化学物质的溶解度曲线
- 格式:docx
- 大小:37.37 KB
- 文档页数:3
溶解度与溶解度曲线溶解度是指在一定条件下,单位溶剂中单位温度下溶质的最大溶解量。
溶解度受到多种因素的影响,如溶质和溶剂的性质、温度、压力等。
溶解度曲线则是描述溶解度随温度变化而呈现的曲线,对于理解溶解过程有重要的意义。
一、溶解度的定义和影响因素溶解度是溶质在溶剂中溶解的程度,通常用“溶质在100克溶剂中溶解的克数”或“溶质在100毫升溶剂中溶解的克数”来表示。
溶解度的单位通常为克/100克或克/100 mL。
溶解度受到多种因素的影响,主要包括以下几个方面:1. 溶剂的性质:溶剂的极性、溶剂分子的大小与溶质分子的大小之间的相互作用力是决定溶解度的关键因素之一。
溶剂与溶质之间的相互作用力越强,溶解度越大。
2. 溶质的性质:溶质的极性、溶质分子的大小与溶剂分子的大小之间的相互作用力也是影响溶解度的重要因素。
溶质分子越小、极性越大,溶解度越大。
3. 温度:温度是影响溶解度的重要因素之一。
一般情况下,溶解度随温度的升高而增大。
但某些物质的溶解度随温度的升高而降低,这是因为在溶解过程中伴随着吸热或放热反应的发生。
4. 压力:压力对溶解度的影响在一般情况下较小。
但对于气体溶解于液体的情况下,压力的增加会导致溶解度的增大。
二、溶解度曲线与溶解度变化规律溶解度曲线是随温度变化而描绘的曲线图,用于描述溶解度随温度变化的规律。
在溶解度曲线中,横坐标表示温度,纵坐标表示溶解度。
一般来说,溶解度曲线可分为以下几种类型:1. 随温度的升高而增大的曲线:这种曲线表明溶解过程是一个吸热反应,随着温度的升高,反应愈发有利,溶解度呈现上升趋势。
2. 随温度的升高而减小的曲线:这种曲线表明溶解过程是一个放热反应,温度升高会导致溶解度的降低。
3. 温度对溶解度没有显著影响的曲线:这种曲线表明溶解过程与温度无关,溶质的溶解度在一定温度范围内保持不变。
溶解度曲线对于理解溶解过程和溶解度变化规律具有重要的指导意义。
通过研究溶解度曲线,可以确定溶解过程的热力学特征和溶解度随温度变化的规律。
硫酸钠和氯化钠的溶解度曲线概述说明以及解释1. 引言1.1 概述本文主要研究硫酸钠和氯化钠的溶解度曲线,并对其进行概述、说明和解释。
溶解度是指在一定温度下,某种物质在特定溶剂中能够溶解的最大量。
硫酸钠和氯化钠作为常见的无机盐,在工业生产和日常生活中都具有重要应用。
1.2 文章结构本文共分为五个部分,具体结构如下:引言:介绍文章的研究背景、目的和结构。
硫酸钠的溶解度曲线:对硫酸钠的溶解度曲线进行定义、背景知识介绍,并且详细描述实验方法和结果。
最后对结果进行解释和讨论。
氯化钠的溶解度曲线:对氯化钠的溶解度曲线进行定义、背景知识介绍,并且详细描述实验方法和结果。
最后对结果进行解释和讨论。
对比分析与讨论:比较硫酸钠和氯化钠的溶解度曲线特点,分析影响溶解度的因素,并展望其应用场景与发展趋势。
结论与展望:总结分析结果及重要发现,提出未来研究方向,并分析本研究的局限性及改进措施。
1.3 目的通过对硫酸钠和氯化钠的溶解度曲线进行研究,我们旨在深入了解这两种物质在不同条件下的溶解度规律以及影响因素。
通过实验方法和结果的描述,我们将给出对溶解度曲线进行合理解释和讨论的依据。
同时,通过比较分析两种物质的溶解度曲线特点以及影响因素,我们将探讨其应用场景,并展望未来关于溶解度研究领域的发展趋势。
以上就是文章引言部分内容,接下来将会详细介绍硫酸钠和氯化钠的溶解度曲线、实验方法和结果、解释和讨论等内容。
