2014-2015学年山东省济宁市微山县鲁桥一中七年级(下)期末数学试卷
- 格式:doc
- 大小:440.50 KB
- 文档页数:17
山东省济宁市七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,已知点P(﹣3,-2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c>b c D.a2>b23.9的算数平方根是()A.3 B.﹣3 C.±3 D.814.二元一次方程组的解满足2x﹣ky=10,则k的值等于()A.4 B.﹣4 C.8 D.﹣85.如图,一把矩形直尺沿直线断开并错位,点E,D,B,F在同一条直线上,若∠ADE=125°, 则∠DBC的度数为()A.125°B.75°C.55°D.65°6.若关于x的不等式m x﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>7.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式8不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥49.为了了解某市初一年级56000名学生的视力情况,抽查了5000名学生的视力进行统计分析.下面四种说法正确的是()A.56000名学生是总体B.每名学生是总体的一个个体C.样本容量是56000D.5000名学生的视力是总体的一个样本10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.点P(m,1﹣m)在第一象限,则m的取值范围是12如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.14.﹣=15.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.三.解答题(本大题共7小题,共55分.解答要写出必要的文字说明、证明过程或演算步骤.)16计算(1)(2)解方程组17..(6分)解不等式组,并写出它的所有非负整数解.18.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥()∴∠BAC+ =180°()又∵∠BAC=70°(已知)∴∠AGD=()19.某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.20.在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).(1)在图中标出点A、B、C.(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.(3)求△EBD的面积S.△EBD21.为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?22.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC 移动一周(即:沿着O→A→B→C→O的路线移动)(1)写出B点的坐标();(2)当点P移动了4秒时,在图中平面直角坐标系中描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间t.。
济宁市人教版七年级下册数学期末试卷及答案百度文库一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a2.计算:202020192(2)--的结果是( )A .40392B .201932⨯C .20192-D .23.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( ) A .-98.110⨯ B .-88.110⨯ C .-98110⨯ D .-78.110⨯ 4.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,65.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( ) A .2cmB .3cmC .8cmD .15cm6.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2 B .a (a+1)(a ﹣1)=a 3﹣a C .6x 2y 3=2x 2•3y 3D .211()x x x x+=+7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( )A .0.38×106B .3.8×106C .3.8×105D .38×1049.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩10.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④二、填空题11.计算()()12x x --的结果为_____; 12.若(2x +3)x +2020=1,则x =_____.13.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.14.已知22a b -=,则24a b ÷的值是____.15.已知关于x ,y 的方程组2133411x y mx y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.16.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2. 17.计算:(12)﹣2=_____. 18.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.19.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.20.已知代数式2x-3y的值为5,则-4x+6y=______.三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)△ABC的面积为_______.22.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).23.解方程组:41 325 x yx y+=⎧⎨-=⎩.24.如图,在边长为1个单位长度的小正方形网格中,ΔAB C经过平移后得到ΔA B C''',图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________; (3)四边形BCC B ''的面积为_______.25.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.26.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.27.计算:(1)22(2).(3)xy xy (2)23(21)ab a b ab -+-(3)(32)(32)x y x y +- (4)()()a b c a b c ++-+28.