④解这两个一元一次方程,它们的解就是原方程的解.
第22章┃ 复习
3.一元二次方程根的判别式 由于一元二次方程的根的个数由代数式_b_2_-__4_a_c_____的符 号决定,因此把_b_2_-__4_a_c____叫做一元二次方程根的判别式. (1)当_b_2_-__4_a_c_>__0___时,一元二次方程 ax2+bx+c=0(a≠0) 有 x2=两_个__不_-_相_b_-等__的2_ba_实2_-_数_4_a根_c_,__即__x_1_=_____.-__b_+___2_ab_2-__4_a_c________,
•第二十一章 二次根式 •21.1《二次根式》 •21.2二次根式的乘除法 •21.3二次根式的加减法
第21章┃ 复习
1.二次根式的概念 一般地,我们把形如__a__(a≥0)的式子叫做二次根式.
第21章┃ 复习
2.二次根式的性质
(1) a≥___0___(a≥0);(2)( a)2=___a___(a≥0);
解:移项,得 x2-4x=1,两边都加上 4,得 x2-4x+4=1 +4,即(x-2)2=5,两边开平方,得 x-2=± 5,即 x= 2± 5,所以 x1=2- 5,x2=2+ 5.
Байду номын сангаас
第22章┃ 复习
方法技巧 如果方程具备(x+a)2=b(b≥0)型,用直接开平方法解较简 单,如果不具备,应考虑因式分解法.用因式分解法解方程时, 应先把右边化为 0,再把左边因式分解,因式分解法简单,但 有局限性.因式分解法不能用时,观察如果二次项系数是 1, 一次项系数是偶数,用配方法解较简单.如果都不行,就用公 式法,公式法是解一元二次方程的万能方法,但要先化成一般 式确定 a,b,c,计算 b2-4ac.