输电线路上的雷击都是有一定的规律的,比如远离地面的人,就会被闪电击中,或者是土壤电阻较高的人,在这种情况下,很难被雷击。
1.2架空输电线路遭雷击的原因架空输电线路出现雷击的原因有很多,一是由于电线材料本身的绝缘性较差,二是长期使用会导致电线的绝缘性能降低。
第二,由于避雷线的布置不合理,造成了避雷线受到外部环境的影响,不能有效地发挥避雷线的功能,或者是避雷线超过了保护范围,不能保障线路的传输。
第三,避雷线接地不良,避雷线与电线间距过短,会影响线路的防雷性,增加雷击的几率。
第四,架空输电线路发生雷击事故,与防雷防护工作不力有关。
2.电力架空输电线路防雷措施2.1提高线路绝缘的水平在架设输电线路时,应注意选用绝缘子,同时应充分重视绝缘子的监控和维修保养工作。
架空输电线路防雷导则架空输电线路防雷导则是为了确保电力系统的安全运行而制定的一系列指导原则。
雷电是自然界一种常见的天气现象,其可以造成电力系统的瞬时过电压,导致设备损坏、电压失控以及线路中断等问题。
为了减少雷电造成的危害,架空输电线路防雷导则制定了以下一些相关参考内容:1. 防雷系统的规划:架空输电线路防雷导则需要对电力系统中的设备进行分析和评估,确定其防雷保护要求。
根据线路的特点和周围环境,制定适当的防雷系统规划。
2. 导线选材:架空输电线路防雷导则鼓励选用钢芯铝绞线或钢芯铝包钢线等带有钢芯的导线,以增加其对雷电的耐受能力。
3. 防雷装置的选择:架空输电线路防雷导则建议在电力系统的适当位置安装避雷针、避雷带或雷电接地装置等防雷设备,以将雷电集中引入地下或大地中。
4. 避雷针的布置:架空输电线路防雷导则要求避雷针的规划和布置应符合国家相关标准,避雷针应安装在架空塔顶或高处,以提供更好的防雷保护效果。
5. 地线系统的设置:架空输电线路防雷导则鼓励设置完善的地线系统,包括接地线、接地块、接地极等,以提供低阻抗的雷电接地路径。
6. 绝缘的保护:架空输电线路防雷导则要求对设备和连接点进行绝缘保护,避免雷电造成的电弧和漏电事故。
7. 定期检测和维护:架空输电线路防雷导则强调对防雷系统的定期检测和维护,包括检查避雷针的完好性、地线系统的接地情况以及设备的绝缘状态等。
8. 人员培训和安全意识:架空输电线路防雷导则建议对电力系统的工作人员进行防雷知识的培训,并提高其对雷电危害的安全意识,以降低事故的发生率。
以上是关于架空输电线路防雷导则的一些相关参考内容。
制定和遵守这些指导原则,可以有效减少雷电对电力系统造成的危害,提高电力系统的可靠性和安全性。
Electric Power Technology272《华东科技》10kV 架空配电线路的防雷措施黄思海(韶关市擎能设计有限公司,广东 韶关 512000)摘要:城乡电网主要为10kV 架空配电线路,该线路途径存在着复杂的地理环境,且处于较低的绝缘水平,因雷击造成事故而跳闸的概率较高,在配置架空配电线路时,需实施良好的防雷措施。
基于此,以下对10kV 架空配电线路的防雷措施进行了探讨,以供参考。
关键词:10kV;架空配电线路;防雷措施在过去的2年里,为了加强10kV 配电网的建设和管理,提升安全、经济效益和服务水准的网络,和提高效率的投入产出综合分销网络资产,供电公司实施全过程精益管理分销网络在龙岩供电公司的整个系统。
专注于重建发病率高的断层线10kV,通过统计分析10kV 线路的故障原因,10kV 线路操作时被发现的弱点,和正在采取方法方式,最终找到降低10kV 线路故障方法方式,降低10kV 线路故障,提升10kV 配电线路的管理水准。
