平面向量中的线性问题专题(附答案)
- 格式:docx
- 大小:108.63 KB
- 文档页数:12
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量的线性运算一、单选题(共10道,每道10分)1.设P是△ABC所在平面内的一点,,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义2.设D,E,F分别是△ABC的三边AB,BC,CA的中点,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义3.在△ABC中,,P是CR的中点,若,则m+n等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义4.如图,在△ABC中,,若,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义5.已知点P是△ABC内一点,且,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义6.设M是平行四边形ABCD的对角线的交点,O为任意一点(不与M重合),则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义7.若M是△ABC的重心,O为任意一点,,则n的值是( )A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义8.在△ABC中,,,点P在AM上且满足,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义9.设P是等边△ABC所在平面内的一点,满足,若AB=1,则的值是( )A.4B.3C.2D.1答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.如图,BC,DE是半径为1的圆O的两条直线,,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算。
训练目标 (1)平面向量的概念;(2)平面向量的线性运算;(3)平面向量基本定理. 训练题型(1)平面向量的线性运算;(2)平面向量的坐标运算;(3)向量共线定理的应用. 解题策略(1)向量的加、减法运算要掌握两个法则:平行四边形法则和三角形法则,还要和式子:AB →+BC →=AC →,OM →-ON →=NM →联系起来;(2)平面几何问题若有明显的建系条件,要用坐标运算;(3)利用向量共线可以列方程(组)求点或向量坐标或求参数的值.1.下列各式计算正确的有________个. ①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b .2.(·贵州遵义一模)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.3.(·云南昆明质检)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m =________.4.若a 为任一非零向量,b 为模为1的向量,下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是________.5.(·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 6.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________________________________. 7.(·青海西宁质检)已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为________.8.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=xAM →,AC →=yAN →,则x +y =________.9.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 10.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________. 11.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2=________.12.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP →|=32|PB →|,则点P 坐标为________.13.已知a ,b 是两个不共线的向量,它们的起点相同,且a ,t b ,13(a +b ) (t ∈R )这三个向量的终点在一条直线上,则t 的值为________. 14.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.答案解析1.3 2.23 3.19 4.③ 5.(-7,-4) 6.07.P 是AC 边的一个三等分点 解析 ∵P A →+PB →+PC →=AB →, ∴P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →=2AP →,∴P 是AC 边的一个三等分点. 8.2解析 因为M 、O 、N 三点共线, 所以存在常数λ(λ≠0,且λ≠-1), 使得MO →=λON →,即AO →-AM →=λ(AN →-AO →), 所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →、AN →不共线,所以⎩⎨⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1, 即x +y =2.9.-74m +138n 10.611.12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=-16+23=12.12.(8,-15) 解析 设P (x ,y ), 因为|AP →|=32|PB →|,又P 在线段AB 的延长线上,故AP →=-32PB →=32BP →,所以(x -2,y -3)=32(x -4,y +3),即⎩⎨⎧x -2=32(x -4),y -3=32(y +3),所以⎩⎪⎨⎪⎧x =8,y =-15.故P (8,-15).13.12 解析如图所示,OA →=t b , OB →=13(a +b ),OC →=a .∴AC →=OC →-OA →=a -t b , BC →=OC →-OB →=23a -13b ,∵A 、B 、C 三点共线,a ,b 不共线, ∴AC →与BC →共线, ∴231=-13-t ,∴t =12. 14.2 解析以O 为坐标原点,OA 所在的直线为x 轴, OA →的方向为x 轴的正方向,建立平面直角坐标系, 则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则由OC →=xOA →+yOB →,得(cos α,sin α)=x (1,0)+y (-12,32),得x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值2.。
高中高二数学平面向量的线性运算专项训练题数学是一切科学的根底,小编准备了高二数学平面向量的线性运算专项训练题,详细请看以下内容。
1.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC=2BD,CE=2EA,AF=2FB,那么AD+BE+CF与BCA.反向平行B.同向平行C.互相垂直D.既不平行也不垂直解析:由题意,得DC=DA+AC,BD=BA+AD.又DC=2BD,所以DA+AC=2(BA+AD).所以AD=13AC+23AB.同理,得BE=13BC+23BA,CF=13CA+23CB.将以上三式相加,得AD+BE+CF=-13BC.答案:A2.设P是△ABC所在平面内的一点,BC+BA=2BP,那么A.PA+PB=0B.PC+PA=0C.PB+PC=0D.PA+PB+PC=0解析:如图,根据向量加法的几何意义有BC+BA=2BPP是AC 的中点,故PA+PC=0.答案:B3.向量a,b不共线,c=ka+b(kR),d=a-b.假如c∥d,那么A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:∵c∥d,c=d,即ka+b=(a-b),k==-1.答案:D4.在四边形ABCD中,AB=a+2b,BC=-4a-b,CD=-5a-3b,那么四边形ABCD的形状是A.矩形B.平行四边形C.梯形D.以上都不对解析:由AD=AB+BC+CD=-8a-2b=2(-4a-b)=2BC.AD∥BC,又AB与CD不平行,四边形ABCD是梯形.答案:C5.化简:AB+DA+CD=________.