j
X (s) etestdt e2testdt
0
0
1
etu(t) 1 , s 1
Re[s] 1
e2tu(t) 1 , Re[s] 2 2 s2
j
12
j
X (s)
1 s 1
1 s2
2s 3 s2 3s 2 ,
Re[s] 1
2 1
思考:
的收敛域?
x(t) e2tu(t) et cos(3t)u(t)
sb
b
ebtu(t) 1 , Re[s] b sb
b 0 当 时,上述ROC有公共部分,
j b
X (s) 1 1 sb sb
当 时,上述 ROC 无公共部分,表明
b0
b Re[s] b
不存在。
X (s)
20
当 是有理函数时,其ROC总是由
列规X律(:s)
的极点分割的。XRO(Cs必) 然满足下
1 , ROC : Re[s] 1 etu(t) s 1
1 , ROC : Re[s] 2 e2tu(t) s2
j
x(t) etu(t) e2tu(t)
2 1
双边信号
30 例2. (1)找极点 (2)展开成部分分式 系数 则
31
2、 X 有(s共) 轭复数极点
N (s)
(s p1)(s p2 ) (s pn2 )(s P1)(s P2 )
傅里叶变换是以复指数函数的特例
和
的复指数函数 和
为基底,也能对信号进行分解。
为基底分解信号的。以一般
e jt
e jn
est z n
本章及下一章要讨论的中心问题
3 以一般的复指数函数为基底对信号进行分解