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系. 【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BCAB b22(5)(3)15a b BCb a AB a b .AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b , 5ba .故选:A . 【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.B解析:B 【分析】将原式整理成2020201922+,再提取公因式计算即可. 【详解】 解:202020192(2)--=2020201922+ =20192(21)⨯+ =201932⨯, 故选:B . 【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.3.B解析:B 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000081=-88.110⨯; 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B 【解析】试题分析:A 、2+2=4,不能构成三角形,故本选项错误;B 、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C 、1+2=3,不能构成三角形,故本选项错误;D 、2+3<6,不能构成三角形,故本选项错误. 故选B .考点:三角形三边关系.5.C解析:C 【解析】 【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边. 【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13). 故选C 【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.6.A解析:A 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】A 、是因式分解,故A 正确;B 、是整式的乘法运算,故B 错误;C 、是单项式的变形,故C 错误;D 、没把一个多项式转化成几个整式积的形式,故D 错误; 故选:A . 【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:380000=3.8×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角....故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.二、填空题11.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x+原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.13.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m -10=﹣6, 解得:m = 故答案为: 【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:23【分析】把x 、y 的值代入方程计算即可求出m 的值. 【详解】解:把62x y =⎧⎨=-⎩代入方程得:6m -10=﹣6,解得:m =23故答案为:23【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.14.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可. 【详解】 解:==, ∵,∴原式=22=4. 【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可. 【详解】解:24a b ÷=222a b ÷=()22a b -, ∵22a b -=, ∴原式=22=4. 【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.15.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.16.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b +ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.17.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】 解:(12)﹣2=2112⎛⎫ ⎪⎝⎭=114=4, 故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可. 18.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGC GEC S S ∴=,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.19.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 20.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.三、解答题21.(1)见详解;(2)见详解;(3)152.【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB和CH的长即可得出面积.【详解】(1)△EFD如图所示,;(2)CH如图所示,;(3)根据勾股定理可得:AB=223+6=35,CH=221+2=5,∴S △ABC =12×AB ×CH=12×35×5=152. 【点睛】 本题考查了平移作图,勾股定理,掌握知识点是解题关键.22.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-.【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.23.11717 xy⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x yx y+=⎧⎨-=⎩①②由+2⨯①②得:7x=11,解得117x=,把117x=代入方程①得:17y=-,故原方程组的解为:11717xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 24.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.25.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键26.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.27.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<;②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤; 当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.。