解析:CD+DA+AB=CB.答案:CB6.设a与b是两个不共线向量,且向量a+b与2a-b共线,那么=________.解析:由题意知:a+b=k(2a-b),那么有:1=2k,=-k,k=12,=-12.答案:-127.(2022江苏苏州一模)如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,假设AB=mAM,AC=nAN,那么m+n的值为________.解析:如图,连结AO,那么AO=12(AB+AC)=m2AM+n2AN,∵M、O、N三点共线,m2+n2=1,m+n=2.答案:28.假设a,b是两个不共线的非零向量,a与b起点一样,那么当t为何值时,a,tb,13(a+b)三向量的终点在同一条直线上?解:设OA=a,OB=tb,OC=13(a+b),AC=OC-OA=-23a+13b,AB=OB-OA=tb-a.要使A、B、C三点共线,只需AC=AB.即-23a+13b=tb-a.有-23=-,13=t,=23,t=12.当t=12时,三向量的终点在同一条直线上.9.在△ABC中,E、F分别为AC、AB的中点,BE与CF相交于G点,设AB=a,AC=b,试用a,b表示AG.解:AG=AB+BG=AB+BE=AB+2(BA+BC)=1-2AB+2(AC-AB)=(1-)AB+2AC=(1-)a+2b.又AG=AC+CG=AC+mCF=AC+m2(CA+CB)=(1-m)AC+m2AB=m2a+(1-m)b,1-=m21-m=2,解得=m=23,AG=13a+13b.高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学平面向量的线性运算专项训练题,希望大家喜欢。
平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.62.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1D.(4a +b )⊥BC →3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.234.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( )A.BC →B.12AD →C.AD →D.12BC →6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=437.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______.9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设 DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎪⎫b -12a=-12k 1a +k 1b (k 1为实数),BO →=k 2BF →=k 2(AF →-AB →)=k 2(12b -a )=-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a +(-12k 1a +k 1b )=-12(1+k 1)a +k 1b ,②由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0⇒⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).点评 平面向量的线性运算应注意三点: (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________. 答案 (1)A (2)45解析 根据向量的基本定理可得AD →=AC →+CD →=AC →+(ED →-EC →)=AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →. 所以λ=22,k =1+22. 所以λ+k =1+ 2.故选A. (2)依题意得AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →, AN →=AB →+BN →=AB →+12BC →;又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝ ⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μ·AB →+⎝⎛⎭⎫λ+μ2BC →;又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 答案 -3解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,n =5,故m -n =2-5=-3.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 解得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)7+1 (2)m ≠12解析 (1)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ), 所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线, 而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时实数m 满足的条件是m ≠12.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 a =(2,4),b =(x,6),∵a ∥b ,∴4x -2×6=0, ∴x =3.2.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a||b |cos120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →, 所以(-2,0)=λ(-3,0),故λ=23.4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC →答案 C解析 如图,EB →+FC →=EC →+CB →+FB →+BC → =EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知 4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=43答案 C解析 设与OA →,OB →同方向的单位向量分别为a ,b , 依题意有OC →=4a +2b ,又OA →=2a ,OB →=32b ,则OC →=2OA →+43OB →,所以λ=2,μ=43.7.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系(图略),则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______. 答案 1 解析 由题意知OA →=(-3,0),OB →=(0,3),则OC →=(-3λ,3),由∠AOC =30°知以x 轴的非负半轴为始边,OC 为终边的一个角为150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1. 9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.答案 5解析 ∵λa +b =0,∴λa =-b ,∴|λa |=|-b |=|b |=22+12=5,∴|λ|·|a |= 5.又|a |=1,∴|λ|= 5.10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12 解析 因为a ∥b ,所以sin 2θ=cos 2θ,2sin θcos θ=cos 2θ.因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12. 11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16. 12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴不论t 2为何实数,A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|. ∵S △ABM =12,∴12|AB|·d=12×42×2|a2-1|=12,解得a=±2,故所求a的值为±2.。
