机器人原理及其控制(精品课程)-力控与顺应控制
- 格式:ppt
- 大小:549.50 KB
- 文档页数:35
机器人的动态控制和力控制技术是如何实现的机器人的动态控制和力控制技术是机器人控制领域的重要研究方向。
它们被广泛应用于机器人的各个领域,如工业制造、医疗机器人、服务机器人等。
动态控制技术主要用于机器人的运动控制和运动规划,力控制技术主要用于机器人的力触觉和力操作。
本文将详细介绍机器人的动态控制和力控制技术的实现方法和应用。
一、机器人的动态控制技术机器人的动态控制技术主要用于机器人的运动控制和运动规划。
它可以使机器人具备稳定、精确和灵活的运动能力,从而能够应对不同的工作任务和环境。
1. 运动学建模运动学建模是机器人动态控制的基础。
通过对机器人的机械结构进行建模,可以得到机器人的运动学特性,如位置、速度、加速度等。
常用的运动学建模方法包括正运动学和逆运动学。
正运动学是根据机器人的关节角度求解机器人的末端执行器的位置和姿态。
它是机器人运动学的正向问题,可以通过求解关节角度和关节运动学方程来得到机器人末端执行器的位置和姿态。
逆运动学是根据机器人的末端执行器的位置和姿态求解机器人的关节角度。
逆运动学是机器人运动学的逆向问题,可以通过求解逆运动学方程来得到机器人的关节角度。
2. 动力学建模动力学建模是机器人动态控制的另一个重要方向。
通过对机器人动力学特性的建模,可以得到机器人的动力学特性,如惯性矩阵、回弹力矩等。
常用的动力学建模方法包括拉格朗日方法和牛顿-欧拉方法。
拉格朗日方法是一种基于能量原理的动力学建模方法。
它通过建立机器人的拉格朗日方程,利用拉格朗日方程来描述机器人的动力学特性。
牛顿-欧拉方法是一种基于牛顿定律和欧拉方程的动力学建模方法。
它通过建立机器人的质量、惯性和力矩之间的关系,利用牛顿定律和欧拉方程来描述机器人的动力学特性。
3. 运动控制运动控制是机器人动态控制的核心技术之一。
它主要包括速度控制、位置控制和姿态控制。
速度控制是通过控制机器人的关节角速度来实现机器人的运动控制。
常用的速度控制方法包括PID控制和模型预测控制。
第七章 机器人的控制(2)——力控制7.1 引言位姿控制方法适用于材料搬运、焊接、喷漆等机器人与工作空间中的物体(下文称作环境)没有交互作用的任务。
但对于装配、打磨、去毛刺和擦窗这些任务,机器人的末端工具需要与被操作对象(环境)保持接触,并通过相互之间的力的作用完成作业,对于这些任务,需要控制机器人与环境间的作用力。
以机器人擦窗的任务为例,仅采用位姿控制是不够的,机器人末端轨迹与规划轨迹的微小偏差会使机器人要么与作用表面脱离接触,要么对作用表面产生过大的压力。
对于机器人这种高度刚性的结构,微小的位置偏差将会产生相当大的作用力,导致严重的结果(如损坏玻璃等)。
以上这些任务的共同点是,它们不仅要求轨迹控制,还要求力控制。
以机器人用粉笔在黑板上写字为例,在垂直于黑板方向需要控制力以保持粉笔和黑板间良好的接触,在沿黑板平面内需要精确的位姿控制,以保证正确的书写;或者通过控制机械手末端的刚性,使它沿黑板平面的方向很“硬”,在垂直于黑板的方向很“软”。
能够实现以上要求的控制称为柔顺控制,柔顺控制主要关心的是机器人与周围环境接触时的控制问题。
显然,柔顺控制需要力反馈,用于力反馈的力传感器主要有三类:腕力传感器、关节力矩传感器、和触觉传感器。
关于力传感器将在后续章节中介绍。
7.1.1 外力/力矩与广义力的关系图7.1 典型的腕力传感器及其在机械手中的位置机器人与环境间的交互作用将产生作用于机器人末端手爪或工具的力和力矩。
用T z y x z y x n n n F F F ],,,,,[=F 表示机器人末端受到的外力和外力矩向量(在工具空间的表示)。
设驱动装置对各关节施加的关节力矩是τ,广义力可以通过计算这些力所做的虚功来得到。
设X δ为末端虚位移,θδ为关节虚位移,满足θθJ X δδ)(= (7.1.1)产生的虚功为θτX F δδδT T w += (7.1.2)将式(7.1.1)代入式(7.1.2)得θτJ F δδ)(T T w += (7.1.3)因此在外力F 的作用下,广义坐标θ对应的广义力可表示为F J τT + (7.1.4)7.1.2 奇异问题在奇异位形(如图7.2所示),雅可比矩阵)(θJ T 的零空间非空,在该零空间的向量F 对关节不产生任何力的作用。
工业机器人控制系统20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。
具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。
同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。
目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。
形成了机器人的生产线。
特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。
特别是控制系统已从模拟式的控制进入了全数字式的控制。
90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。
而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。
一、控制系统基本原理及分类工业机器人的控制器在要求完成特定作业时,需要做下述几件事:示教:通过计算机来接受机器人将要去完成什么作业。
也就是给机器人的作业命令,这个命令实质上是人发出的。
计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个策略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制的策略。
同时计算机还要担负起对整个机器人系统的管理,采集并处理各种信息。
因此,这一部分是非常重要的核心部分。
伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高速、高精度运动,去完成指定的作业。
反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机,使控制计算机实时监控整个系统的运行情况,及时做出各种决策。
图1 机器人控制基本原理图控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。