1 自然界雷电概述 雷电是自然界常见的集声、光、电为一体的现象,往往伴有闪电和雷鸣而出现,对人类的活动有重大影响,能够产生有机物质孕育农作物,还可以补充大气中电离层的电荷,防止太阳和宇宙中的射线进入地球表面,但是雷电也是导致高压输配电线路故障的重要因素。
当输配电线路被雷电击中时,会产生泄入大地的雷电流,引起巨大的电磁效应、机械效应和热效应,从而影响输配电线路的正常运行。
雷电作为一种特殊电脉冲波,产生时会伴随着强大的脉冲磁场,其中直击雷和感应雷这两种雷电形式对输配电线路的危害尤为严重。
直击雷能够在很短的时间内放出大量的电荷,会对设施和设备造成直接破坏,破坏能力十分巨大,中国每年造成直接财产损失超10亿美元。
而感应雷分为电磁感应雷和静电感应雷,雷电放电时,雷电流在附近空间中剧烈变化而产生强磁场可以引起电磁感应雷,若不能及时引入地下,极可能发生安全事故;架空线路的导线被积云所感应上大量电荷生成静电感应雷,使电压倍增,影响输配电线路。
架空输电线路防雷与接地技术的探讨发布时间:2022-11-08T08:07:54.805Z 来源:《福光技术》2022年22期作者:孙志祥[导读] 架空输电线路作为电力系统三大(输变配)主要组成部分之一,暴露在自然界千变万化的气候中,极易遭受雷击;倘若不采取必要的防雷措施或防雷措施不足,雷击可能引起架空输电线路的绝缘子损坏、地线和导线断线,并造成线路故障跳闸国网怀化供电公司湖南怀化 418000摘要:架空输电线路作为电力系统三大(输变配)主要组成部分之一,暴露在自然界千变万化的气候中,极易遭受雷击;倘若不采取必要的防雷措施或防雷措施不足,雷击可能引起架空输电线路的绝缘子损坏、地线和导线断线,并造成线路故障跳闸;雷击时产生的入侵波通过架空输电线路串入变电站,还会引起站内设备损坏造成更大的设备事故,甚至会造成电网动荡解列最终造成大面积停电;电力供应的突然中断会造成工厂企业生产秩序混乱,给经济社会带来不稳定因素,更是直接影响供电企业的经济效益和企业品牌形象。
基于此,文章就架空输电线路防雷与接地技术的应用进行了简要的分析。
关键词:架空输电线路;防雷接地技术1雷电的分类及危害雷击的直接危害主要表现有三个方面:一是雷电直击雷,当雷云对地面突出物的电场强度达到空气的击穿强度时,产生的放电现象;二是雷电感应雷,雷云接近地面时,在地面突出的建筑物顶部被感应出大量的异性电荷,一旦雷云与其他异性雷云放电后,聚集在该建筑物顶部的感应电荷就失去束缚,以雷电波的形式高速传播形成的。
三是雷电入侵波,由于雷击在架空线路的导线上或架空的金属管道上产生的冲击电压,沿着线路或管道的两个方向迅速传播的雷电波称为雷电入侵波,雷电波可能沿着这些管线侵入屋内,危及人身安全或损坏设备。
据目前国家有关主管部门近期统计数据分析表明,直击雷造成的直接损坏大约仅只占15%,感应雷造成的直接损坏则仅大约占80%。
目前,直击雷所可能直接造成的自然灾害已明显大幅度地减少,而随着我国重点大中城市地区国民经济的快速健康发展,感应雷和雷电入侵波可能造成的各种危害却大幅有所增加。
架空线路遭雷击原因及防雷措施架空线路遭雷击是指在雷电天气中,架空输电线路遭到雷击而导致停电或设备损坏的现象。
雷击是一种自然灾害,如果不能有效防范和应对,将给电力系统运行带来严重影响。
了解架空线路遭雷击的原因以及采取有效的防雷措施至关重要。
我们来看一下架空线路遭雷击的原因。
架空线路遭雷击的主要原因包括以下几点:1. 雷击频率高:架空线路位于室外,暴风雨天气时容易遭受雷击。
特别是在山区、高地等地形复杂的地区,雷电活动频繁,架空线路遭雷击的概率相对较高。
2. 线路长距离:架空线路一般都是长距离输电,线路越长,遭雷击的概率也越高。