2. 硫酸钠的溶解度曲线2.1 定义和背景知识硫酸钠是一种常见的无机盐,化学式为Na2SO4。
它可以以固体形式存在,也可以通过在水中溶解得到溶液。
溶解度曲线描述了在不同温度下硫酸钠在水中的溶解度变化规律。
溶解度是指单位溶剂中能够溶解的物质的质量或摩尔数。
通常用于描述离子晶体(如硫酸钠)在水中的溶解情况。
对于硫酸钠而言,其溶解过程可以表示为以下方程式:Na2SO4(s) ↔Na+(aq) + SO42-(aq)此方程式表明,在水中加入固态硫酸钠后,它会与水分子发生反应并分离成正离子Na+和负离子SO42-。
溶解度曲线的意义及应用一、溶解度曲线的概念在直角坐标系中,用横坐标表示温度(t),纵坐标表示溶解度(S),由t—S的坐标画出固体物质的溶解度随温度变化的曲线,称之为溶解度曲线。
二、溶解度曲线的意义1、点曲线上的点叫饱和点,①曲线上任一点表示对应温度下(横坐标)该物质的溶解度(纵坐标);②两曲线的交点表示两物质在交点的温度下溶解度相等。
2、线溶解度曲线表示物质的溶解度随温度变化的趋势。
其变化趋势分为三种:①陡升型大多数固体物质的溶解度随温度升高而增大,如KNO3;②缓升型少数物质的溶解度随温度升高而增幅小,如NaCl;③下降型极小数物质的溶解度随温度升高而减小,如Ca(OH)2。
3、面⑴溶解度曲线下方的面表示不同温度下该物质的不饱和溶液。
⑵溶解度曲线上方的面表示相应温度下的过饱和溶液(不作要求)。
三、溶解度曲线的应用1.判断或比较某一物质在不同温度下溶解度的大小。
例1:(2010•南昌)右图为氯化钠、碳酸钠(俗称纯碱)在水中的溶解度曲线。
(1)当温度为10℃时,碳酸钠的溶解度为;(2)当温度时,氯化钠的溶解度大于碳酸钠的溶解度;(3)生活在盐湖附近的人们习惯“夏天晒盐,冬天捞碱”。
请你解释原因:“夏天晒盐”。
例2、(2009•泰州)右图是A、B两种物质的溶解度曲线,根据图示回答下列问题:℃时,向两只盛有100g水的烧杯中,分别加(1)t入A、B两种物质至不能溶解为止,所得溶液的溶质质量分数较大的是___________溶液(填“A”或“B””)。
(2)t2℃时,欲配制等质量的A、B两种物质的饱和溶液,所需水的质量关系是A________B。
(填写“>”、“<”或“=”,下同)(3)将t2℃的A、B两种物质的饱和溶液各200g,降温至t1℃,析出晶体的质量关系是A______B。
(4)将t2℃的A、B两种物质的饱和溶液各200g,升温至t3℃,欲使它们仍为饱和溶液,若不改变溶剂质量,所需加入固体溶质的质量关系是A_______B。
化学溶解度曲线是描述物质在不同温度和压力下溶解度变化的图形。
这种图形通常以溶质在溶剂中的摩尔浓度(或质量浓度)为纵坐标,温度为横坐标。
在一定温度和压力下,溶解度曲线反映了溶质在溶剂中的溶解特性。
一般来说,溶解度曲线可分为以下几个区域:
1.不饱和区域:在曲线的起始部分,溶质的摩尔浓度较低,此时溶液中的溶质尚未达到饱和状态,仍然能够溶解更多的溶质。
2.饱和区域:曲线逐渐上升,进入饱和区域。
在这个区域,溶质的摩尔浓度达到最大值,溶解度曲线呈水平或略微上升趋势。
此时,溶质在给定的温度和压力下已经达到最大的溶解度。
3.过饱和区域:超过饱和区域的溶质摩尔浓度,这是一种不稳定状态。
在这个区域,溶质实际上溶解得比饱和状态更多,但是一点点扰动就可能导致溶质析出。
过饱和通常是在饱和溶液中冷却或者加入过量溶质的情况下发生。
溶解度曲线的形状取决于物质的性质,不同物质在不同温度和压力下具有不同的溶解度规律。
一些物质的溶解度随温度的升高而增加,而另一些物质则相反。
