北师大版数学八年级下册《因式分解》因式分解
- 格式:pptx
- 大小:540.03 KB
- 文档页数:16
2023年北师大版数学八年级下册《因式分解计算题》专项练习一、选择题1.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.502.因式分解x2-9y2的正确结果是( )A.(x+9y)(x-9y)B.(x+3y)(x-3y)C.(x-3y)2D.(x-9y)23.若a+b=3,a-b=7,则b2-a2的值为( )A.-21B.21C.-10D.104.下列各式中不能用完全平方公式因式分解的是( )A.-x2+2xy-y2B.x4-2x3y+x2y2C.(x2-3)2-2(3-x2)+1D.x2-xy+12y25.把多项式2x2-8x+8因式分解,结果正确的是( )A.(2x-4)2B.2(x-4)2C.2(x-2)2D.2(x+2)26.计算:101×1022﹣101×982=( )A.404B.808C.40400D.808007.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣38.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a、b、c均为整数,则a+b+c=( )A.﹣12B.﹣32C.38D.729.若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值( )A.一定为正数B.一定为负数C.可能是正数,也可能是负数D.可能为010.若m2+m-1=0,则m3+2m2+2026的值为( )A.2028B.2027C.2026D.202511.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?( )A.2x+19B.2x﹣19C.2x+15D.2x﹣1512. (-8)2 020+(-8)2 019能被下列数整除的是( )A.3B.5C.7D.9二、填空题13.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是 解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.14.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.15.已知a2+b2=13,ab=6,则a4-2a2b2+b4= .16.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是_________.17.已知x=1,y=-2是方程mx+ny=4的解,则m2﹣4mn+4n2的值为.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).三、解答题19.因式分解:3x2﹣12xy+12y2;20.因式分解:4a2﹣3b(4a﹣3b);21.因式分解:2x3(a-1)+8x(1-a).22.因式分解:-4x3y+16x2y2-16xy3.23.已知x2+3x-1=0,先化简,再求值:4x(x+2)+(x-1)2-3(x2-1).24.已知x-y=2,y-z=2,x+z=4,求x2-z2的值.25.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2﹣2ab+b2﹣4a+4b+4=0,求a,b的值.26.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1 224,47×43=2 021,…(1)认真观察,分析上述各式中两因数的个位数字、十位数字分别有什么联系,找出因数与积之间的规律,并用字母表示出来;(2)验证你得到的规律.27.阅读理解:对于二次三项式x2+2ax+a2,能直接用公式法进行因式分解,得到x2+2ax+a2=(x+a)2,但对于二次三项式x2+2ax﹣8a2,就不能直接用公式法了.我们可以采用这样的方法:在二次三项式x2+2ax﹣8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是:x2+2ax﹣8a2=x2+2ax﹣8a2+a2﹣a2=x2+2ax+a2﹣8a2﹣a2=(x2+2ax+a2)﹣(8a2+a2)=(x+a)2﹣9a2=(x+a+3a)(x+a﹣3a)=(x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.问题解决:请用上述方法将二次三项式x2+2ax﹣3a2分解因式.拓展应用:二次三项式x2﹣4x+5有最小值或是最大值吗?如果有,请你求出来并说明理由.答案1.A2.B3.A4.D5.C6.D7.B8.A9.B10.B11.A12.C13.答案为:C.14.答案为:15.15.答案为:2516.答案为:2m+317.答案为:1618.答案为:273024或27243019.解:原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;20.解:原式=4a2﹣12ab+9b2=(2a﹣3b)2.21.解:原式=2x(a-1)(x-2)(x+2).22.解:原式=-4xy(x-2y)2.23.解:原式=6.24.解:由x-y=2,y-z=2,得x-z=4.又∵x+z=4,∴原式=(x+z)(x-z)=16.25.解∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组a+b=10,a-b-2=0,解得a=6,b=4.26.解:(1)上述等式的规律是:两因数的十位数字相等,个位数字相加等于10,而积后两位是两因数个位数字相乘、前两位是十位数字相乘,乘积再加上这个十位数字之和;如果用m表示十位数字,n表示个位数字的话,则第一个因数为10m+n,第二个因数为10m+(10-n),积为100m(m+1)+n(10-n);表示出来为:(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n);(2)∵左边=(10m+n)(10m-n+10)=(10m+n)[10(m+1)-n]=100m(m+1)-10mn+10n(m+1)-n2=100m(m+1)-10mn+10mn+10n-n2=100m(m+1)+n(10-n)=右边,∴(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n),成立.27.解:(1)x2+2ax﹣3a2=x2+2ax﹣3a2+a2﹣a2=x2+2ax+a2﹣3a2﹣a2,=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)有最小值,x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,∵(x﹣2)2≥0,∴(x﹣2)2+1≥1,∴最小值为1.。
第四章因式分解1.因式分解总体说明因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.一、学生知识状况分析学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.二、教学任务分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。