3. 雷电能量巨大:雷电能量巨大,一次雷击就能产生几十万伏特的电压。
当架空线路遭雷击时,会造成电缆或导线瞬间过压,导致设备损坏或停电。
接下来,我们谈谈如何防范架空线路遭雷击。
防雷措施主要从以下几个方面着手:1. 定期检查维护:对架空线路进行定期检查,及时发现并处理存在的隐患和故障。
包括检查线路架设是否符合要求,绝缘子是否完好,接地系统是否良好等。
2. 安装避雷设备:在架空线路附近或者线路跨越雷电频繁地区,安装避雷设备是非常必要的。
避雷设备包括避雷针、避雷带等,能够吸引雷电,并将雷电导入地下,保护线路不受雷击。
3. 提高设备耐雷能力:对于输电线路和设备,提高其耐雷能力也是防雷的重要手段。
采取合理的接地措施,增大接地电阻,减小设备对雷电的影响。
4. 增强技术监控:运用先进的技术手段,监控架空线路的状态,及时发现线路异常情况,采取相应的措施,保障线路安全稳定运行。
5. 人员培训和应急预案:加强员工的防雷知识培训,并建立完善的应急预案,一旦发生雷击事故,能够及时、有效地处置,减少事故损失。
架空线路遭雷击是一种不可避免的自然灾害,但我们可以通过科学的防雷措施和技术手段,有效降低架空线路遭雷击的风险,保障电力系统的安全稳定运行。
希望各地的电力部门和相关单位能够高度重视架空线路遭雷击问题,加强防雷意识和技术水平,共同提高架空线路的抗雷能力,确保电力系统的正常运行。
35kV架空输电线路与防雷措施摘要:本文笔者主要针对35kV架空输电线与防雷措施开展分析,希望通过笔者的分析可以提升架空输电线路的防雷能力,确保输电线路的有效运行。
关键词:35kV;输电线;防雷;措施在电力系统中架空输电线发挥着重要的作用,它会受各种因素的影响,造成输电线的出现运行安全问题,因此想要保护电力系统,做好35kV架空输电线的防雷工作是非常重要的。
因此,笔者认为开展35kV架空输电线路与防雷措施方面的分析是非常必要的。
一、雷击的含义分析雷击的形式主要分为绕击雷和直击雷。
当架空输电线没有采取避雷措施时会造成雷过电压的情况,从而影响输电线路的运行。
电线杆塔是输电线设施的重要部分,在输配电的过程中具有重大的作用。
随着我国经济发展,输电线路不断增多,输电线线路的防雷保护也是电力建设施工、运行的重中之重。
同时电线杆塔也会直接影响到输电线路,一旦遇到雷击杆塔的事件就会将电感直接传输至架空输电线,导致输电线路的电位升高,从而影响到电力系统的运行。
二、35kV架空输电线路雷击原因(一)输电线路自身原因35kV架空输电线路受雷击的主要原因大部分是由于输电线路的自身原因。
由于架空输电线路周边也会有其他线路,在这种情况下很容易受到雷击的影响。
另外,其他线路的防雷技术存在不同,如果不对架空输电线路进行深度的研究,不采取有效的防雷措施,也无法达到防雷效果,从而受到雷击的影响。
虽然部分架空输电线路已经使用绝缘子,但仍然存在很多问题,当绝缘子被雷击中很难找出故障,尤其是后期维修工作,延长了维修的时间,也加大了维修的难度。
(二)外部环境原因架空输电线被雷击也会受到外部原因的影响。
尤其是在一些乡镇地区,架空输电线路受到雷击是一种常见现象,也存在当地居民对接地线偷盗情况,由于输电线路长期暴露在外部的环境下,经常会受到一些外部的因素造成一些安全事故,例如在雷雨天气,架空输电线路就会受到雷击,从而导致输电线路的运行失常,甚至出现失灵的情况。
架空输电线路防雷措施架空输电线路防雷措施架空输电线路是连接电源厂、变电站及用户的主要电力传输通道,是电网系统的重要组成部分。
然而,在雷电活动频繁的地区,架空输电线路往往面临严重的雷电灾害威胁,引发各种线路事故。