2023高考数学复习专项训练《平面向量的线性运算》一 、单选题(本大题共12小题,共60分) 1.(5分)已知非零向量a →,b →,下列说法正确的是()A. 若a →=b →,则|a →|=|b →| B. 若a →,b →为单位向量,则a →=b →C. 若|a →|>|b →|且a →与b →同向,则a →>b →D. |a →+b →|⩾|a →|+|b →| 2.(5分)已知向量, 若, 则实数等于A. B.C. 或D. 03.(5分)已知 ,且 ,则锐角 的值A. B.C.D.4.(5分)已知直线l 上有三点A 、B 、C ,O 为l 外一点,又等差数列{a n }的前n 项和为S n ,若OA →=(a 1+a 3)OB →+2a 10OC →,则S 11=( )A. 114B. 3C. 112D. 1325.(5分)已知a →,b →是不共线的向量,AB →=λa →+b →,AC →=a →+μb →,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为()A. λ+μ=2B. λ−μ=1C. λμ=−1D. λμ=16.(5分)已知点A(1,1),B(4,2)和向量a =(2,λ),若a ∥,则实数λ的值为A. -B. C. D. -7.(5分)已知点P(2,2),若圆C:(x −5)2+(y −6)2=r 2(r >0)上存在两点A ,B ,使得PA →=2AB →,则r 的取值范围是( )8.(5分)设是双曲线的左焦点,是上一点,线段与虚轴的焦点为,且是线段的三等分点,则的离心率为A. B. C. 或 D.9.(5分)已知 是平面上的三个点,直线 上有一点 ,满足,则 等于A. B.C.D.10.(5分)设向量a →=(1,4),b →=(2,x),c →=a →+b →.若a →//c →,则实数x 的值是( )A. −4B. 2C. 4D. 811.(5分)已知向量a →=(3,1),b →=(−6,k),若a →//b →,则k =( )A. 18B. −18C. −2D. −612.(5分)已知平面直角坐标系内的两个向量,,且平面内的任一向量都可以唯一地表示成为实数,则实数m 的取值范围是A. B.C.D.二 、填空题(本大题共5小题,共25分)13.(5分)已知向量a →=(2,6),b →=(−1,λ),若a →//b →,则λ=______. 14.(5分)已知a →=(6,λ),b →=(−1,2),若a →//b →,则实数λ=_________ . 15.(5分)化简:(1)AB →+BC →+CD →=__________;(2)AB →+BC →+CD →+DE →+EF →=__________; (3)AB →−CB →−AC →=__________;(4)A 1A 2→+A 2A 3→+⋯+An −1An →=__________.16.(5分)如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中,μ∈R ,则λ+μ=__________.17.(5分)设向量a =(1,-4),b =(-1,x),c =a +3b .若a ∥c ,则实数x 的值是______. 三 、解答题(本大题共6小题,共72分)18.(12分)如图所示,若四边形ABCD 是一个等腰梯形,AB ∥DC,M,N 分别是DC,AB的中点,已知=a ,=b , =c ,试用a ,b ,c 表示,,.19.(12分)设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c.向量m →=(a,−√3b),n →=(cosA,sinB),且m →//n →.(1)求A 的大小; (2)若|n →|=√33,求cosC 的值. 20.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a →=(−1,2),又点A(8,0),B(n,t),C(k sinθ,t),θ∈R .(1)若AB →⊥a →,且|AB →|=√5|OA →|,求向量OB →;(2)若向量AC →与向量a →共线,常数k >0,求f(θ)=t sinθ的值域. 21.(12分)设函数f(x)=√3sin2x +2sin 2x −1. (Ⅰ)求函数f(x)的最大值和最小正周期.(Ⅱ)已知ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f(C)=2,CA →⋅CB →=3,a +b =112,求边c .22.(12分)设两个非零向量a →与b →不共线.试确定实数k ,使ka →+b →和a →+kb →共线. 23.(12分)已知△ABC 中,A =60∘,AB =1,AC =4,AE →=λAC →(0<λ<1).(1)求|BE →|的取值范围;(2)若线段BE 上一点D 满足AD →=μ(AB →|AB →|+AC →|AC →|),求λ+1μ的最小值.四 、多选题(本大题共5小题,共25分) 24.(5分)下列说法中正确的是()A. 对于向量a →,b →,c →,有(a →⋅b →)⋅c →=a →⋅(b →⋅c →) →→→→→→C. 设m →,n →为非零向量,则“存在负数λ,使得m →=λn →”是“m →⋅n →<0”的充分而不必要条件D. 在△ABC 中,设D 是BC 边上一点,且满足CD →=2DB →,CD →=λAB →+μAC →,则λ+μ=025.(5分)ΔABC 是边长为3的等边三角形,已知向量满足,,则下列结论中正确的有( )A. 为单位向量B.C.D.26.(5分)已知△ABC 的重心为G ,点E 是边BC 上的动点,则下列说法正确的是().A. AG →+BG →=CG →B. 若AE →=23AB →+13AC →,则△EAC 的面积是△ABC 面积的23 C. 若AB =AC =2,BC =3,则AB →·AG →=76D. 若AB =AC =2,BC =3,则当EA →·EB →取得最小值时,|EA →|=√37427.(5分)设向量a →=(k, 2), b →=(1,−1),则下列叙述错误的是( )A. |a →|的最小值为2B. 与b →共线的单位向量只有一个为(√22,−√22) C. 若k <−2,则a →与b →的夹角为钝角 D. 若|a →|=2|b →|,则k =2√2或−2√228.(5分)(多选)下列关于平面向量的说法中不正确的是( )A. a →=(92,k),→ b =(k,8),若→ a / / → b ,则k =6 B. 单位向量→ i =(1,0),→ f =(0,1),则|3→ i −4→ f |=5 C. 若a →⋅c →=b →⋅c →且→ c ≠→ 0,则→ a =→ bD. 若点G 为ΔABC 的重心,则→ GA +→ GB +→ GC =→ 0答案和解析1.【答案】A; 【解析】此题主要考查向量的模,向量的基本知识的应用,命题的真假的判断,是基础题. 通过向量的模以及共线向量的关系,判断选项的正误即可. 解:A.若a →=b →,则|a →|=|b →|正确;对于B ,单位向量的模相等,方向不一定相同,故B 不正确;对于C ,若a →,b →满足|a →|>|b →|且a →与b →同向,则a →>b →显然不正确, 向量不能比较大小, 故C 错误;对于D ,向量的加法的平行四边形法则,可知对于任意向量a →,b →,必有|a →+b →|⩽|a →|+|b →|,故D 错误; 故选:A.2.【答案】C;【解析】主要考查向量的坐标运算,共线向量的应用.向量若则解得.故选C.3.【答案】C; 【解析】利用两向量平行,则坐标交叉相乘相等,得出sin 2,然后求解.解:因为, 且 ,所以,即,又为锐角,所以,所以.故选C .4.【答案】A; 【解析】根据点A 、B 、C 是直线l 上不同的三点,得到存在非零实数λ,使AB →=λBC →,可推出OA →=(1+λ)OB →−λOC →,结合题意,根据平面向量基本定理得1+λ=a 1+a 3,−λ=2a 10,所以12=a 1+a 11,最后用等差数列求和公式可得{a n }的前11项和.本题以平面向量基本定理为载体,求等差数列的前11项和,着重考查了等差数列及其前n 项和和平面向量的基本定理及其意义等知识点,属于基础题.解:∵点A 、B 、C 是直线l 上不同的三点, ∴存在非零实数λ,使AB →=λBC →,即OB →−OA →=λ(OC →−OB →),则OA →=(1+λ)OB →−λOC →, ∵若OA →=(a 1+a 3)OB →+2a 10OC →, ∴1+λ=a 1+a 3,−λ=2a 10, ∴a 1+a 3+2a 10=1, ∵数列{a n }是等差数列,∴2a 2+2a 10=1,即a 2+a 10=12=a 1+a 11,∴S 11=11(a 1+a 11)2=114.故选:A .5.【答案】D; 【解析】 【分析】本题考查向量共线充要条件.若A 、B 、C 三点共线,则向量AC →与AB →平行,根据题中等式结合向量平行的充要条件列式,即可找出使A 、B 、C 三点共线的充要条件. 【解答】解:∵A 、B 、C 三点共线⇔AB →与AC →共线⇔AB →=kAC →⇔{λ=kkμ=1,∴λμ−1=0. ∴λμ=1故选D.