2014——2015学年第二学期期末考试参考答案七年级数学一、(每小题3分,共24分)1-----5 DABDD 6-----8 DBA二、(每小题3分,共21分)9.、2、3 12. 113. 89° 14. -5,-5 15. 26三、(本大题共8个小题,满分75分)16.(8分)(1)-122(2)-6-17.(7分) a=-3, b=-218. (8分) -1<x ≤314,画图略. 19. (10分)(1)S △ABC =12×≈6-1.5×1.414≈3.9(2)画图略.A’ (-5,2)、B’(2)、C’(0,5).20. (10分)解:设甲每天完成的零件数为x 个,乙每天完成的零件数为y 个,列方程组为:⎩⎨⎧=++-=++43032362430222y y x y x x 解得:⎩⎨⎧==4470y x 答:甲每天完成的零件数为70个,乙每天完成的零件数为44个.21. (10分)(1)∵∠1=∠4=1:2 ∠1=36° ∴∠4=72°又∵A B ∥CD ∴∠1+∠2+∠4=180°∴∠2=180°-36°-72°=72°又∵∠2+∠3=180° ∴∠3=180°-72°=108°(2) ∵AB ∥CD ∴∠ABE=∠4=72°∵∠2=72° ∴AB 平分∠EBG22. (10分)(1)500 (2)按先后顺序依次为A 80 C 160 D60 (3)4400023. (12分)(1)设购进A 型号的电脑x 台,那么购进B 型号的电脑(25-x )台,根据题意得:4000x+2500(25-x)≤80000 解得:x≤1123∵A型号的电脑购进不能低于8台,∴8≤x≤112 3∴电脑城有4种购进电脑的方案:①A型号购进8台时B型号购进17台②A型号购进9台时B型号购进16台③A型号购进10台时B型号购进15台④A型号购进11台时B型号购进14台.(2)∵A型号电脑的利润低,∴A型号电脑进的越少,B型号电脑进的越多时利润就越大,∴按方案①进货利润最大.最大利润为:8×800+17×1000=23400(元)。
一、选择题1.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 2.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.04.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC是一个格点三角形,在这个33⨯的正方形格纸中,与ABC成轴对称的格点三角形最多有()A.3个B.4个C.5个D.6个5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.326.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是()A.B.C.D.7.已知三角形的一边长为8,则它的另两边长分别可以是()A.2,9 B.17,29 C.3,12 D.4,48.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、310.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.6711.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2 +ab D.a(a-b)=a2-ab二、填空题13.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.15.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.17.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.18.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x 分钟后水壶的水温为y ℃,当水开时就不再烧了.(1)y 与x 的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.19.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.20.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a,长为4a,则21=S S______(结果用含a的代数式表示).三、解答题21.(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:根据图表中提供的信息解答下列问题:(1)统计表中的a= _ ,b= _ ,c= _ ;(2)在扇形统计图中,A类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22.如图,在网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l,且AB长为3.6.(1)求作点A 关于直线l 的对称点1A .(2)P 为直线l 上一动点,在图中标出使AP BP +的值最小的P 点,且求出AP BP +的最小值?(3)求ABP ∆周长的最小值?23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm 1 2 3 4 5 6 7 8 9 ()2y cm (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).26.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 367人中至少有2人生日相同 ,是必然事件,故A 不符合题意;B. 打开电视,正在播广告,是随机事件,故B 符合题意;C. 没有水分,种子发芽, 是不可能事件,故C 不符合题意;D. 如果a 、b 都是实数,那么+=+a b b a ,是必然事件,故D 不符合题意. 故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D.【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).4.D解析:D【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解.【详解】解:与ABC成轴对称的格点三角形最多有6个.故答案为:D.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.6.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A正确;-=>8,故B错误;+=>8,291712172946-=>8,故C错误;12315+=>8,1239+=,故D错误;448故答案选A.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.8.