解:如图,在接收天线的轴截面所在的平面内建立直角坐标系,使接收天线
的顶点(即抛物线的顶点)与原点重合,焦点在x轴上.则 A y2 = 2px (p>0).
将 A (1, 2.4) 代入得 2.42 = 2p×1,解得 p = 2.88.
所以,所求抛物线为 y2 = 5.76x,焦点坐标为 (1.44, 0).
7
由图可知,当 ⊥ 时,|| + 最小,最小值为2.
7
即|| + ||的最小值为2 ,
此时P点纵坐标为2,代入2 = 2,得 = 2.
∴点P坐标为(2,2).
9.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露
出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
5
由22 = −3.2 ,得 = − 4,
又知船面露出水面上部分高为0.75米,所以ℎ = + 0.75=2米.
C.2
D.3
2.抛物线 = 4 2 的焦点坐标是( D )
A. 1,0
B. 0,1
1
C. 16 , 0
1
D. 0, 16
3.已知抛物线的焦点 F (a,0)(a 0) ,则抛物线的标准方程是( A )
A. y 2 4ax
B. y 2
2ax
C. y 2 4ax