排队模型分析
- 格式:ppt
- 大小:401.00 KB
- 文档页数:10
排队模型一 1. 一般的排队过程为:顾客由顾客源出发,到达服务机构(服务台、服务员)前,按排队规则排队等待接受服务,服务机构按服务规则给顾客服务,顾客接受完服务后就离开。
排队过程的一般过程可用下图表示。
我们所说的排队系统就是指图中方框所包括的部分:在现实生活中的排队现象是多种多样的,对上面所说的“顾客”和“服务员”要作广泛的理解。
它们可以是人,也可以是某种物质或设备。
排队可以是有形的,也可以是无形的。
尽管排队系统是多种多样的,但从决定排队系统进程的因素来看,它有三个基本的组成部分,这就是输入过程、排队规则及服务机构.1)输入过程:描述顾客来源以及顾客到达排队系统的规律。
包括:顾客源中顾客的数量是有限还是无限;顾客到达的方式是单个到达还是成批到达;顾客相继到达的间隔时间分布是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。
2)排队规则:描述顾客排队等待的队列和接受服务的次序。
包括:即时制还是等待制;等待制下队列的情况(是单列还是多列,顾客能不能中途退出,多列时各列间的顾客能不能相互转移);等待制下顾客接受服务的次序(先到先服务,后到先服务,随机服务,有优先权的服务)。
3)服务机构:描述服务台(员)的机构形式和工作情况。
包括:服务台(员)的数目和排列情况;服务台(员)的服务方式;服务时间是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。
2.到达和服务过程的模型2.1 到达过程的模型用表示第i 个顾客到达的时间,.i t 称为第i 个到达时间间隔.1i i T t t +=−i 我们用的特征来刻画顾客到达过程. 最常见的情况是独立同分布. 用X 表示这样的随机变量.12,,T T 12,,T T 如果X 服从参数为λ的指数分布.这时1()()i E T E X λ==即平均每隔1λ来一个顾客.换句话说,单位时间理平均有λ个顾客到来.称λ为到达速率. 用表示到时刻t 为止到达的顾客总数,则在上面的假设下()N t ()()N t P t λ∼.除了指数分布外,常用的还有爱尔朗分布,其密度函数为1()(), 0.(1)!k RxR Rx e f x x k −−=≥− 这时2(), ()i i k k E T D T R R==. k 叫形状参数, R 叫速率参数.当取λ使得R k λ=, 则爱尔朗分布可以看成是k 个独立的服从参数为λ的指数分布随机变量的和的分布.2.2服务过程的模型一般总是认为不同顾客接受服务占用的时间长短是相互独立的. 用Y表示一个客户接受服务的时间长短, 它是一个随机变量.若Y的分布是参数为μ的指数分布, 意味着一个顾客的服务时间平均为1μ. 单位时间里可以完成的平均顾客数为μ.若Y服从形状参数为k, 速率参数为R kμ=的爱尔朗分布, 则平均服务时间为1μ, 根据爱尔朗分布的性质, 可以将Y看作是k个相继子服务的总时间, 每个子服务都服从参数为1kμ的指数分布且相互独立.在排队论中,我们常用如下字母表示特定的到达时间间隔或服务时间分布:M: i.i.d. 指数分布D: i.i.d. 的确定分布E k: i.i.d. 的形参为k的爱尔朗分布GI: 到达时间间隔是i.i.d. 的某种一般分布G: 服务时间是i.i.d. 的某种一般分布在处理实际排队系统时,需要把有关的原始资料进行统计,确定顾客到达间隔和服务时间的经验分布,然后按照统计学的方法确定符合哪种理论分布。
第1篇一、实验背景排队论是运筹学的一个重要分支,主要研究在服务系统中顾客的等待时间和服务效率等问题。
在现实生活中,排队现象无处不在,如银行、医院、超市、餐厅等。
通过对排队问题的研究,可以帮助我们优化服务系统,提高顾客满意度,降低运营成本。
本实验旨在通过模拟排队系统,探究排队论在实际问题中的应用。
二、实验目的1. 理解排队论的基本概念和原理。
2. 掌握排队模型的建立方法。
3. 熟悉排队系统参数的估计和调整。
4. 分析排队系统的性能指标,如平均等待时间、服务效率等。
5. 培养运用排队论解决实际问题的能力。
三、实验内容1. 建立排队模型本实验以银行排队系统为例,建立M/M/1排队模型。
该模型假设顾客到达服从泊松分布,服务时间服从负指数分布,服务台数量为1。
2. 参数估计根据实际数据,估计排队系统参数。
假设顾客到达率为λ=2(人/分钟),服务时间为μ=5(分钟/人)。
3. 模拟排队系统使用计算机模拟排队系统,记录顾客到达、等待、服务、离开等过程。
4. 性能分析分析排队系统的性能指标,如平均等待时间、服务效率、顾客满意度等。
四、实验步骤1. 初始化参数设置顾客到达率λ、服务时间μ、服务台数量n。
2. 生成顾客到达序列根据泊松分布生成顾客到达序列。
3. 模拟排队过程(1)当服务台空闲时,允许顾客进入队列。
(2)当顾客进入队列后,开始计时,等待服务。
(3)当服务台服务完毕,顾客离开,开始下一个顾客的服务。
4. 统计性能指标记录顾客等待时间、服务时间、顾客满意度等数据。
5. 分析结果根据实验数据,分析排队系统的性能,并提出优化建议。
五、实验结果与分析1. 平均等待时间根据模拟结果,平均等待时间为2.5分钟。
2. 服务效率服务效率为80%,即每分钟处理0.8个顾客。
3. 顾客满意度根据模拟结果,顾客满意度为85%。
4. 优化建议(1)增加服务台数量,提高服务效率。
(2)优化顾客到达率,降低顾客等待时间。
(3)调整服务时间,缩短顾客等待时间。
M M C ∞排队系统模型及其应用实例分析摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。
在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。