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.12.B解析:B【分析】根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.【详解】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:B.【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.随机【解析】【分析】根据必然事件不可能事件随机事件的概念必然事件指在一定条件下一定发生的事件可能事件是指在一定条件下一定不发生的事件不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件即可解析:随机【解析】【分析】根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大14.【分析】可运用相似三角形的性质求出GFMN从而求出OFOM进而可求出阴影部分的面积【详解】解:如图∵GF∥HC∴△AGF∽△AHC∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:1112【分析】可运用相似三角形的性质求出GF 、MN ,从而求出OF 、OM ,进而可求出阴影部分的面积. 【详解】 解:如图,∵GF ∥HC ,∴△AGF ∽△AHC ,∴1,2GF AG HC AH ⋅== ∴13,22GF HC == 312.22OF OG GF =-=-= 同理MN=23,则有OM=13 1111,22312OFM S ∆=⨯⨯= 1111.1212S =-=阴影 故答案为:1112 【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.15.7【分析】设点P 关于OA 的对称点为C 关于OB 的对称点为D 当点EF 在CD 上时△PEF 的周长最小【详解】分别作点P 关于OAOB 的对称点CD 连接CD 分别交OAOB 于点EF 连接OPOCODPEPF ∵点P 关于解析:7【分析】设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点E 、F 在CD 上时,△PEF 的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.16.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD∥BC∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2nθ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.18.(1)y=8x+20x在0--10变化;(2)2860;(3)35【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到与间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从解析:(1)y=8x+20,x,在0--10变化;(2)28,60;(3)3.5【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到y与x间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从0开始,到水烧开停止结合前面所得关系式即可求出自变量的取值范围;(2)将x的取值代入(1)中所得关系式即可求得对应的y的值;(3)将48y=代入(1)中所得关系式解出对应的x的值即可.试题(1)根据题意,y=8x+20;∵水温是随着时间的变化而变化的,∴自变量是时间x ;∵当水温y=100时,水烧开了就不再烧了,∴8x+20=100,解得x=10,∴x的变化范围是0≤x≤10.(2)当x=1时, y=1×8+20=28;当x=5时,y=5×8+20=60;(3)把y=48代入y=8x+20得:8x+20=48,解得:x=3.5,∴当x=3.5时,y=48.19.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.20.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD的长为m则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD的长为m,分别求出S1,S2,再代入S2-S1计算即可求解.【详解】解:设长方形ABCD的长为m,则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16a2×=4a2.故答案为:4a2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.三、解答题21.(1)5,0.20,0.24;(2)72°;(3)60.【解析】试题分析:(1)根据总的监测点个数为25,即可求出第5个组别的频率;已知各个组别的频数,即可求出a的值,继而求出该组别的频数;(2)A类所对应的圆心角=A类的频率×360°;(3)PM2.5日平均浓度值符合安全值的城市的个数=100×PM2.5日平均浓度值符合安全值的城市的频率.试题(1)a=25﹣(2+3+5+6+4)=5,b=525=0.20,c=625=0.24;故答案为:5,0.20,0.24;(2)A类所对应的圆心角=(0.08+0.12)×360°=72°;故答案为:72°;(3)∵100×(0.08+0.12+0.20+0.20)=60个,∴PM2.5日平均浓度值符合安全值的城市的个数约为60个.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.22.(1)见解析;(2)点P位置见解析,最小值为5;(3)8.6【分析】(1)根据题意作图即可(2)连接BA1交直线l于点P,由两点间,线段最短即可确定点P的位置(3)由(2)中求得点P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B【详解】(1)如图,点A1即为所作点A关于直线l的对称点(2)连接BA1交直线l于点P,连接AB,AP,则AP=A1P,由两点之间,线段最短可知,AP BP +最短值为5,(3)由(2)可知,点P 即可使△ABP 最小的位置故△ABP 周长的最小值为AB+AP+BP=AB+A 1P+BP=3.6+A 1B=3.6+5=8.6【点睛】此题考查轴对称变换的作图及两点间线段最短的问题,解题关键在于掌握通过轴对称建立最短路径进行解题.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可;(3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求.【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-.x 是自变量,010x <<. (2)当x 从1变到9时(每次增加1),y 的相应值列表如下()x cm 1 23 4 5 6 7 8 9 ()2y cm 916 21 24 25 24 21 16 9 (3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为25cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.25.见解析【分析】作点B 关于直线MN 的对称点B ′,作直线AB′交MN 于点P ,连接BP ,点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除 ∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.。
