八下1-3不等式的解集
- 格式:ppt
- 大小:327.00 KB
- 文档页数:19
八年级下册数学不等式的解集教案一、教学目标1. 理解不等式的解集的概念,掌握求解不等式解集的方法。
2. 能够求解一元一次不等式、一元二次不等式和带有绝对值的不等式。
3. 能够运用不等式的解集解决实际问题,提高解决问题的能力。
二、教学内容1. 不等式的解集的概念:解集是指使不等式成立的所有实数的集合。
2. 求解不等式解集的方法:a) 一元一次不等式:根据不等式的性质,通过移项、合并同类项求解。
b) 一元二次不等式:先求出对应的一元二次方程的根,根据一元二次方程的图像确定解集。
c) 带有绝对值的不等式:根据绝对值的性质,分情况讨论求解。
三、教学重点与难点1. 教学重点:a) 不等式的解集的概念。
b) 求解一元一次不等式、一元二次不等式和带有绝对值的不等式的方法。
2. 教学难点:a) 带有绝对值的不等式的求解。
b) 运用不等式的解集解决实际问题。
四、教学方法与手段1. 教学方法:a) 采用启发式教学,引导学生主动探索不等式的解集求解方法。
b) 通过例题讲解,让学生掌握不等式解集的求解步骤。
c) 开展小组讨论,培养学生合作解决问题的能力。
2. 教学手段:a) 使用多媒体课件,直观展示不等式的解集。
b) 提供练习题,巩固所学知识。
五、教学安排1. 课时:2课时2. 教学过程:a) 第1课时:介绍不等式的解集的概念,讲解求解一元一次不等式和一元二次不等式的方法。
b) 第2课时:讲解带有绝对值的不等式的求解方法,运用不等式的解集解决实际问题。
六、教学活动1. 导入新课:通过复习一元一次方程的解集,引导学生理解不等式的解集的概念。
2. 讲解例题:a) 求解不等式2x 3 > 7 的解集。
b) 求解不等式x^2 6x + 9 ≥0 的解集。
c) 求解不等式|x 2| ≤3 的解集。
3. 练习与讨论:学生独立完成练习题,小组内讨论解题过程和方法。
七、课后作业1. 完成练习册上的相关习题,巩固所学知识。
2. 选择一道实际问题,运用不等式的解集进行解答,并在课堂上分享。
不等式的取值范围与解集求解不等式是数学中常见的一种关系式,它描述了数之间的大小关系。
在解不等式时,我们需要确定不等式的取值范围,并找出满足不等式条件的解集。
本文将介绍不等式的基本概念、解法以及一些常见的不等式类型。
一、不等式的基本概念不等式是由不等号连接的两个数或表达式所构成的关系式。
常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
例如,x > 3表示x大于3,x + 2 ≤ 5表示x + 2小于等于5。
二、不等式的解集与取值范围解不等式的过程就是确定不等式的取值范围,并找出满足不等式条件的数的集合,这个集合被称为解集。
解集可以用不等号表示,也可以用集合符号表示。
1. 不等式的解集表示解集可以用不等号表示,例如x > 3的解集可以表示为{x | x > 3},读作“x的取值范围是大于3的数”。
解集也可以用集合符号表示,例如x > 3的解集可以表示为{x ∈ℝ | x > 3},其中ℝ表示实数集。
2. 不等式的取值范围表示不等式的取值范围表示了满足不等式条件的数的范围。
例如x > 3的取值范围是大于3的数,可以表示为(3, +∞),其中+∞表示正无穷大。
三、不等式的求解方法解不等式的方法与解方程类似,但在某些情况下需要注意一些特殊的性质。
下面介绍一些常见的不等式类型及其求解方法。
1. 一元一次不等式一元一次不等式是形如ax + b > 0的不等式,其中a和b是已知实数,且a≠0。
解一元一次不等式的步骤如下:(1)将不等式转化为等式,得到ax + b = 0;(2)求得等式的解x0;(3)根据a的正负确定不等式的解集。
2. 一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0的不等式,其中a、b和c是已知实数,且a≠0。
解一元二次不等式的步骤如下:(1)将不等式转化为等式,得到ax^2 + bx + c = 0;(2)求得等式的解集{x1, x2};(3)根据a的正负和二次函数的凹凸性确定不等式的解集。
不等式的解集学建议一、知识结构二、重点、难点剖析本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.1.不等式的解与方程的解的意义的异同点相反点:定义方式相反(使方程成立的未知数的值,叫做方程的解);解的表示方法也相反.不同点:解的个数不同,普通地,一个不等式有有数多个解,而一个方程只要一个或几个解,例如,能使不等式成立,那么是不等式的一个解,相似地等也能使不等式成立,它们都是不等式的解,理想上,当取大于的数时,不等式都成立,所以不等式有有数多个解.2.不等式的解与解集的区别与联络不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的一切的值,不等式的一切解组成了解集,解集中包括了每一个解.留意:不等式的解集必需满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.3.不等式解集的表示方法(1)用不等式表示普通地,一个含未知数的不等式有有数多个解,其解集是某个范围,这个范围可用一个最复杂的不等式表示出来,例如,不等式的解集是 .(2)用数轴表示如不等式的解集,可以用数轴上表示4的点的左边局部表示,由于包括,所以在表示4的点上画实心圆.如不等式的解集,可以用数轴上表示4的点的左边局部表示,由于包括,所以在表示4的点上画实心圈.留意:在数轴上,左边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.一、素质教育目的(一)知识教学点1.