对于气体溶解度,通常随温度升高而降低。
化学工程师、研究人员和实验室技术员经常使用溶解度曲线来了解和控制溶液的性质,以优化反应条件或提高产品纯度。
这对于药物制造、食品工业和化工等领域都有着重要的应用。
【化学】溶解度曲线溶解度及溶解度曲线七嘴⼋⾆说考情溶解度及溶解度曲线是全国各地市的中考重点,也是同学们学习的难点。
陕西说:近10年必考,从2011年开始均在填空及简答题中考查,有曲线、表格、实物图、表格结合实物图、表格结合曲线、实物图结合曲线、实物图结合表格和曲线多种考查形式。
安徽说:近10年必考,除2018年在填空和简答题中考查⼀空外,其余均在选择题第10题考查表格或曲线。
考查曲线⾛向有⼀升、⼀条先升后降、两升、⼀升⼀降、两降多种形式。
河南说:近10年必考,选择题和填空题中均有考查。
除2015年考查溶解度表外其余均考查溶解度曲线,且考查的曲线除2010年是1条曲线外,其余均为2条曲线。
曲线⾛向有⼀升、两升、⼀升⼀降、⼀升⼀平缓多种形式。
江西说:近10年必考,近5年在选择题或选择填充题中考查,2009~2013年在填空与说明题中考查。
以单纯考查曲线为主,偶尔考查曲线结合表格、曲线结合实物图。
曲线⾛向有⼀升、两升、⼀升⼀降、两升⼀降多种形式。
云南说:近5年必考,在选择题、填空与简答中均有涉及。
以三条或两条曲线为主,偶尔也考查⼀条或四条曲线。
⼭西说:近10年仅2017年未考,其余在选择题和⾮选择题中均有考查。
考查形式有曲线、表格、曲线结合实物图等形式。
曲线⾛向有⼀升、两升、⼀升⼀平缓、⼀升⼀降多种形式。
河北说:近10年考查5次,除2018年在实验探究题的⼀空考查外,其余均在选择题的6题或7题考查。
考查形式除2013年考查溶解度表外,其余均考查曲线。
曲线⾛向有⼀升、两升、⼀升⼀降、两升⼀降多种形式。
说来说去还得练1.(推荐河南、江西、河北)甲物质的溶解度曲线如图所⽰,下列有关说法不正确...的是()A.甲的溶解度随温度升⾼⽽增⼤B.图中P点表⽰甲的饱和溶液C.将甲溶液从t2℃降⾄t1℃,⼀定有晶体析出D.t2℃时,将60g甲加⼊50g⽔中最多形成105g溶液2.(推荐安徽、云南)某固体物质的溶解度曲线如图所⽰,下列有关说法不正确...的是()A.该物质85℃时的溶解度⽐45℃时的溶解度⼩B.50℃和70℃时,该物质的溶解度均为50gC.降低温度,⼀定能使其接近饱和的溶液变为饱和溶液D.10℃时,该物质饱和溶液的溶质质量分数约为16.7%3.(推荐河北、河南、安徽、⼭西、云南、江西)如图是A、B两种固体物质的溶解度曲线,下列有关说法正确的是()A.物质A的溶解度⼤于物质B的溶解度B.t1℃时,A、B两种物质的溶解度均为25gC.降低温度可从B的饱和溶液中析出晶体D.t2℃时,分别将相同质量的A、B配制成饱和溶液,所需溶剂的质量:A>B4.(推荐云南、河北、⼭西、江西)如图是a、b、c 三种固体物质的溶解度曲线,下列有关说法正确的是()A.三种物质的溶解度⼤⼩为a>b>cB.物质a中混有少量b时,可⽤降温结晶的⽅法提纯aC.t1℃时,a、b、c三种物质的饱和溶液中所含溶质质量a=c<bD.分别将a、b、c三种物质的饱和溶液从t1℃升温⾄t2℃,所得溶液的溶质质量分数a>b>c5.(推荐陕西)下表是NaCl、KNO3两种固体物质在不同温度时的溶解度,回答问题。
3.2.3溶解度溶解度曲线一溶解度影响固体溶解性的影响因素:溶质的种类,溶剂的种类,温度1、溶解度定义:在一定温度下,某物质在100g溶剂(通常是水)里达到饱和状态时,所溶解得最大克数。