【解析】根据A,B 两点的坐标,可得=(3,1),∵a ∥,∴2×1-3λ=0,解得λ=,故选C.7.【答案】C; 【解析】此题主要考查了动点轨迹和圆与圆的位置关系,考查了转化思想,属于中档题. 根据PA →=2AB →的几何意义找出圆心C 到直线AB 的距离d 与半径r 的关系,利用直线AB 与圆相交,得到0⩽d <r ,再解不等式求得r 的范围. 解:取AB 的中点D ,则CD ⊥AB. ∵PA →=2AB →,则|PD|=5|AD|. 设|CD|=d ,则√|PC|2−d 2=5√r 2−d 2. ∵P(2,2),C(5,6),∴|PC|2=(5−2)2+(6−2)2=25, ∴√25−d 2=5√r 2−d 2,得d 2=2524(r 2−1).∵0⩽d <r ,所以0⩽2524(r 2−1)<r 2,解得1⩽r <5. 故答案选:C.8.【答案】C;【解析】这道题主要考查双曲线离心率的计算,利用点的关系求出B 的坐标是解决本题的关键,注意进行分类讨论. 因为所以设因为是线段的三等分点,所以设若解得解得双曲线上,所以的离心率为或故选C.9.【答案】A; 【解析】10.【答案】D; 【解析】该题考查向量的坐标运算,以及平行向量的坐标关系.可先求出c →=(3,4+x),根据a →//c →即可得出4+x −12=0,解出x 即可.解:c →=a →+b →=(3,4+x); ∵a →//c →;∴4+x −12=0; ∴x =8. 故选:D .11.【答案】C; 【解析】该题考查向量坐标的概念,平行向量的坐标关系. 根据a →//b →即可得出3k +6=0,解出k 的值即可.解:∵a →//b →; ∴3k +6=0; ∴k =−2. 故选:C .12.【答案】D; 【解析】略13.【答案】−3; 【解析】此题主要考查向量的平行的坐标表示. 根据两向量平行的充要条件解答即可.解:因为向量a →=(2,6),b →=(-1,λ),a →//b →, 所以2λ−(−6)=0, 解得λ=−3. 故答案为−3.14.【答案】−12; 【解析】 【分析】本题主要考查了向量平行的条件,属于基础题. 利用向量平行的坐标关系,列出等式求解即可. 【解答】解:a →=(6,λ),b →=(−1,2),若a →//b →,则6×2−λ×(−1)=0,解得λ=−12. 故答案为−12.15.【答案】(1)AD →;(2)AF →;(3)0→;(4)A 1A n →; 【解析】此题主要考查了向量加法、减法运算,属于基础题. 根据向量加法、减法运算法则进行运算即可. 解:(1)AB →+BC →+CD →=AD →(2)AB →+BC →+CD →+DE →+EF →=AF →(4)A 1A 2→+A 2A 3→+⋯+A n−1A n →=A 1A n →. 故答案为:AD →,AF →,0→,A 1A n →.16.【答案】43; 【解析】此题主要考查平面向量基本定理,向量的线性运算等知识,属于基础题.设AB →=a →,AD →=b →,先用a →,b →表示出AE →,AF →,AC →,根据AC →=λAE →+μAF →即可求出μ,λ,从而得解.解:设AB →=a →,AD →=b →,则AE →=12a →+b →,AF →=a →+12b →.又AC →=a →+b →,∴AC →=23(AE →+AF →),即λ=μ=23, ∴λ+μ=43. 故答案为:43.17.【答案】4;【解析】主要考查两个向量共线的性质,两个向量坐标形式的运算.,∴,∵解得18.【答案】=-a +b +c .∵,又=-=-c ,=-=-b ,a ,∴a -b -c .=2=a -2b -c .;【解析】19.【答案】解:(1)因为m →=(a,−√3b),n →=(cosA,sinB),且m →//n →.所以asinB +√3bcosA =0.由正弦定理得sinAsinB +√3sinBcosA =0.因为B ∈(0,π),所以sinB >0,所以sinA +√3cosA =0(∗).当A ≠π2时,整理(∗)得tanA =−√3, 而A ∈(0,π),所以A =2π3.(2)因为|n →|=√33,所以cos 2A +sin 2B =13.而A =2π3,所以(−12)2+sin 2B =13.又sinB >0,解得sinB =√36. 因为A =2π3,所以B ∈(0,π3),所以cosB =√1−sin 2B =√336. 因为A +B +C =π,所以cosC =cos(π3−B),=cos π3·cosB +sin π3·sinB=12×√336+√32×√36=3+√3312.;【解析】本题涉及的考点有两个向量平行的坐标公式、向量模的坐标公式、正弦定理、三角形内角和定理及两角和差公式等,属于中档题.(1)利用向量平行的坐标公式得到边角混合的方程,再由正弦定理化边为角得到目标的方程求解出目标;(2)由向量模的坐标公式得关于B 的三角方程,解出B 的正余弦,注意角的范围定三角值的正负,再由内角和定理将所求目标转化到B 后求解.20.【答案】解:(1)AB →=(n-8,t ),∵AB →⊥a →,且|AB →|=√5|OA →|,∴-(n-8)+2t=0,√(n −8)2+t 2=8√5,解得t=±8,t=8时,n=24;t=-8时,n=-8.∴向量OB →=(24,8),(-8,-8).(2)AC →=(ksinθ-8,t ), (2)∵向量AC →与向量a →共线,常数k >0,∴t=-2ksinθ+16, ∴f (θ)=tsinθ=-2ksi n 2θ+16sinθ=-2k (sinθ−4k )2+32k .①k >4时,0<4k <1,∴sinθ=4k 时,f (θ)=tsinθ取得最大值32k ,sinθ=-1时,f (θ)=tsinθ取得最小值-2k-16,此时函数f (θ)的值域为[−2k −16,32k ]. ②4>k >0时,4k >1.∴sinθ=1时,f (θ)=tsinθ取得最大值-2k+16,sinθ=-1时,f (θ)=tsinθ取得最小值-2k-16, 此时函数f (θ)的值域为[-2k-16,-2k+16].; 【解析】(1)AB →=(n −8,t),由AB →⊥a →,且|AB →|=√5|OA →|,可得−(n −8)+2t =0,√(n −8)2+t 2=8√5,联立解出即可得出.(2)AC →=(k sinθ−8,t),由向量AC →与向量a →共线,常数k >0,可得t =−2ksinθ+16,f(θ)=t sinθ=−2ksin 2θ+16sinθ=−2k (sinθ−4k )2+32k.对k 分类讨论,利用三角函数的值域、二次函数的单调性即可得出.该题考查了向量共线定理、模的计算公式、三角函数的值域、二次函数的单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.21.【答案】解:(Ⅰ)函数f (x )=√3sin2x+2si n 2x-1 =√3sin2x-cos2x=2sin (2x-π6),∴函数f (x )的最大值是2, 最小正周期为T=2πω=π;(Ⅱ)△ABC 中,由f (C )=2,得2sin (2C-π6)=2,∴sin (2C-π6)=1, ∴2C-π6=π2+2kπ,k ∈Z ,解得C=π3+kπ,k ∈Z ,取C=π3;由CA →•CB →=3,得abcos π3=3,∴ab=6; 又a+b=112,∴a 2+b 2=(a+b )2-2ab=(112)2-2×6=734, 由余弦定理得:c 2=a 2+b 2-2abcosC=734-2×6×12=494, 所以c=72.;【解析】(Ⅰ)化函数f(x)为正弦型函数,求出f(x)的最大值和最小正周期; (Ⅱ)由f(C)=2求出C 的值,由CA →⋅CB →=3求出ab 的值; 再由a +b =112,利用余弦定理求得c 的值.此题主要考查了平面向量的数量积与三角函数的化简和解三角形的应用问题,是综合题.22.【答案】解:因为ka →+b →与a →+kb →共线,所以存在实数λ,使ka →+b →=λ(a →+kb →)(λ<0), 所以{k =λ,kλ=1,所以k =±1.故当k =±1时,两向量共线. ; 【解析】非零两向量a →、b →共线的条件是存在实数λ,使a →=λb →,由此可得解法.23.【答案】解:(1)根据题意,BE →2=(AE →−AB →)2=(λAC →−AB →)2=λ2AC →2−2λAC →·AB →+AB →2=16λ2−4λ+1=16(λ−18)2+34,因为0<λ<1,根据二次函数性质可得BE →2∈[34,13), 所以|BE →|取值范围为[√32,√13); (2)由题可得:AD →=μAB →+μ4AC →=μAB →+μ4λAE →,因为B 、E 、D 三点共线,所以μ+μ4λ=1故1μ=1+14λ,所以λ+1μ=λ+14λ+1⩾2当且仅当λ=12时等号成立, 所以λ+1μ最小值为2.;【解析】此题主要考查平面向量的模以及利用基本不等式求出最值,属于中档题. (1)根据题意BE →=AE →−AB →,两边平方可得关于的二次函数,进而求出|BE →|的取值范围;(2)根据B 、E 、D 三点共线,可得1μ=1+14λ,利用基本不等式可求λ+1μ的最小值.24.