山东初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015•南长区一模)﹣3的倒数是()A.﹣3B.3C.﹣D.2.(2014•济南)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A.3.7×102B.3.7×103C.37×102D.0.37×1043.(2015秋•金乡县期末)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④4.(2015秋•金乡县期末)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.55.(2015秋•金乡县期末)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°6.(2015秋•金乡县期末)下列说法正确的是()A.bca2与﹣a2bc不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.(2015•恩施州)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )A .0B .2C .数D .学8.(2015秋•金乡县期末)某出租车的收费标准是:起步价7元(只要行驶距离不超过3km ,都需付款7元),超过3km ,往后毎增加1千米增收2.4元(不足1km 按1km 计算).现从A 地到B 地共支出车费19元.那么,他行驶的最大路程是( )A .9kmB .8kmC .7kmD .5km9.(2015秋•西宁期末)A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.510.(2015秋•金乡县期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,x n 表示第n 秒时机器人在数轴上的位罝所对应的数.给出下列结论:①x 3=3;②x 5=1;③x 108<x 104;④x 2007<x 2008,其中,正确结论的序号是( )A .①③B .②③C .①②③D .①②④二、填空题1.(2015秋•金乡县期末)如果(x+3)2+|8﹣2y|=0,则(x+y )2015的值是 .2.(2015•烟台)如图,数轴上点A 、B 所表示的两个数的和的绝对值是 .3.(2015秋•金乡县期末)已知:如图,B ,C 两点把线段AD 分成2:4:3三部分,M 是AD 的中点,CD=6cm ,则线段MC 的长为 .4.(2015秋•金乡县期末)在时刻8:30时,时钟上时针和分针的夹角为 度.5.(2015秋•金乡县期末)中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n 个数据是 .三、计算题(2015秋•金乡县期末)计算:﹣13+|﹣3|﹣(﹣1)2015﹣×(﹣2)2.四、解答题1.(2015秋•金乡县期末)解方程(1)3(2x ﹣1)=1﹣(x ﹣3)(2)﹣=1.2.(2015秋•金乡县期末)己知:x=3是方程+=2的解,n 满足关系式|2n+m 丨=1,求m+n 的值.3.(2015秋•金乡县期末)先化简,再求值:(3x 2+5x ﹣2)﹣2(2x 2+2x ﹣1)+2x 2﹣5,其中x 2+x ﹣3=0.4.(2015秋•金乡县期末)如图所示,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)如果∠AOB=150°,求∠COE的度数;(2)如果∠AOB=120°,那么∠COE= ;(3)如果∠AOB=α,那么∠COE= .5.(2015秋•金乡县期末)甲、乙两地相距217.5km,一列快车和一列慢车分别从甲、乙两地出发,相向而行.已知慢车每小时行35km,快车每小时行65km,如果慢车先开0.5h,问慢车开出后几小时两车相遇?6.(2015秋•金乡县期末)一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(3)什么情况下,不购会员证比购证更合算?山东初一初中数学期末考试答案及解析一、选择题1.(2015•南长区一模)﹣3的倒数是()A.﹣3B.3C.﹣D.【答案】C【解析】根据倒数的定义可得﹣3的倒数是﹣.解:﹣3的倒数是﹣.故选:C.【考点】倒数.2.(2014•济南)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A.3.7×102B.3.7×103C.37×102D.0.37×104【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于3700有4位,所以可以确定n=4﹣1=3.解:3 700=3.7×103.故选:B.【考点】科学记数法—表示较大的数.3.(2015秋•金乡县期末)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【答案】C【解析】四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选C.【考点】线段的性质:两点之间线段最短.4.(2015秋•金乡县期末)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【答案】D【解析】根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.【考点】等式的性质.5.(2015秋•金乡县期末)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°【答案】C【解析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.解:∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选:C.【考点】垂线;对顶角、邻补角.6.(2015秋•金乡县期末)下列说法正确的是()A.bca2与﹣a2bc不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【答案】C【解析】依据同类项、整式、单项式、多项式的相关概念回答即可.解:A、bca2与﹣a2bc符合同类项的定义,是同类项,故A错误;B、分母中不含有字母,故B错误;C、单项式﹣x3y2的系数是﹣1,故C正确;D、3x2﹣y+5xy2是三次三项式,故D错误.故选:C.