因此,架空输电线路的防雷工作至关重要,必须采取合理可行的措施来确保线路的安全运行。
一、架空输电线路的特点1、长线路、高杆塔:架空输电线路一般跨越山谷、河流等地形复杂的区域,需要高杆塔支撑,其线路长度往往达到几百公里以上。
2、集落密集:随着城市化进程的不断加快,架空输电线路不可避免地要穿越人口密集区域,这加大了防雷工作的难度。
3、高电压、大电流:架空输电线路一般采用高于220kV、甚至500kV以上的高电压输电,受电端的电流也很大,因此对防雷措施的要求很高。
二、架空输电线路的防雷措施1、引雷接地引雷接地是指将雷电引入地下,以减少雷电对架空输电线路的破坏力。
具体措施包括:(1)杆塔接地:对于架空输电线路的杆塔,在深层土壤中钻孔、埋放电极,将杆塔与深层土层直接接通,形成一定的接地网。
(2)导线接地:在架空输电线路导线的每个杆塔上,安装接地线,将导线接地,以震荡雷电电压。
2、避雷针避雷针是将空气中存在的雷电集中在避雷针顶部,减少大地与云之间的电荷过渡。
具体措施包括:(1)安装避雷针:在架空输电线路的每个杆塔上方,安装避雷针,将避雷针接地,使之与架空输电线路杆塔的接地网相连。
(2)避雷绝缘子串:在导线张力较大处,安装避雷绝缘子串,用以增强其防雷能力。
3、避雷装置避雷装置是指将雷击能量通过适当的元件进行断开,以保障线路安全。
具体措施包括:(1)雷电监测装置:通过架设适当的雷电监测装置,监测雷电密集区域的雷击情况,及时采取相应的措施。
(2)避雷放电装置:在导线张力较大处,采用避雷放电装置,在雷电冲击导线时,使其迅速放电,达到抵消雷电的效果。
三、结语架空输电线路的防雷工作需要综合考虑诸多因素,采取科学合理的措施和方法,才能确保线路的安全运行。
对架空输电线路防雷技术措施的阐述作者:曾伟洲来源:《电子世界》2012年第19期【摘要】本文就输电线路雷击原理、雷击线路的形式及区分原则作了分析,最后提出了输电线路防雷相关的技术措施。
【关键词】输电线路;雷击原理;雷击形式;防雷措施1.雷击原理由大气中的雷云对架空输电线路放电引起的过电压成为雷电过电压。
根据雷电过电压形成的物理过程,输电线路上出现的雷电过电压主要有两种,即为感应雷电过电压和直击雷电过电压。
1.1 感应雷电过电压雷闪击中输电线路附近地面,在放电过程中由于电磁感应和静电感应的作用,在未直接遭受雷击的输电线路上感应出的过电压称为雷电感应过电压。
据资料显示,感应过电压峰值最大可达300—400kV。
对于35kV及以下线路,可能造成绝缘闪络,但对于110kV及以上线路,由于其自身耐雷水平较高,一般不会引起闪络。
1.2 直击雷电过电压雷闪直接击中输电线路设备(杆塔、避雷线或导线)而引起的过电压称为直击雷电过电压。
按照雷击线路设备的不同部位,直击雷电过电压可分为3种:一是雷击线路杆塔或避雷线,造成塔顶电位升高,对导线发生闪络,使导线出现过电压,即反击;二是雷电绕过避雷线直接击中导线,在导线引起的过电压,即绕击;三是雷击避雷线档距中央且与导线发生闪络引起跳闸。
由于雷击避雷线档距中央造成线路跳闸的情况较为少见,因此直击雷的防护主要是针对反击和绕击。
2.输电线路雷击闪络类型分析及区分原则2.1 输电线路雷击闪络类型分析2.1.1 雷击杆塔或者架空地线即当雷电流通过杆塔向大地释放雷电流时,由于杆塔存在波阻抗,造成杆塔顶部电位升高,使绝缘子挂点侧的电位高于导线侧,形成电位差,当这个电位差大于绝缘子闪络电压时造成绝缘子闪络。
这种绝缘子闪络被称为反击闪络。
造成绝缘子闪络的原因主要与雷电流大小、杆塔型式、接地电阻、绝缘子空气间隙及闪络电压有关。
一般用杆塔的反击耐雷水平进行描述。