【答案】BCD;【解析】【分析】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键.难度不大.A.向量数量积不满足结合律进行判断;B.判断两个向量是否共线即可;C.结合向量数量积与夹角关系进行判断;D.根据向量线性运算进行判断. 【解答】解:A.向量数量积不满足结合律,故A 错误,B.假设向量a →与b →共线,则存在唯一实数λ,使得a →=λb →, 所以−e 1→+2e 2→=5λe 1→+7λe 2→,即(5λ+1)e 1→+(7λ−2)e 2→=0→, 所以{5λ+1=07λ−2=0,则方程组无解,所以向量a →=−e 1→+2e 2→,b →=5e 1→+7e 2→不共线,能作为所在平面内的一组基底,故B 正确,C.存在负数λ,使得m →=λn →,则m →与n →反向共线,夹角为180∘,此时m →·n →<0成立, 当m →⋅n →<0成立时,则m →与n →夹角满足90∘<θ⩽180∘,则m →与n →不一定反向共线, 即“存在负数λ,使得m →=λn →”是“m →·n →<0”的充分而不必要条件成立,故C 正确,D.由CD →=23CB →得CD →=23AB →−23AC →,则λ=23,μ=−23,则λ+μ=23−23=0,故D 正确.故正确的是BCD , 故选BCD ·25.【答案】ABD; 【解析】此题主要考查了向量共线,垂直,向量的数量积公式的运用;属于中档题.注意:三角形的内角与向量的夹角的关系,由题意,知道 a →=13AB →, b →=BC →,根据已知三角形为等边三角形解之,解:因为已知三角形ABC 的等边三角形,a →,b →满足AB →=3øverrightarrow a , 所以|3øverrightarrow a |=|AB →|=3,所以|a →|=1所以a →为单位向量,故A 正确; 又因为AC →=3øverrightarrow a +b →,又AC →=AB →+BC →=3øverrightarrow a +b →, ∴b →=BC →,故b →,BC →共线,故B 正确所以a →=13AB →,b →=BC →,所以|b →|=3,a →.b →=1×3×cos 120°=−32≠0,故C 错;6øverrightarrow a.b →=6×1×3×cos 120°=−9,b 2→=9,所以6øverrightarrow a ⋅b →+b →2=0,即(4øverrightarrow a +b →).b →=0,即(6øverrightarrow a +b →)⋅BC →=0,所以(6øverrightarrow a +b →)⊥BC →,故D 正确, 故选ABD .26.【答案】BCD; 【解析】此题主要考查向量的线性运算、向量的数量积的运算律、平面向量的基本定理,余弦定理,属于中档题.由重心的性质以及平面向量的基本定理可分析A ,得出E 为边BC 上靠近点B 的三等分点可分析B ,由余弦定理得cosA =−18,结合平面向量的数量积运算可分析C ,先由余弦定理得cos∠ABC =34,通过平面向量的数量积运算以及二次函数的性质,得出EA →·EB →取得最小值时|EB →|的大小,即可求解|EA →|,可分析D.解:设AB 的中点为D ,则GA →+GB →=2GD →,则AG →+BG →=−2GD →=−CG →,故A 不正确; 3AE →=2AB →+AC →,则AE →−AC →=2AB →−2AE →,即CE →=2EB →,E 为边BC 上靠近点B 的三等分点,则△EAC 的面积是△ABC 面积的23,故B 正确;在△ABC 中,由余弦定理得cosA =−18,则AB →·AG →=AB →·13(AB →+AC →)=13(AB →2+AB →·AC →)=13[4+2×2×(−18)]=76,故C 正确;由余弦定理得cos∠ABC =34,所以EA →·EB →=EB →·(EB →+BA →)=EB →2+EB →·BA →=EB →2+|EB →|·|BA →|cos(π−∠ABC)=EB →2−32|EB →|=(|EB →|−34)2−916, 则当|EB →|=34时,EA →·EB →取得最小值−916,此时|EA →|2=4+916−2×2×34×cos∠ABC =3716,|EA →|=√374,故D 正确. 故选BCD.27.【答案】BD;【解析】此题主要考查向量的模、向量数量积的坐标表示等,属于基础题.根据向量的数量积判断C ;根据向量的模判断A ;根据单位向量以及共线向量判断B ;根据向量的模判断D.解:C 选项,因为k <2时,a →.b →=k −2<0,且a →与b →共线时,k =−2, 所以a →与b →的夹角为钝角,故正确;A 选项,|a →|=√k 2+4⩾2,当且仅当k =0时,等号成立,所以|a →|的最小值为2,故正确;B 选项,与b →共线的单位向量还有(−√22,√22),故错误; D 选项,若|a →|=2|b →|,所以√k 2+4=2√2,所以k 2=4,解得k =±2,故错误. 故选BD .28.【答案】AC;【解析】此题主要考查了向量的运算,平面向量的坐标运算,向量平行的性质,属于中档题.利用向量平行得出关于k 的方程,求解k 的值判断A ;利用向量的坐标运算以及求模公式判断B ;利用向量的数量积的运算法则得出c →⊥(a →−b →)或a →=b →判断C ;利用三角形的重心性质结合向量的加法运算判断D.解:A.a →=(92,k),b →=(k,8),若a →//øverrightarrow b ,则92×8−k 2=0,解得k =±6 ,故A 不正确;B.单位向量i →=(1,0),f →=(0,1),则3øverrightarrow i −4øverrightarrow f =(3,−4),则|3øverrightarrow i −4øverrightarrow f|=√32+(−4)2=5,故B 正确;C.若a →⋅c →=b →⋅c →且c →≠0→,则c →.(a →−b →)=0,则c →⊥(a →−b →) 或a →=b →,故C 不正确; D.若点G 为ΔABC 的重心,设D 为AB 中点,由重心的性质得:GC →=−2øverrightarrowGD ,则GA →+GB →=2øverrightarrowGD =2×(−12)GC →=−GC →,则GA →+GB →+GC →=0→,故D 正确. 故选AC .。
⾼三数学⼀轮专题复习----平⾯向量的概念与线性运算(有详细答案)平⾯向量的概念与线性运算1. (必修4P 63练习第1题改编)如图在平⾏四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=________.答案:b -12a解析:BE →=BA →+AD →+12DC →=-a +b +12a =b -12a.2. (必修4P 65例4改编)在△ABC 中,AB →=c ,AC →=b .若点D 满⾜BD →=2DC →,则AD →=________.(⽤b 、c 表⽰)答案:23b +13c解析:因为BD →=2DC →,所以AD →-AB →=2(AC →-AD →),即3AD →=AB →+2AC →=c +2b ,故AD →=23b +13c . 3. (必修4P 63练习第6题改编)设四边形ABCD 中,有12DC →=AB →且|AD →|=||BC →,则这个四边形是________.答案:等腰梯形解析:AB →=12DC →AB →∥DC →,且|AB →|=12|DC →|,∴ ABCD 为梯形.⼜|AD →|=|BC →|,∴四边形ABCD 的形状为等腰梯形.4. (必修4P 66练习第2题改编)设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b .若A 、B 、D 三点共线,则实数p =________.答案:-1解析:∵ BD →=BC →+CD →=2a -b ,⼜A 、B 、D 三点共线,∴存在实数λ,使AB →=λBD →.即?2=2λ,p =-λ,∴ p =-1.1. 向量的有关概念(1) 向量:既有⼤⼩⼜有⽅向的量叫做向量,向量AB →的⼤⼩叫做向量的长度(或模),记作|AB →|.(2) 零向量:长度为0的向量叫做零向量,其⽅向是任意的. (3) 单位向量:长度等于1个单位长度的向量叫做单位向量.(4) 平⾏向量:⽅向相同或相反的⾮零向量叫做平⾏向量.平⾏向量⼜称为共线向量,任⼀组平⾏向量都可以移到同⼀直线上.规定:0与任⼀向量平⾏.(5) 相等向量:长度相等且⽅向相同的向量叫做相等向量.(6) 相反向量:与向量a 长度相等且⽅向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.2. 向量加法与减法运算 (1) 向量的加法①定义:求两个向量和的运算,叫做向量的加法.②法则:三⾓形法则;平⾏四边形法则.