符号:S,单位:g/100g水2、溶解度的含义:20℃时,S NaCl = 36g/100g水含义:20℃,食盐在100g水里达到饱和状态时最多溶解36克。
举例:20℃时,S AgNO3 = 222g/100g水影响固体溶质溶解度的唯一因素是对于气体溶质影响溶解度的因素有和二绘制溶解度曲线图(1)请根据下表列出硝酸钾、氢氧化钙在不同温度下的溶解度,在坐标系中作出温度(℃)0 20 40 60 80 溶解度(g/100g水)13.3 31.6 63.9 110 169 KNO3温度(℃)0 20 40 100 溶解度(g/100g水)0.173 0.165 0.121 0.076Ca(OH)2(2)溶解度曲线的运用溶解度曲线上表示溶液的点的位置所表示的含义及点的移动操作诀窍例1:右图是A、B、C三种物质的溶解度曲线,看图回答:(1)60℃时,B物质的溶解度是。
(2)10℃时,B物质的溶解度(填<、=或>)A物质的溶解度。
(3)℃时,A、B两物质的溶解度相同。
例2:.右图是X、Y、Z三种物质的溶解度曲线(1)A点所表示的意义(2)若X、Y、Z三种物质中,有一种是气态物质,该物是。
判断的依据是。
(3)20℃时,N处物质X的溶液呈(填饱和或不饱和)状态、要使该溶液从N状态变为M状态.应采取的措施有或三有关溶解度的计算公式:S 100 =m(溶质)m(溶剂)SS+100=((+(mm m溶质)溶质)溶剂)=m(m溶质)(溶液)例1、在T℃时,向80克水中加入硝酸钾固体20克,恰好达到饱和,求该温度下的溶解度例2、在20℃时,氯化钠的溶解度是36g/100g水,则在此温度下,30克水中最多能溶解氯化钠多少克?T℃,硝酸钾饱和溶液200克,蒸发20克水后析出晶体12克,则该温度时,硝酸钾的溶解度为_____________当堂训练1.下列说法正确与否,为什么?(1)20℃时,把10克食盐溶解在100克水里,所以20℃时食盐的溶解度是10 (2)20℃时,100克食盐饱和溶液里含有26.4克食盐,所以20℃时食盐的溶解度是26.4克/100克水(3)20℃时,食盐的溶解度是36克/100克水。
溶解度曲线图的含义和例题溶解度曲线图是初中化学的重要基础知识,有关习题涉及溶解度、溶解度计算、浓度计算、饱和溶液与不饱和溶液相互转化、物质的结晶、物质分离等概念和知识,本文简述了溶解度曲线的含义,并列举常见相关习题并分析,供参考。
溶解度曲线图通常有如图所示的图A、图B二类涉及的计算公式有:公式1:)()(100)()(100溶液溶质或溶剂溶质mmSSmmS=+=公式2:C%=)()(溶液溶质mm×100%公式3:C%(饱和溶液)=100+SS×100%一、根据溶解度曲线图可以查出同种物质在不同温度下的溶解度数值,并计算相应的C%等数值。
例1:由曲线溶解度图A回答下列问题:①t2时, B的饱和溶液中溶质和溶剂的质量比为∶②t1时,将30克A投入60克水中,求所得溶液、溶质的质量分数为③t4时, 90克B物质溶解在150克水中,所得溶液为不饱和溶液,为了得到B的饱和溶液,问:a. 维持温度不变,至少要蒸发掉克水,才能使溶液饱和。
b. 维持温度不变,原溶液中至少再加入B 克,才能使溶液饱和。
c.不改变溶液组成,只要把温度降低到 ℃,也能使溶液恰好达到 饱和。
④要配制C%为28.6%的C 物质溶液,配制时的温度应控制在 ℃。