【考点】同类项;整式;单项式;多项式.7.(2015•恩施州)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )A .0B .2C .数D .学【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A .【考点】正方体相对两个面上的文字.8.(2015秋•金乡县期末)某出租车的收费标准是:起步价7元(只要行驶距离不超过3km ,都需付款7元),超过3km ,往后毎增加1千米增收2.4元(不足1km 按1km 计算).现从A 地到B 地共支出车费19元.那么,他行驶的最大路程是( )A .9kmB .8kmC .7kmD .5km【答案】B【解析】根据题意找出等量关系:某人乘坐这种出租车从A 地到B 地共支出车费=19元.设此人从A 地到B 地路程的最大值为xkm ,由于19>7,所以x >3,即:某人乘坐这种出租车从A 地到B 地共需付车费:7+2.4×(x ﹣3),根据等量关系列出方程求解即可,由于不足1km 按1km 收费,所以此时求出的x 的值即为最大值. 解:设此人行驶的最大路程是xkm ,由题意得:(x ﹣3)×2.4+7=19,整理得:x ﹣3=5,解得:x=8.答:他行驶的最大路程是8km .故选B .【考点】一元一次方程的应用.9.(2015秋•西宁期末)A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.5【答案】D【解析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.解:设经过t 小时两车相距50千米,根据题意,得120t+80t=450﹣50,或120t+80t=450+50,解得t=2,或t=2.5.答:经过2小时或2.5小时相距50千米.故选D .【考点】一元一次方程的应用.10.(2015秋•金乡县期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,x n 表示第n 秒时机器人在数轴上的位罝所对应的数.给出下列结论:①x 3=3;②x 5=1;③x 108<x 104;④x 2007<x 2008,其中,正确结论的序号是( )A .①③B .②③C .①②③D .①②④【答案】D【解析】按“前进3步后退2步”的步骤去算,就可得出正确的答案.解:根据题意得:x 1=1,x 2=2,x 3=3,x 4=2,x 5=1,由此的出规律“前进3步后退2步”这5秒组成一个循环结构,把n 是5的倍数哪些去掉,就剩下1~4之间的数,然后再按“前进3步后退2步”的步骤去算,就可得出①,②,④.故选D .【考点】数轴.二、填空题1.(2015秋•金乡县期末)如果(x+3)2+|8﹣2y|=0,则(x+y)2015的值是.【答案】1【解析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解:∵(x+3)2+|8﹣2y|=0,∴x+3=0,8﹣2y=0,∴x=﹣3,y=4,∴(x+y)2015=(﹣3+4)2015=1.故答案为1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.2.(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是.【答案】1【解析】首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.【考点】数轴;绝对值;有理数的加法.3.(2015秋•金乡县期末)已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.【答案】3cm【解析】设AB=2x,BC=4x,CD=3x,再根据CD=6cm求出x的值,故可得出线段AD的长度,再根据M是AD的中点可求出MD的长,由MC=MD﹣CD即可得出结论.解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.【考点】两点间的距离.4.(2015秋•金乡县期末)在时刻8:30时,时钟上时针和分针的夹角为度.【答案】75.【解析】根据时针与分针相距的份数乘以每份的度数,可得答案.解:8:30时,时钟上时针和分针相距2+=份,8:30时,时钟上时针和分针的夹角为30×=75°.故答案为:75.【考点】钟面角.5.(2015秋•金乡县期末)中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.【答案】.【解析】由前四个数可知,分子是序数与2和的平方,分母比分子小4,可得第n个数据.解:∵第1个数:;第2个数:;第3个数:;第4个数:;…∴第n个数据是:.故答案为:.【考点】规律型:数字的变化类;列代数式.三、计算题(2015秋•金乡县期末)计算:﹣13+|﹣3|﹣(﹣1)2015﹣×(﹣2)2.【答案】1【解析】先算乘方,绝对值,再算乘法,最后算加减,由此顺序计算即可.解:原式=﹣1+3+1﹣×4=3﹣2=1.【考点】有理数的混合运算.四、解答题1.(2015秋•金乡县期末)解方程(1)3(2x﹣1)=1﹣(x﹣3)(2)﹣=1.【答案】(1)x=1;(2)x=﹣3.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)去括号得:6x﹣3=1﹣x+3,移项合并得:7x=7,解得:x=1;(2)去分母得:7(x﹣1)﹣4(5x+1)=28,去括号得:7x﹣7﹣20x﹣4=28,移项合并得:﹣13x=39,解得:x=﹣3.【考点】解一元一次方程.2.(2015秋•金乡县期末)己知:x=3是方程+=2的解,n满足关系式|2n+m丨=1,求m+n的值.【答案】或.【解析】把x=3代入方程求出m的值,进而求出n的值,即可求出m+n的值.解:把x=3代入方程得:1+m=2,解得:m=2,把m=2代入已知等式得:|2n+2|=1,即2n+2=1或﹣1,解得:n=﹣或﹣,则m+n=或.【考点】一元一次方程的解.3.(2015秋•金乡县期末)先化简,再求值:(3x2+5x﹣2)﹣2(2x2+2x﹣1)+2x2﹣5,其中x2+x﹣3=0.【答案】﹣2【解析】原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:原式=3x2+5x﹣2﹣4x2﹣4x+2+2x2﹣5=x2+x﹣5,由x2+x﹣3=0,得到x2+x=3,则原式=3﹣5=﹣2.【考点】整式的加减—化简求值.4.(2015秋•金乡县期末)如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)如果∠AOB=150°,求∠COE的度数;(2)如果∠AOB=120°,那么∠COE= ;(3)如果∠AOB=α,那么∠COE= .【答案】(1)75°;(2)60°;(3).【解析】(1)根据角平分线的定义可得∠COD=∠AOD,∠EOD=∠BOD,再根据角的和差关系可得∠COE=∠EOD+∠COD=∠BOA,然后再代入∠AOB的度数即可;(2)由(1)可得∠COE=∠BOA,然后再代入∠AOB的度数即可;(3)由(1)可得∠COE=∠BOA,然后再代入∠AOB=α即可.