③运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法①定义:求两个向量差的运算,叫做向量的减法.②法则:三⾓形法则.3. 向量的数乘运算及其⼏何意义(1) 实数λ与向量a 的积是⼀个向量,记作λa ,它的长度与⽅向规定如下:① |λa |=|λ||a|;②当λ>0时,λa 与a 的⽅向相同;当λ<0时,λa 与a 的⽅向相反;当λ=0时,λa =0.(2) 运算律:设λ、µ∈R ,则:①λ(µa )=(λµ)a ;② (λ+µ)a =λa +µa ;③λ(a +b )=λa +λb .4. 向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有⼀个实数λ,使得b =λa .[备课札记]题型1 平⾯向量的基本概念例1 给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则A 、B 、C 、D 四点构成平⾏四边形;④在ABCD 中,⼀定有AB →=DC →;⑤若m =n ,n =p ,则m =p ;⑥若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不⼀定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b ⽅向不确定,所以a 、b 不⼀定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在⼀条直线上的情况,所以③不正确;零向量与任⼀向量平⾏,故a ∥b ,b ∥c 时,若b =0,则a 与c 不⼀定平⾏,故⑥不正确.备选变式(教师专享)设a 0为单位向量,①若a 为平⾯内的某个向量,则a =|a |·a 0;②若a 与a 0平⾏,则a =|a |·a 0;③若a 与a 0平⾏且|a |=1,则a =a 0.上述命题中,假命题个数是________.答案:3解析:向量是既有⼤⼩⼜有⽅向的量,a 与|a |a 0模相同,但⽅向不⼀定相同,故①是假命题;若a 与a 0平⾏,则a 与a 0⽅向有两种情况:⼀是同向,⼆是反向,反向时a =-|a |a 0,故②、③也是假命题,填3.题型2 向量的线性表⽰例2 平⾏四边形OADB 的对⾓线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,⽤a 、b 表⽰OM →、ON →、MN →.解:BA →=a -b ,BM →=16BA →=16a -16b ,OM →=OB →+BM →=16a +56b .OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b .MN →=ON →-OM →=12a -16b .变式训练在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试⽤a ,b 表⽰AG →.解:AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b . ⼜AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m)AC →+m 2AB →=m2a +(1-m)b ,∴ 1-λ=m2,1-m =λ2,解得λ=m =23,∴ AG →=13a +13b .题型3 共线向量例3 设两个⾮零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线.(1) 证明:∵ AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴ BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴ AB →,BD →共线.⼜它们有公共点B ,∴ A 、B 、D 三点共线. (2) 解:∵ k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .⼜a 、b 是两不共线的⾮零向量,∴ k -λ=λk -1=0. ∴ k 2-1=0.∴ k =±1. 备选变式(教师专享)已知a 、b 是不共线的向量,AB →=λa +b ,AC →=a +µb (λ、µ∈R ),当A 、B 、C 三点共线时λ、µ满⾜的条件为________.答案:λµ=1解析:由AB →=λa +b ,AC →=a +µb (λ、µ∈R )及A 、B 、C 三点共线得AB →=tAC →,所以λa+b =t(a +µb )=t a +tµb ,即可得?λ=t ,1=tµ,所以λµ=1.题型4 向量共线的应⽤例4 如图所⽰,设O 是△ABC 内部⼀点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的⾯积之⽐为________.答案:12解析:如图所⽰,设M 是AC 的中点,则 OA →+OC →=2OM →. ⼜OA →+OC →=-2OB →,∴ OM →=-OB →,即O 是BM 的中点,∴ S △AOB =S △AOM =12S △AOC ,即S △AOB S △AOC =12. 备选变式(教师专享)如图,△ABC 中,在AC 上取⼀点N ,使AN =13AC ;在AB 上取⼀点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+CN →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,⼜∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.1. 如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________.(⽤向量a 和b 表⽰)答案:23a +13b解析:因为AC →=AD →+DC →=AD →+12AB →=a +12b ,⼜AB →=2DC →,所以AO →=23AC →=23a +12b =23a +13b . 2. (2013·四川)如图,在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:AB →+AD →=AC →=2AO →,则λ=2.3. (2013·江苏)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23DC ,若DE →=λ1AB →+λ2AC →(λ1、λ2为实数),则λ1+λ2=________.答案:12解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →=λ1AB →+λ2AC →,故λ1=-16,λ2=23,则λ1+λ2=12.4. 已知点P 在△ABC 所在的平⾯内,若2PA →+3PB →+4PC →=3AB →,则△PAB 与△PBC 的⾯积的⽐值为__________.答案:45解析:由2PA →+3PB →+4PC →=3AB →,得2PA →+4PC →=3AB →+3BP →,∴ 2PA →+4PC →=3AP →,即4PC →=5AP →.∴ |AP →||PC →|=45,S △PAB S △PBC =|AP →||PC →|=45.1. 在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:因为四边形ABCD 为平⾏四边形,对⾓线AC 与BD 交于点O ,所以AB →+AD →=AC →,⼜O 为AC 的中点,所以AC →=2AO →,所以AB →+AD →=2AO →,因为AB →+AD →=λAO →,所以λ=2.2. 已知平⾯内O ,A ,B ,C 四点,其中A ,B ,C 三点共线,且OC →=xOA →+yOB →,则x +y =________.答案:1解析:∵ A ,B ,C 三点共线,∴ AC →=λAB →,即OC →-OA →=λOB →-λOA →,∴ OC →=(1-λ)OA →+λOB →,即x =1-λ,y =λ,∴ x +y =1.3. 设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.答案:12解析:易知DE =12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.4. 已知点G 是△ABO 的重⼼,M 是AB 边的中点. (1) 求GA →+GB →+GO →;(2) 若PQ 过△ABO 的重⼼G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n =3.(1) 解:因为GA →+GB →=2GM →,⼜2GM →=-GO →,所以GA →+GB →+GO →=-GO →+GO →=0. (2) 证明:因为OM →=12(a +b ),且G 是△ABO 的重⼼,所以OG →=23OM →=13(a +b ).由P 、G 、Q 三点共线,得PG →∥GQ →,所以有且只有⼀个实数λ,使PG →=λGQ →.⼜PG →=OG →-OP →=13(a+b )-m a =13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +n -13b ,所以13-m a +13b =λ-13a +n -13b . ⼜a 、b 不共线,所以?13-m =-13λ,13=λn -13,消去λ,整理得3mn =m +n ,故1m +1n=3.1. 解决与平⾯向量的概念有关的命题真假的判定问题,其关键在于透彻理解平⾯向量的概念,还应注意零向量的特殊性,以及两个向量相等必须满⾜:①模相等;②⽅向相同.2. 在进⾏向量线性运算时要尽可能转化到平⾏四边形或三⾓形中,运⽤平⾏四边形法则、三⾓形法则,利⽤三⾓形中位线,相似三⾓形对应边成⽐例得平⾯⼏何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3. 平⾏向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利⽤两向量共线证明三点共线要强调有⼀个公共点.。