使先生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.2.知道不等式的解集与方程解的不同点.(二)才干训练点经过教学,使先生可以正确地在数轴上表示出不等式的解集,并且能把数轴上的某局部数集用相应的不等式表示. (三)德育浸透点经过解说不等式的解集与方程解的关系,向先生浸透统一一致的辩证观念.(四)美育浸透点经过本节课的学习,让先生了解不等式的解集可应用图形来表达,浸透数形结合的数学美.二、学法引导1.教学方法:类比法、引导发现法、实际法.2.先生学法:明白不等式的解与解集的区别和联络,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别留意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.三、重点难点疑点及处置方法(一)重点1.不等式解集的概念.2.应用数轴表示不等式的解集.(二)难点正确了解不等式解集的概念.(三)疑点弄不清不等式的解集与方程的解的区别、联络.(四)处置方法弄清楚不等式的解与解集的概念.四、课时布置一课时.五、教具学具预备投影仪或电脑、自制胶片、直尺.六、师生互动活动设计(一)明白目的本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.(二)全体感知经过枚举法来笼统直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让先生掌握该概念.再经过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.(三)教学进程1.创设情境,温习引入(1)依据不等式的基本性质,把以下不等式化成或的方式.(2)当取以下数值时,不等式能否成立?l,0,2,-2.5,-4,3.5,4,4.5,3.先生活动:独立思索并说出答案:(1)① ② .(2)当取1,0,2,-2.5,-4时,不等式成立;当取3.5,4,4.5,3时,不等式不成立.大家知道,当取1,2,0,-2.5,-4时,不等式成立.同方程相似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式不成立的数就不是不等式的解.关于不等式,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的散布有什么规律?先生活动:思索讨论,尝试得出答案,指名板演如下:【教法说明】启示先生用实验方法,结合数轴直观研讨,把已说出的不等式的解2,0,1,-2.5,-4用实心圆点表示,把不是的解的数值3.5,4,4.5,3用空心圆圈表示,似乎是挖去了.师生归结:观察数轴可知,用实心圆点表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式的解,而大于或等于3的任何一个数都不是的解.可以看出,不等式有有限多个解,这有限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式的有限多个解集中起来,就失掉的解的集会,简称不等式的解集.2.探求新知,讲授新课(1)不等式的解集普通地,一个含有未知数的不等式的一切的解,组成这个不等式的解的集合,简称这个不等式的解集.①以方程为例,说出一元一次方程的解的状况.②不等式的解的个数是多少?能逐一说出吗?(2)解不等式求不等式的解集的进程,叫做解不等式.解方程求出的是方程的解,而解不等式求出的那么是不等式的解集,为什么?先生活动:观察思索,指名回答.教员归结:正是由于一元一次方程只要独一解,所以可以直接求出.例如的解就是,而不等式的解有有限多个,无法逐一罗列出来,因此只能用不等式或提醒这些解的共同属性,也就是求出不等式的解集.实践上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为或的方式,或就是原不式的解集,例如的解集是,同理,的解集是 .【教法说明】先生对一元一次方程的解印象较深,而不等式与方程的相反点较多,因此易将不等式的解集与方程的解混为一谈,这里设置上述效果,目的是使先生弄清不等式的解集与方程的解的关系.(3)在数轴上表示不等式的解集①表示不等式的解集:( )剖析:由于未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边局部来表示解集 .留意未知数的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:②表示的解集:( )先生活动:独立思索,指名板演并说出剖析进程.剖析:由于未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2左边,所以就用数钢上表示-2的点和它的左边局部来表示.如以下图所示:留意效果:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.【教法说明】应用数轴表示不等式解的解集,增强了解集的直观性,使先生笼统地看到不等式的解有有限多个,这是数形结合的详细表达.教学时,要特别讲清实心圆点与空心圆圈的不同用法,还要重复提示先生弄清究竟是左边局部还是左边局部,这也是学好本节内容的关键.3.尝试反应,稳固知识(1)不等式的解集与有什么不同?在数轴上表示它们时怎样区别?区分在数轴上把这两个解集表示出来.(2)在数轴上表示以下不等式的解集.(3)指出不等式的解集,并在数轴上表示出来.师生活动:首先先生在练习本上完成,然后教员抽查,最后与出示投影的正确答案停止对比.【教法说明】教学时,应强调2.(4)题的正确表示为:我们曾经可以在数轴上准确地表示出不等式的解集,反之假定给出数轴上的某局部数集,还要会写出与之对应的不等式的解集来.4.变式训练,培育才干(1)用不等式表示图中所示的解集.