因此,本课时的教学目标是:知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念.(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法.数学能力:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想.(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力.(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力.情感与态度:让学生初步感受对立统一的辨证观点以及实事求是的科学态度.三、教学过程分析本节课设计了六个教学环节:看谁算得快——看谁想得快——看谁算得准——学生讨论——反馈练习——学生反思.第一环节 看谁算得快活动内容:用简便方法计算:(1)2976971397⨯+⨯-⨯= (2)-2.67×132+25×2.67+7×2.67=(3)992–1= .活动目的:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式.第二环节 看谁想得快活动内容:993–99能被哪些数整除?你是怎么得出来的?学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?活动目的:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备.注意事项:由于有了第一环节的铺垫,学生对于本环节问题的理解则显得比较轻松,学生能回答出993–99能被100、99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式.第三环节看谁算得准活动内容:计算下列式子:(1)3x(x-1)= ;(2)m(a+b+c)= ;(3)(m+4)(m-4)= ;(4)(y-3)2= ;(5)a(a+1)(a-1)= .根据上面的算式填空:(1)ma+mb+mc= ;(2)3x2-3x= ;(3)m2-16= ;(4)a3-a= ;(5)y2-6y+9= .活动目的:在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.注意事项:由于整式的乘法运算是学生在七年级已经学习过的内容,因此,学生能很快得出第一组式子的结果,并能很快发现第一组式子与第二组式子之间的联系,从而得出第二组式子的结果.第四环节学生讨论活动内容:比较以下两种运算的联系与区别:(1)a(a+1)(a-1)= a3-a(2)a3-a= a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.辨一辨:下列变形是因式分解吗?为什么?(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2活动目的:通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止.注意事项:学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成.第五环节反馈练习活动内容:1、看谁连得准x2-y2. (x+1)29-25 x 2y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2(x+y)(x-y)2、下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)活动目的:通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏.注意事项:从学生的反馈情况来看,学生对因式分解意义的理解基本到位.第六环节学生反思活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?活动目的:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的观点有一个初步认识.注意事项:从学生的反思来看,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认识.巩固练习:课本第94页习题4.1第1,2,3题思考题:课本第94页习题4.1第5题(给学有余力的同学做)。
北师大八年级数学下册教案:第4章因式分解4.1因式分解1.理解并掌握因式分解的概念;2.理解因式分解与整式乘法之间的关系,并能够运用其解决问题.(难点)一、情境导入某中学决定购买m台电脑和m套桌椅,现在知道每台电脑的单价是a元,每套桌椅的价格是b元,小明说:“总共需要(ma+mb)元.”小华说:“总共需要m(a+b)元.”同学们,你们觉得他们计算出的总金额一样吗?二、合作探究探究点一:因式分解的概念下列从左到右的变形中是因式分解的有()①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).A.1个B.2个C.3个D.4个解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③是整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选B.方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.探究点二:因式分解与整式乘法的关系及简单应用已知三次四项式2x3-5x2-6x+k分解因式后有一个因式是x-3,试求k的值及另一个因式.解析:此题可设此三次四项式的另一个因式为(2x2-mx-k3),将两因式的乘积展开与原三次四项式比较就可求出k的值.解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.4.2提公因式法第1课时直接提公因式因式分解1.理解公因式的概念,能熟练确定多项式各项的公因式;2.掌握用直接提公因式法分解因式的基本方法.(重点)一、情境导入小华家买了一套新房,装修时打算在三室两厅的地面上贴相同规格的地板砖,为此小华的父亲要求小华测算出三室两厅的地面总面积.小华发现三室两厅的地面宽度相同,都是a 米,大厅长度为c米,三室长度均为d米,其中a=3.6,b=5.6,c=2.8,d=4.2,那么怎样计算总面积比较简便呢?二、合作探究探究点一:确定公因式多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abc B.3a2b2C.3a2b2c D.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,可知公因式为3ab.故选D.方法总结:确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.探究点二:用提公因式法进行因式分解(一)【类型一】用提公因式法因式分解因式分解:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解析:将原式各项提取公因式即可得到结果.解:(1)原式=4ab2(2a2+3bc);(2)原式=(2a-3)(b+c);(3)原式=(a+b)(a-b-1).方法总结:提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【类型二】用因式分解简化运算计算:(1)39×37-13×91;(2)29×20.15+72×20.15+13×20.15-20.15×14.解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.第2课时变形后提公因式因式分解1.进一步理解因式分解的意义和公因式的意义;2.熟练运用提公因式法分解因式.(重点)一、情境导入下面的多项式有公因式吗?如果有,怎样因式分解呢?