向量的线性运算难题汇编附答案解析一、选择题1.若2a b c +=r r ,3a b c -=r r ,而且c r ≠0,a r 与r b 是( )A .a r 与r b 是相等向量B .a r 与r b 是平行向量C .a r 与r b 方向相同,长度不等D .a r 与r b 方向相反,长度相等【答案】B 【解析】 【分析】根据已知条件求得52a c =r r ,1b 2c =-r r,由此确定a r 与b r 位置和数量关系.【详解】解:由2a b c +=r r ,3a b c -=r r ,而且c r ≠0,得到:52a c =r r ,1b 2c =-r r ,所以a r 与b r 方向相反,且|a r|=5|b r |.观察选项,只有选项B 符合题意. 故选:B . 【点睛】本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握.2.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.3.已知a r 、b r 和c r 都是非零向量,在下列选项中,不能判定//a b r r 的是( )A .2a b =r rB .//a c r r ,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意; C 选项:由||||a b =rr,不可以推出//a b rr.本选项符合题意; D 选项:由12a c =r r ,2bc =r r ,可以推出//a b r r .本选项不符合题意; 故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.4.下列说法正确的是( ). A .一个向量与零相乘,乘积为零 B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 【答案】D 【解析】 【分析】根据平面向量的定义和性质进行判断. 【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误; B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确. 故答案是:D. 【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.5.给出下列3个命题,其中真命题的个数是( ).①单位向量都相等;②单位向量都平行;③平行的单位向量必相等. A .1个 B .2个C .3个D .0个【答案】D 【解析】 【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可. 【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误; ③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误. 故选D. 【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.6.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r,正确; ③若ma mb =rr(m 是实数)时,则有a b =rr,错误,当m=0时不成立; ④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n =,正确; 故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.7.下列式子中错误的是( ).A .2a a a +=r r rB .()0a a +-=r r rC .()a b a b -+=--r r r rD .a b b a -=-r r r r【答案】D 【解析】 【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D. 【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.8.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r r D .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r=2c b rr,=3c r,∴a b P u u r r,故本选项,不符合题意; C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.11.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v=-12b v,故本选项不符合题意. 故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.12.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u r AE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.13.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C 【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 . A. AB CD =-u u u r u u u r,故该选项错误;B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C . 【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.14.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意. B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.15.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u rB .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u r u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.16.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.17.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故选:B .【点睛】本题考查了向量的性质.18.已知非零向量a r 、b r 和c r,下列条件中,不能判定a b r r P 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rr D .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r 不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.设,m n 为实数,那么下列结论中错误的是( ) A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)=D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.。
专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。