解:①由图A 知t 2时,S B =60克∕100克水,由公式1,则溶质和溶剂的质量比为60∶100②由图A 知t 1时,S A =32克∕100克水,根据公式可知在60克水中最多溶解19.2克A 物质,则C%=602.192.19+×100%=24.2% ③a :已知t 4时,S B =65克∕100克水,根据公式1,x 9010065= x =138克, 则150-138=12克,即蒸发12克水可使溶液饱和。
b :同理15010065y = y =97.5 97.5-90=7.5,即加入7.5克B 物质可使溶液饱和。
c :同理,根据公式1,15090100=S S =60克∕100克水,即把温度降低 到t 2时,溶液恰好饱和。
1. X 、Y 、Z三种物质的溶解度曲线如图所示。
将t2℃时三种物质的饱和溶液降温至t1℃,溶液中溶质质量分数大小关系正确的是 ( )A.X>Y>ZB.Y>Z>XC.Z>Y>XD.X=Y>Z【答案】B2.我国古代劳动人民常将草木灰(主要成分K2CO3)和生石灰在水中混合,用上层清液漂白丝帛。
清液的主要成分及溶解度如图所示。
(1)t1℃时3种物质的饱和溶液中溶质质量分数由小到大的顺序是。
(2)20 ℃时,向4个盛有50 g水的烧杯中,分别加入一定质量的氢氧化钾并充分溶解。
4组实验数据如下:由上述实验数据可知:①所得溶液是不饱和溶液的是(填序号);②20℃时,将C继续恒温蒸发25 g水,过滤,得到质量为 g的固体。
【答案】(1)Ca(OH)2 KOH K2CO3 (2) ①AB ② 283.下表是Ca(OH)2 和NaOH的溶解度数据。
请回答下列问题:温度/℃0 20 40 60 80 100溶解度/gCa(OH)2 0.19 0.17 0.14 0.12 0.09 0.08NaOH 31 91 111 129 313 336(1)依据上表数据,绘制Ca(OH)2 和NaOH的溶解度曲线,下图中能表示NaOH溶解度曲线的是(填“A”或“B”)。
(2)要想把一瓶接近饱和的Ca(OH)2溶液变成饱和溶液,可采取措施有(填序号)。
①蒸发水②升高温度③降低温度④加入水⑤加入氢氧化钙实验序号 A B C D加入氢氧化钾的质量/g7 14 56 70溶液质量/g 57 64 106 106(3)现有60 ℃时含有Ca(OH)2 和NaOH两种溶质的饱和溶液,若要得到较纯净的NaOH晶体,应采取的物理方法是。
(4)现有20 ℃时Ca(OH)2的饱和溶液(甲溶液),向其中加入一定量CaO后恢复20 ℃,得到乙溶液,溶液中溶质的质量分数的关系为甲乙(填“>”、“<”或“=”)。
溶解度曲线与图像分析一、溶解度曲线【三变量: 、 、 】1.注意温度变量①a 物质溶解度大于c 物质溶解度。
( ) ②b 物质为易溶性物质。
( ) ③c 是氢氧化钙的溶解度曲线。
( ) ④a 、c 饱和溶液溶质质量分数相等。
( )⑤t 1-t 2℃之间a 饱和溶液浓度大于c 饱和溶液浓度。
( )2.注意饱和变量①t 1℃时,100ga 、c 两物质的溶液中,含a 、c 的质量相等。
( ) ②t 2℃时,b 溶液溶质质量分数大于c 溶液溶质质量分数。
( ) ③t 2℃时a 溶液的溶质质量分数比t 1℃时大。
( ) ④t 1℃时可以得到质量分数为16%的c 溶液。
( ) ⑤t 2℃时M 点所对应三种溶液的溶质质量分数:a >b >c 。
( )⑥t 2℃时将等质量的a 、b 两种物质的溶液分别降温至t ℃,析出晶体的质量a 一定大于b 。
3.注意等质量①t ℃时a 、b 饱和溶液中含有的a 、b 质量相等。
( )②t 2℃时,将a 、b 两物质的饱和溶液分别降温至t ℃析出晶体的质量a 大于b 。