(1)a(2-x)+b(2-x)-c(x-2);(2)a(m-n)2+b(n-m)2;(3)a(a-b)3-(b-a)3.二、合作探究探究点:用提公因式法进行因式分解(二)【类型一】利用因式分解整体代换求值已知a+b=7,ab=4,求a2b+ab2的值.解析:原式提取公因式变形后,将a+b与ab的值代入计算即可求出值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.方法总结:求代数式的值,有时要将已知条件看作一个整体代入求值.【类型二】因式分解与三角形知识的综合△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?并说明理由.解析:对已知条件进行化简后得到a=c,根据等腰三角形的概念即可判定.解:整理a+2ab=c+2bc,得a+2ab-c-2bc=0,(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,∴a-c=0或1+2b=0,即a=c或b=-12(舍去),∴△ABC是等腰三角形.方法总结:通过提公因式分解因式,找出三边的关系来判定三角形的形状.【类型三】运用因式分解探究规律阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是____________,共应用了______次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,则需应用上述方法______次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.4.3公式法第1课时平方差公式1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是()A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4.解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式进行分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b );(2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】利用因式分解整体代换求值已知x 2-y 2=-1,x +y =12,求x -y 的值.解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2.方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14.解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形转化为平方差公式的形式,则可以使运算简便.【类型三】因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的=(1002-992)+(982-972)+…+(32-22)平方,这样就可以逆用平方差公式计算了.则S阴影+1=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.第2课时完全平方公式1.理解完全平方公式,弄清完全平方公式的形式和特点;(重点)2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点)一、情境导入1.分解因式:(1)x2-4y2;(2)3x2-3y2;(3)x4-1;(4)(x+3y)2-(x-3y)2;2.根据学习用平方差公式分解因式的经验和方法,你能将形如“a2+2ab+b2、a2-2ab +b2”的式子分解因式吗?二、合作探究探究点一:用完全平方公式因式分解【类型一】判定能否利用完全平方公式分解因式下列多项式能用完全平方公式分解因式的有()(1)a2+ab+b2;(2)a2-a+12-24ab+4b2;(4)-a2+8a-16.4;(3)9aA.1个B.2个C.3个D.4个解析:(1)a 2+ab +b 2,乘积项不是两数的2倍,不能运用完全平方公式;(2)a 2-a +14=(a -12)2;(3)9a 2-24ab +4b 2,乘积项是这两数的4倍,不能用完全平方公式;(4)-a 2+8a -16=-(a 2-8a +16)=-(a -4)2.所以(2)(4)能用完全平方公式分解.故选B.方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【类型二】运用完全平方公式分解因式因式分解:(1)-3a 2x 2+24a 2x -48a 2;(2)(a 2+4)2-16a 2.解析:(1)有公因式,因此要先提取公因式-3a 2,再把另一个因式(x 2-8x +16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解.解:(1)原式=-3a 2(x 2-8x +16)=-3a 2(x -4)2;(2)原式=(a 2+4)2-(4a )2=(a 2+4+4a )(a 2+4-4a )=(a +2)2(a -2)2.方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解.探究点二:用完全平方公式因式分解的应用【类型一】运用因式分解进行简便运算利用因式分解计算:(1)342+34×32+162;(2)38.92-2×38.9×48.9+48.92.解析:利用完全平方公式转化为(a ±b )2的形式后计算即可.解:(1)342+34×32+162=(34+16)2=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=100.方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键.【类型二】利用因式分解判定三角形的形状已知a ,b ,c 分别是△ABC 三边的长,且a 2+2b 2+c 2-2b (a +c )=0,请判断△ABC的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由a 2+2b 2+c 2-2b (a +c )=0,得a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b )2+(b -c )2=0,∴a -b =0,b -c =0,∴a =b =c ,∴△ABC 是等边三角形.方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.【类型三】整体代入求值已知a +b =5,ab =10,求12a 3b +a 2b 2+12ab 3的值.解析:将12a 3b +a 2b 2+12ab 3分解为12ab 与(a +b )2的乘积,因此可以运用整体代入的数学思想来解答.解:12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2)=12ab (a +b )2.当a +b =5,ab =10时,原式=12×10×52=125.方法总结:解答此类问题的关键是对原式进行变形,将原式转化为含已知代数式的形式,然后整体代入.三、板书设计1.完全平方公式:a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.2.完全平方公式的特点:(1)必须是三项式(或可以看成三项的);(2)有两个同号的平方项;(3)有一个乘积项(等于平方项底数的±2倍).简记口诀:首平方,尾平方,首尾两倍在中央.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领.。