2.1.2 雷击输电线路导线时,雷电流在导线上传输,雷电流能量一般通过导线上的电晕损失,与相邻导线的耦合作用消减雷电波波峰。
架空输电线路防雷保护措施摘要:输配电线路的电压等级愈高,输送的功率也愈大,其重要性一般也越大,也就更需要可靠的防雷措施。
如何采取防雷设施,本文采取装设避雷线及降低接地电阻、系统中性点经消弧线圈接地、加装耦合地线、加强线路绝缘、装设线路自动重合闸装置等五种方式。
对每一种方式都进行了详细的分析研究,具有一定的借鉴意义。
关键词:架空;输电线路;防雷保护;避雷措施引言:随着输配电线路电压等级的增加,线路上每串绝缘子的个数也增加,其防雷的能力也就有自然增大的趋势。
这对线路防雷工作是十分有利的一方面,不过线路电压等级愈增高,线路的平均高度也增高,线路功率输送的范围也增大,即每条线路的长度也增长,这就使线路落雷次数也要增加。
而且在线路杆塔受雷击后,由于杆塔增高、杆塔电感增大,使杆顶电位也增大,因而容易对导线产生反击,这又是不利的一方面。
所以,在确定防雷措施时,这些因素都应加以注意。
1、装设避雷线及降低接地电阻避雷线能使作用到线路绝缘子串的过电压幅值降低,能对导线起屏蔽作用,避免雷直击导线;避雷线的保护范围呈带状,十分适于保护输电线路,因此装设避雷线是输电线路的主要防雷措施之一。
对于装设避雷线的输电线路,在一般土壤电阻率地区,其耐雷水平不宜低于表1所列数值。
表1 有避雷线的输电线路的耐雷水平(kA)额定电压(kV)35 66 110 220 330 500一般线路20~30 30~60 40~75 80~120 100~140 120~180大跨越中央和进线保护段30 60 75 120 140 200在一般情况下:220kV及其以上的线路应沿全线装设避雷线;330kV及其以上的线路应采用双避雷线;架设在山区的220kV线路,也采用双避雷线。
杆塔上避雷线对边导线的保护角一般采用20o—30o。
330kV线路及220kV双避雷线的保护角一般可采用20o左右,重冰区的线路,不宜采用过小的保护角。
至于500kV及其以上的超高压输电线路,由于绝缘子串很长,对30kA以下的雷击,均不会造成线路绝缘闪络,即使直接击于相导线上也是如此。
架空输电线路防雷保护探讨摘要:雷击线路后会对变电设备构成巨大威胁,可能导致大面积停电事故,因此,限制输电线路雷击过电压是确保电力系统安全可靠运行的重要任务。
本文就架空输电线路防雷保护进行详细探讨。
关键词:架空输电线路、防雷保护、防雷改造措施中图分类号: tm726 文献标识码: a 文章编号:引言根据调研,在国内高压输电线路跳闸事故中,因雷击引起的线路跳闸事故约占总跳闸事故的比例偏高,特别是在地形复杂、土壤电阻率高的多雷地带,跳闸率更高。
由于雷击线路后雷电波沿线路侵人变电站会对变电设备构成巨大威胁,可能导致大面积停电事故,因此,限制输电线路雷击过电压是确保电力系统安全可靠运行的重要任务。
一、线路防雷工作的重要性及种类由于架空线路长度大,容易受雷击,且雷击线路使绝缘子闪络,导致跳闸,使供电中断。
另外雷击线路形成的过电压沿线路传播并侵入变电所和发电厂,造成变电站雷害事故。
所以,架空输电线路防雷保护对架空输电线路起到了重要的保护作用。
2、雷电过电压的种类雷电过电压的种类主要有两类:感应雷过电压以及直击雷过电压。
感应雷过电压是雷击线路附近地面,由于电磁感应引起的。
直击雷过电压属于雷直接击于线路。
主要有:雷击塔顶;雷击避雷线档距中央;雷绕击导线。
二、输电线路的防雷保护措施1、架设避雷线(屏蔽作用):引导雷电向避雷线放电,通过杆塔和接地装置将雷电流引入大地,从而使被保护物体免遭雷击,.防止直接雷击导线,分流减少经杆塔入地电流,降低塔顶电位,降低感应过电压。