解:(1)∵OC是∠AOD的平分线,∴∠COD=∠AOD,∵OE是∠BOD的平分线,∴∠EOD=∠BOD,∴∠COE=∠EOD+∠COD=∠AOD+∠BOD=(∠BOD+∠AOD)=∠BOA,∵∠AOB=150°,∴∠EOC=75°;(2)∵∠COE=∠AOB,∠AOB=120°,∴∠COE=60°,故答案为:60°;(3)∵∠COE=∠AOB,∠AOB=α,∴∠COE=,故答案为:.【考点】角平分线的定义.5.(2015秋•金乡县期末)甲、乙两地相距217.5km,一列快车和一列慢车分别从甲、乙两地出发,相向而行.已知慢车每小时行35km,快车每小时行65km,如果慢车先开0.5h,问慢车开出后几小时两车相遇?【答案】2.5小时【解析】可设慢车开出后x小时两车相遇,根据等量关系:慢车行驶的路程+快车行驶的路程=甲、乙两地的距离,依此列出方程求解即可.解:设慢车开出后x小时两车相遇,依题意有35x+65(x﹣0.5)=217.5,解得x=2.5.答:慢车开出后2.5小时两车相遇.【考点】一元一次方程的应用.6.(2015秋•金乡县期末)一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(3)什么情况下,不购会员证比购证更合算?【答案】见解析【解析】假设游泳x次,于是可表示购证后花费为(80+x)元,不购证花费3x元,(1)当80+x=3x时,购会员证与不购证付一样的钱,然后解方程;(2)当80+x<3x时购证更划算,然后解不等式.(3)当80+x>3x时购证更划算,然后解不等式.解:假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,(1)根据题意得80+x=3x,得出x=40,也就是说6﹣8月共游泳40次的话,两种情况花费一样多;(2)根据题意得80+x<3x,得出x>40,6﹣8月游泳次数大于40的话,购证更划算.(3)根据题意得80+x>3x,得出x<40,6﹣8月游泳次数小于40的话,不购会员证更划算.【考点】一元一次方程的应用.。
山东省七年级(下)期末数学试卷一、选择题1.实数4的算术平方根是()A.﹣2 B.2 C.±2 D.±42.12的负的平方根介于()A.﹣5与﹣4之间B.﹣4与﹣3之间C.﹣3与﹣2之间D.﹣2与﹣1之间3.在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.4.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>45.下列计算正确的是()A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.a6b÷a2=a3b D.(﹣ab3)2=a2b66.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x7.在分式中,是最简分式的有()A.0个B.1个C.2个D.3个8.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=9.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°10.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A.B.=C. D.二、填空题11.计算:(﹣2)3+(﹣1)0=.12.把7的平方根和立方根按从小到大的顺序排列为.13.不等式2x+9≥3(x+2)的正整数解是.14.不等式组的解集是.15.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=.16.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.17.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.18.已知关于x的方程的解是负数,则n的取值范围为.19.若x+y=1,且x≠0,则(x+)÷的值为.20.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三、解答题(共60分)21.计算:(1)(﹣3)0﹣﹣(﹣1)2013﹣|﹣2|+(﹣)﹣2.(2)(﹣3)0﹣(﹣5)+()﹣1﹣﹣|﹣2|.22.(1);(2).23.解方程:(1)﹣=1;(2).24.已知x=3是关于x的不等式的解,求a的取值范围.25.解不等式组并求它的所有的非负整数解.26.先化简,再求值:(﹣),其中x2﹣4=0.27.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB 的度数.28.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).29.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B 两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?30.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.2014-2015学年山东省潍坊市安丘经济开发区中学七年级(下)期末数学试卷B.B.B。
2014-2015学年山东省济宁市曲阜市七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.9的平方根为()A.3B.-3C.±3D.【答案】C【解析】解:9的平方根有:=±3.故选C.根据平方根的定义求解即可,注意一个正数的平方根有两个.此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.在平面直角坐标系中,点(1,-3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】解:点(1,-3)在第四象限.故选D.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式【答案】D【解析】解:A、日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式所有灯管都报废,这样就失去了实际意义,故本选项错误;B、旅客上飞机前的安检,是精确度要求高的调查,适于全面调查,故本选项错误.C、了解北京市居民日平均用水量,采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项错误;D、了解北京市每天的流动人口数采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项正确.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠ABEC.∠C=∠ABCD.∠A=∠EBD【答案】B【解析】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;故选:B.在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【答案】D【解析】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.6.