平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2-2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.题型二 平面向量的坐标运算例2 (1)(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .变式训练2 (1)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________.高考题型精练1.(2015·四川)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.62.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1D.(4a +b )⊥BC →3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC→= λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.234.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( )A.BC →B.12AD →C.AD →D.12BC →6.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=437.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______.9.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 10.(2014·陕西)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.11.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设 DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),BO →=k 2BF →=k 2(AF →-AB →)=k 2(12b -a )=-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a +(-12k 1a +k 1b )=-12(1+k 1)a +k 1b ,②由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎨⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0⇒⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 点评 平面向量的线性运算应注意三点: (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2-2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________. 答案 (1)A (2)45解析 根据向量的基本定理可得 AD →=AC →+CD →=AC →+(ED →-EC →) =AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝⎛⎭⎫1+22·AC →+22AB →.所以λ=22,k =1+22. 所以λ+k =1+ 2.故选A. (2)依题意得AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →, AN →=AB →+BN →=AB →+12BC →;又AB →=λAM →+μAN →,于是有AB →=λ⎝⎛⎭⎫34AB →+BC →+μ⎝⎛⎭⎫AB →+12BC → =⎝⎛⎭⎫34λ+μ·AB →+⎝⎛⎭⎫λ+μ2BC →; 又AB →与BC →不共线,因此有⎩⎨⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.题型二 平面向量的坐标运算例2 (1)(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 答案 -3解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎨⎧m =59,n =89.②a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 解得⎩⎪⎨⎪⎧ x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3). 点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)7+1 (2)m ≠12解析 (1)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ), 所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线, 而当AB →与BC →共线时,有3-m -1=1-m,解得m =12,故当点A 、B 、C 能构成三角形时实数m 满足的条件是m ≠12.高考题型精练1.(2015·四川)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 a =(2,4),b =(x,6),∵a ∥b ,∴4x -2×6=0, ∴x =3.2.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a·b =|a||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC→= λOA →+OB →(λ∈R ),则λ的值为( )A.1B.13C.12D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →, 所以(-2,0)=λ(-3,0),故λ=23.4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( )A.BC →B.12AD →C.AD →D.12BC →答案 C解析 如图,EB →+FC →=EC →+CB →+FB →+BC → =EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知 4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=43答案 C解析 设与OA →,OB →同方向的单位向量分别为a ,b , 依题意有OC →=4a +2b ,又OA →=2a ,OB →=32b ,则OC →=2OA →+43OB →,所以λ=2,μ=43.7.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系(图略),则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______. 答案 1解析 由题意知OA →=(-3,0),OB →=(0,3),则OC →=(-3λ,3),由∠AOC =30°知以x 轴的非负半轴为始边,OC 为终边的一个角为150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1. 9.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 答案 5解析 ∵λa +b =0,∴λa =-b ,∴|λa |=|-b |=|b |=22+12=5,∴|λ|·|a |= 5.又|a |=1,∴|λ|= 5.10.(2014·陕西)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12解析 因为a ∥b ,所以sin 2θ=cos 2θ,2sin θcos θ=cos 2θ.因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12. 11.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →, ∴x =12,y =-16. 12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时, 有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴不论t 2为何实数,A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离 d =|-a 2-a 2+2|2=2|a 2-1|. ∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2,故所求a 的值为±2.。