【教法说明】强调在运用、表示上的区别.(2)单项选择:①不等式的解集是( )A. B. C. D.②不等式的正整数解为( )A.1,2B.1,2,3C.1D.2③用不等式表示图中的解集,正确的选项是( )A. B. C. D.④用数轴表示不等式的解集正确的选项是( )先生活动:剖析思索,说出答案.(教员给予纠正或一定) 【教法说明】此题以抢答方式茁现,更能激起先生探求知识的热情.(四)总结、扩展先生小结,教员完善:1. 本节重点:(1)了解不等式的解集的概念.(2)会在数轴上表示不等式的解集.2.本卷须知:弄清还是,是左边局部还是左边局部.七、布置作业必做题:P65 A组 3.(1)(2)(3)(4)八、板书设计6.2 不等式的解集一、1.不等式的解集:普通地,一个含有未知数的不等式的一切的解组成这个不等式的解的集合,简称不等式的解集.2.解不等式:求不等式解的进程二、在数轴上表示不等式的解集1. 2.三、留意:(1) 与 ;(2)左边局部与左边局部.。
北师大版八年级下册数学目录第一章三角形的证明1. 等腰三角形2. 直角三角形3. 线段的垂直平分线4. 角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1. 图形的平移2. 图形的旋转3. 中心对称4. 简单的图案设计回顾与思考第四章因式分解1. 因式分解2. 提公因式法3. 公式法回顾与思考复习题第五章分式与分式方程1. 认识分式2. 分式的乘除法3. 分式的加减法4. 分式方程回顾与思考复习题第六章平行四边形1. 平行四边形的性质2. 平行四边形的判定3. 三角形的中位线4. 多边形的内角和与外角和回顾与思考复习题综合与实践⊙ 生活中的“一次模型”综合与实践⊙ 平面图形的镶嵌一、不等关系定义:一般地,用符号“<”或“≤”,“>”或“≥”连接的式子叫做不等式.与方程的区别:方程表示的是相等的关系;不等式表示的是不相等的关系.备注:准确“翻译”不等式,正确理解“非负数”“不小于”“不大于”“至多”“至少”等数学术语.二、不等式的基本性质●不等式的两边都加或减同一个整式,不等号的方向不变,即如果a>b,那么a c>b c;●不等式的两边都乘或除以同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc或>;●不等式的两边都乘或除以同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac三、不等式的解集1、能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集.求不等式解集的过程叫做解不等式.2、不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:1边界:有等号的实心圆点,无等号的空心圆圈;2方向:大于向右,小于向左.四、一元一次不等式定义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次是1,像这样的不等式叫做一元一次不等式.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.列不等式解应用题的基本步骤:①审,②设,③列,④解,⑤答.备注:解一元一次不等式特别要注意,当不等式两边都乘一个负数时,不等号要改变方向.五、一元一次不等式与函数设一次函数y kx b,则有一次函数的图像在x轴的上方kx b>0;一次函数的图像在x轴的下方kx b<0.六、一元一次不等式组解一元一次不等式组的方法:“分开解,集中判”备注:几个不等式解集的公共部分,通常是利用数轴来确定.感谢您的阅读,祝您生活愉快。
2023-2024学年八年级数学北师大版下册名师教学设计:第二章课题不等式的解集一. 教材分析北师大版八年级数学下册第二章《不等式的解集》的内容包括不等式的概念、不等式的性质、解不等式、不等式的解集等。
本章主要让学生理解不等式的概念,掌握不等式的性质和解不等式的方法,能求出不等式的解集。
通过本章的学习,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章之前已经掌握了实数、方程、函数等基础知识,具备了一定的逻辑思维和运算能力。
但部分学生对不等式的概念和性质理解不深,解不等式的技巧有待提高。
因此,在教学过程中,要关注学生的个体差异,引导学生理解不等式的本质,培养学生的动手操作能力和思维能力。
三. 教学目标1.理解不等式的概念,掌握不等式的性质;2.学会解不等式,能求出不等式的解集;3.培养学生解决实际问题的能力;4.培养学生的合作交流能力和创新意识。
四. 教学重难点1.不等式的概念和性质;2.解不等式的方法;3.不等式的解集。
五. 教学方法1.情境教学法:通过生活实例引入不等式,激发学生的学习兴趣;2.启发式教学法:引导学生发现不等式的性质,培养学生的思维能力;3.案例教学法:分析典型例题,让学生掌握解不等式的方法;4.小组合作学习:培养学生合作交流能力,提高学生的动手操作能力。
六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质、解法等;2.例题和练习题:挑选具有代表性的例题和练习题,巩固所学知识;3.教学道具:准备实物道具,辅助讲解不等式的概念和性质。
七. 教学过程1.导入(5分钟)利用生活实例引入不等式的概念,如“小明比小红高”、“这个苹果的重量大于那个苹果”等,让学生感受到不等式的实际应用。
2.呈现(10分钟)讲解不等式的概念和性质,引导学生发现不等式的特点,如“大于”、“小于”、“大于等于”、“小于等于”等。
同时,利用实物道具辅助讲解,让学生更直观地理解不等式的概念。
3.操练(10分钟)让学生分组讨论,分析典型例题,引导学生掌握解不等式的方法。