110kv以上应全线架设避雷线。
设置保护角(避雷线和外侧导线的连线与垂线之间的夹角),保护角越小,对绕击雷的保护效果越好:110kv保护角200-300, 500kv负保护角。
2、降低杆塔接地电阻土壤电阻率低的地区,应充分利用铁塔、钢筋棍凝土杆的自然接地电阻;土壤电阻率高的地区,可采用多根放射形接地体或连续伸长接地体以及垂直接地电极等措施。
3、加强绝缘(加高堤坝)。
对架空输电线路防雷保护技术进行探讨摘要: 漫长的输电线路常穿过平原、山区,跨过江河湖泊, 延伸到地理条件和气象条件各不相同的以遭受雷击的机会就多,为使输电线路能可靠工作,要求输电线路有好的防雷性能, 基本的防雷措施主要有: 架设避雷线、降低杆塔接地电阻、架设耦合地线、采用中性点非有效接地方式、加强线路绝缘、采用不平衡绝缘、装设自动重合闸装置以及采用线路用避雷器等方式。
结合工作实践经验,本文就对输电线路防雷技术保护进行探讨。
关键词: 架空输电线路;防雷保护技术;避雷线;装置
前言:众所周知,电闪雷鸣是一种常见的自然现象,雷电电压高达数百万伏, 瞬间电流可高达数十万安培,造成很大的损失。
架空输电线路雷害事故引起的跳闸, 不但影响电力系统的正常供电, 增加架空输电线路及开关设备的维修工作量, 而且由于输电线路上落雷,雷电波还会沿线路侵入变电所。
而在电力系统中,线路的绝缘最强, 变电所次之,发电机最弱,若发电厂、变电所的设备保护不完善, 往往会引起其设备绝缘破坏影响安全供电。
由此可见,架空输电线路的防雷是减少电力系统雷害事故及其所引起电量损失的关键。
做好架空输电线路的防雷设计, 不仅可以提高输电线路本身的供电可靠性,而且可以使变电所、发电厂安全运行得到保障。
一、架设避雷线
按照有关规定,110kv及以上电压等级的输电线路应全线架设避
雷线,35kv输电线路一般不沿全线架设避雷线,但应在变电所或发电厂的进线段架设1~2km 避雷线。
但也有例外,比如处于雷电活动较强地段且长度较短的35kv线路,可全线架设避雷线。
因为避雷线在线路造价中所占的比重较低,在线路不长的情况下,与不完全架设避雷线的造价相比增长不大,而经过全线架设避雷线后,线路的跳闸率明显降低。
所以从运行工作的长远来看,还是很合算的。
为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些。
对于同塔多回路,220kv及上双避雷线线路的保护角,均不宜大于0°,110kv双避雷线线路的保护角,均不宜大于10°;单地线线路不宜大于25°。
综上所述, 架设避雷线的作用是以下几点。
(1)引雷作用。
架设避雷线后, 由于避雷线对雷云电场的畸变作用, 使雷基本上只击于避雷线而不击于导线,这就是避雷线的引雷作用,也是避
雷线的主要作用。
(2)屏蔽作用。
当导线上主挂有避雷线时, 由于避雷线的屏蔽效应, 使导线上的感应过电压降低,导致作用于线路绝缘上的电压降低,从而使线
路的耐压水平提高, 跳闸率降低。
(3)分流作用。
当雷击杆塔时,对有避雷线的线路,雷电流并不是全部经过该杆
塔入地, 而是从杆塔两侧的避雷线分流掉一部分, 导致塔顶电位降低, 这样作用于线路绝缘上的电压也就随之降低, 从而使线路的耐雷水平提高, 跳闸率降低。
(4)耦合作用。
当避雷线上有过电压运动时, 导线上即出现耦合电压, 避雷线与导线间的这种耦合效应也能降低线路绝缘上的电压,从而使线路的耐雷水平提高, 跳闸率降低。
高压输电线路的避雷线通常是直接接地地, 而超高压输电线路的避雷线是经小间隙接地。