( ) ③t 1℃,将a 、c 两种物质的饱和溶液分别恒温蒸发等质量的水,析出晶体的质量a=c 。
( ) ④a 、b 两物质的饱和溶液,温度从t 1℃升高到t 2℃时,所得溶液的溶质质量分数a >b 。
4.计算①t 1℃时将20g c 物质加入50g 水中能形成60g 溶液。
( ) ②t 1℃时a 物质的饱和溶液溶质质量分数为20%。
( )③t 2℃时75g a 的饱和溶液加入一定量的水,降温到t 1℃可得到125g16%的a 饱和溶液。
④t 2℃时,将60g a 物质放入100g 水中,所得溶液中溶质与溶液质量之比为1:3。
( ) ⑤将100g 溶质质量分数为10%的a 溶液从t 2℃降温到t 1℃其质量分数仍为10%。
( ) 5.其他①t 1℃时a 、c 物质的溶解度都为20。
( ) ②降温可以使C 的不饱和溶液变为饱和。
化学物质的溶解度曲线
溶解度是指单位溶剂在一定温度和压力下溶解的物质的最大质量或
体积。
溶解度与物质性质、溶剂性质、温度和压力等因素有关。
为了
研究溶解度与温度的关系,科学家通常会制作溶解度曲线,以直观地
表示溶解度的变化规律。
一、溶解度曲线的概念和基本形态
溶解度曲线是指在一定温度下,溶质在溶剂中的溶解度与溶液中溶
质的质量或体积之间的关系曲线。
通常情况下,溶解度曲线呈现出以
下几种基本形态:
1. 直线型溶解度曲线:当溶质的溶解满足几乎无吸热或放热的条件时,其溶解度随溶质质量或体积的增加呈线性变化。
2. 正曲线型溶解度曲线:当溶质的溶解满足吸热条件时,其溶解度
随溶质质量或体积的增加呈正曲线变化。
3. 反曲线型溶解度曲线:当溶质的溶解满足放热条件时,其溶解度
随溶质质量或体积的增加呈反曲线变化。
以上三种基本形态可以通过实验数据的拟合获得溶解度曲线的数学
表达式,并在坐标系中进行画图,以便直观地观察溶解度的变化规律。
二、影响溶解度曲线的因素
溶解度曲线的形态及其在不同温度下的变化规律受多种因素的影响。
1. 温度:温度是影响溶解度曲线的重要因素之一。
一般情况下,温
度升高会导致溶解度的增加,溶解度曲线向右移动。
但对于某些物质
而言,温度的升高反而会降低其溶解度。
2. 压力:在大部分情况下,压力对溶解度的影响并不明显,因此通
常在溶解度曲线的研究中不考虑压力的影响。
3. 溶质和溶剂的性质:溶质和溶剂的性质对溶解度也有一定的影响。
比如极性溶质在极性溶剂中的溶解度通常较高,而非极性溶质在非极
性溶剂中的溶解度较高。
4. 其他因素:除了温度、压力、溶质和溶剂的性质外,其他因素如
物质的晶体结构、溶液的浓度等也可能会对溶解度曲线产生影响。
三、溶解度曲线的应用
溶解度曲线的研究对于理解物质的溶解过程、寻找合适的溶剂和控
制溶解度具有重要意义。
1. 制定合理的溶解工艺:对于某些工业制品的制造过程中,需要调
整溶解度来控制产品的质量。
通过研究溶解度曲线,可以确定最佳溶
解条件和工艺参数,提高产品的质量和产量。
2. 分离提纯物质:利用物质溶解度的差异,可以通过溶解度曲线的
知识来设计分离和提纯物质的方法。
如溶剂萃取、结晶等。
3. 药物研发:了解药物在不同溶剂中的溶解度变化规律,可以指导
合理选择药物配方和改进药物制备工艺。
4. 地质研究:溶解度曲线的研究对于理解地下水中溶解物的迁移、地下水的化学特性和水矿关系等具有重要意义。
通过对溶解度曲线的研究,我们可以更加深入地了解溶解过程中涉及的热力学和动力学因素,为化学工业的发展和药物研发等领域提供理论指导和实际应用的依据。
同时,溶解度曲线的研究也是化学领域的一个重要研究方向,有助于完善溶解度理论体系,推动化学科学的发展。