关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解1M/M/C/∞排队系统1.1排队论的概念及排队系统的组成上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。
排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。
研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。
目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。
任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。
①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。
②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。
③服务机构描述服务台数目及服务规律。
服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。
1.2M/M/C/∞排队模型①排队系统模型的表示。
目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。
他用3个字母组成的符号A/B/C表示排队系统。
为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。
其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。
②排队系统的衡量指标。
一个典型的通信网络8泊松分布过程的一个例子。
10111522 237、局部平衡与时间可逆性30312、Jackson网络-独立性假设几点独立性假设9相互独立的外部到达、泊松过程9相互独立的服务时间、负指数分布•同一个顾客在不同的排队节点遵循相互独立、且有可能不同参数的负指数分布。
9相互独立的路由策略•在某一节点接受完服务后独立地决定下一节点的路由、或者退出该排队网络。
322、Jackson网络-稳态概率()()()111212,,,,mi i j jij m m i r P I Q r r r λλλγλλλγ−=+Λ−Λ∑L L =对于节点,顾客到达率如下:用矩阵形式可以表示为:=其中:==33111212122212m m m mm m P P P P P P QPP P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠L L M M M M L Q矩阵的性质9对于开环网络来说,至少存在一个节点i有ri>0或者mij 1P 0>∑j=0-343、Jackson定理Jackson 定理9对于一个平稳状态的Jackson网络,在任一节点内的顾客数与其它节点的存在的顾客数无关。
9队长的概率分布Pn=P(n1,n2,…n m )等于每个单个节点队列长度概率分布的积。
353、Jackson定理()()()()()()()121122001100,,,!!!!iii i i i i i mm mn ii i i i i sn s i i i i n s s i i in i i i i ii i iP n n n p n p n p n ap n s n p n a p n s s a a s p n s s a s i a ρλµ−−−==⋅⎧≤⎪⎪=⎨⎪>⎪⎩⎛⎞=+⋅⎜⎟−⎝⎠=∑L L ,,为第个排队节点的服务者数,363、杰克逊网络通信量方程解)非奇异性,存在唯一()=-(则=令稳态总体流量:通信量方程:Q -I Q I }{},{11γλλλλγλγλij i Mi i j Mi jij i i q Q q q ==+=∑∑==iiλiγiq 11λMiM q λ38399虽然外部顾客以泊松过程到达节点i,但实际到达于第i个节点的顾客为非泊松分布过程。
排队论模型1. 引言排队论是运筹学中的一个重要分支,研究的是排队系统中顾客的到达、等待和服务过程。
在现实生活中,我们经常会遇到排队的场景,如银行、超市、医院等。
通过排队论模型的分析,可以帮助我们优化服务过程,提高效率和顾客满意度。
本文将介绍排队论模型的基本概念和常用模型。
2. 基本概念2.1 排队系统排队系统是指顾客到达一个系统,并等待被服务的过程。
一个排队系统通常包含以下几个要素:•到达过程:顾客到达系统的时间间隔可以是随机的,也可以是确定的。
•排队规则:系统中的顾客通常按照先来先服务原则排队。
•服务过程:系统中的服务员或服务设备为顾客提供服务,服务时间也可以是随机的或确定的。
•系统容量:排队系统中通常有一定的容量限制,即同时能够容纳的顾客数量。
2.2 基本符号在排队论中,通常使用以下符号来表示不同的概念:•λ:到达率,表示单位时间内系统的平均到达顾客数量。
•μ:服务率,表示单位时间内系统的平均服务顾客数量。
•ρ:系统利用率,表示系统的繁忙程度,计算公式为ρ = λ / μ。
•L:系统中平均顾客数,包括正在排队等待服务的顾客和正在接受服务的顾客。
•Lq:系统中平均等待队列长度,即正在排队等待服务的顾客数。
•W:系统中平均顾客逗留时间,包括等待时间和服务时间。
•Wq:系统中平均顾客等待时间,即顾客在排队等待服务的平均时间。
3. 常用模型3.1 M/M/1模型M/M/1模型是排队论中最简单的模型之一,其中M表示指数分布。
M/M/1模型满足以下几个假设:•顾客到达率λ满足均值为λ的指数分布。
•服务率μ满足均值为μ的指数分布。
M/M/1模型的特点是顾客到达率和服务率是独立的,且符合指数分布。
根据排队论的理论分析,可以计算出系统的性能指标,如系统利用率、平均顾客数、平均等待队列长度等。
3.2 M/M/c模型M/M/c模型是M/M/1模型的扩展,其中c表示服务员的数量。
M/M/c模型满足以下假设:•顾客到达率λ满足均值为λ的指数分布。