装有避雷线的线路,在一般土壤电阻率地区,其耐雷水平不宜低于下表所列数值。
二、降低杆塔接地电阻
降低杆塔接地电阻通常是提高线路耐雷性能最经济的方法,我国《规程》规定,有避雷线的线路,每基杆塔(不连避雷线)的工频接地电阻,在雷季干燥时,不宜超过规定值,在土壤电阻率低的地区,应充分利用杆塔的自然接地电阻,在土壤电阻率高的地区,降低接地电阻较困难时,可采用多根放射性接地体或连续伸长接地体, 或长效化学降阻剂。
处于雷电活动剧烈、接地电阻又难以降低的地区的110kv~154kv电网,也可考虑采用中性点经消弧线圈的接地方式,这样, 绝大多数由雷击引起的单相接地故障可被消弧线圈所消除, 即使雷
击引起一相导线单相接地也不会引起跳闸, 而且对地闪烙后的第一相导线相当于接地, 增大了耦合作用, 使未闪络相绝缘子串的电压下降, 从而提高耐雷水平, 减少相间闪络概率。
经验证明,改用这种接地方式可使雷击跳闸率约降低1/3左右,当然对上述电网是否采用这种接地方式时, 还应考虑其他因素。
三、装设自动重合闸装置
由于雷击造成的闪络大多数能在跳闸后自行恢复绝缘性能, 所以重合闸成功率较高,运行经验表明,我国110kv及以上的线路重合闸功率为75%~95%,35kv及以下线路约为50%~80%,。
这是因为绝缘子在雷击闪络后,一般都能在线路跳闸后自动恢复绝缘性能,所以重合闸成功率较高。
采用重合闸,可以减少检修工作量,提高供电可靠性。
四、安装避雷器
避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。
未沿全线架设避雷线的35~110kv架空输电线路,应在变电所1~2km 的进线段架设避雷线,并在靠近隔离开关或断路器处装设一组排气式避雷器(或阀式避雷器)gb2,其保护方案如图1。
此外,发电厂、变电所的35kv 及以上电缆进线段,在电缆与架空线的连接处应装设阀型避雷器,连接电缆段的1km架空线路应架设避雷线。
五、特殊条件下输电线路的防雷措施
1、架设耦合地线
在高土壤电阻率地区, 当线路跳闸事故频繁,而又难以降低杆塔接地电阻时,除可改架或补架避雷线外, 还可以采用架设耦合地线的措施。
即在导线下面回设一根或几根接地线。
耦合地线的作用是增大耦合系数;增大向杆塔两侧的分流(据华东地区实测,分流效果约为12%~22%),从而可提高线路的耐雷水平,降低雷击跳闸率。
运行经验证明。
耦合地线可使线路的雷击跳闸率降低50%左右。
2、采用中性点非有效接地方式
我国35 kv 及以下电网一般采用中性点不接地或经消弧线圈接地的方式。
这样可使雷击引起的大多数接地故障自动消除, 不至于造成雷击跳闸。
运行经验表明,电网中性点经消弧线圈接地, 线路雷击跳闸会明显下降, 约可降低1/3 左右。
3、加强线路绝缘
为了降低跳闸率, 可在高杆塔上增加绝缘子的片数, 同时增大跨越档导线与避雷线间的距离, 以加强线路绝缘。
对35 kv及以下线路, 可采用瓷横担等冲击闪络电压较高的绝缘子来降低雷击跳闸率。
4、采用不平衡绝缘方式
现代高压及超高压线路, 同杆架设双回线路的趋势有所增加,
为了降低雷击时双回路同时跳闸的机率, 采用通常的防雷措施无法满足要求时, 可考虑采用不平衡绝缘方式, 也就是使双回路的绝缘子片数有差异。
六、结束语
综上所述,对输电线路防雷保护的主要方法,具体实施起来还应根据各地区的气候、地形及雷电活动特点采取适当的措施。
作为运行单位,应不断加强巡视工作,尤其是在雷雨季节、雷电活动频繁地段线路的巡视,对于已发生闪络的绝缘子能够及时更换。
通过技术经济比较,进行综合治理,才能有效搞好防雷工作。
注:文章内所有公式及图表请用pdf形式查看。