若m>n,则下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a-m<a-n【答案】D【解析】解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘-1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.在方程组中,如果是它的一个解,那么a,b的值是()A.a=4,b=0B.a=,b=0C.a=1,b=2D.a,b不能确定【答案】A【解析】解:将x,y的值代入原方程组,得关于a,b的方程组,解此方程组得a=4,b=0.故选A.将x,y的值代入原方程组,得到关于a,b的方程组,然后求解此方程组得到a,b的值.解此类方程组首先将已知的x,y值代入原方程组得到关于a,b的方程组,求解关于a,b的方程组即可得到a,b的值.8.如图,数轴上的A、B、C、D四点中,与数-表示的点最接近的是()A.点AB.点BC.点CD.点D【答案】B【解析】解:∵≈1.732,∴-≈-1.732,∵点A、B、C、D表示的数分别为-3、-2、-1、2,∴与数-表示的点最接近的是点B.故选:B.先估算出≈1.732,所以-≈-1.732,根据点A、B、C、D表示的数分别为-3、-2、-1、2,即可解答.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B. C. D.【答案】D【解析】解:设男生有x人,女生有y人,根据题意得,.故选:D.设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<-1B.a<1C.a>-1D.a>1【答案】C【解析】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>-1,故选C.解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.二、填空题(本大题共5小题,共15.0分)11.-64的立方根是______ .【答案】-4【解析】解:∵(-4)3=-64,∴-64的立方根是-4.故选-4.根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若关于x的不等式的整数解共有4个,则m的取值范围是______ .【答案】6<m≤7【解析】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=______ °.【答案】40【解析】解:∵∠CEF=140°,∴∠CEA=180°-∠CEF=40°,∵AB∥CD,∴∠A=∠CEA=40°(两直线平行,内错角相等).故答案为:40.根据邻补角的知识,求出∠CEA的度数,然后根据平行线的性质,得出∠A=∠CEA,即可求解.本题考查了平行线的性质以及邻补角的知识,解答本题的关键是掌握平行线的性质:两直线平行,内错角相等.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数 和★,请你帮他找回★,这个数★= ______ , = ______ .【答案】-2;8【解析】解:把x=5代入2x-y=12中,得:y=-2,当x=5,y=-2时,2x+y=10-2=8,故答案为:-2;8.把x=5代入方程组第二个方程求出y的值,将x与y的值代入第一个方程左边即可得到结果.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n-2个数是______ (用含n的代数式表示)【答案】【解析】解:前(n-1)行的数据的个数为2+4+6+…+2(n-1)=n(n-1),所以,第n(n是整数,且n≥3)行从左到右数第n-2个数的被开方数是n(n-1)+n-2=n2-2,所以,第n(n是整数,且n≥3)行从左到右数第n-2个数是.故答案为:.观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.三、解答题(本大题共5小题,共32.0分)16.(1)计算:|-|+-.(2)解方程组:.【答案】解:(1)|-|+-=3-2-=.(2),方程组整理得,①×3-②得:4x=12,解得x=3,将x=3代入①得:y=3.故原方程组的解为.【解析】(1)本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先将方程组整理为一般形式,再根据加减消元法解二元一次方程组即可求解.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.同时考查了加减消元法解二元一次方程组.17.解不等式组,并把解集在数轴上表示出来.【答案】解:解不等式①得x<3,解不等式②得x≥,∴不等式组的解集为≤x<3.其解集在数轴上表示为:.【解析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【答案】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%-40%-20%-30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.【解析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.【答案】解:(1)如图所示:(2)由图可知,A'(0,4),B'(-1,1);(3)存在.设P(0,y),则y=1或y=-5,故点P的坐标是(0,1)或(0,-5).【解析】(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.【答案】解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°-∠1-∠BAC=30°,∵a∥b,∴∠2=∠B=30°.【解析】由AC丄AB,∠1=60°,易求得∠B的度数,又由直线a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.此题考查了平行线的性质与垂直的定义.此题难度不大,注意掌握数形结合思想的应用.四、计算题(本大题共1小题,共7.0分)21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?【答案】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6-a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.【解析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6-a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.五、解答题(本大题共2小题,共16.0分)22.阅读探索(1)知识累计解方程组解:设a-1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为______ .【答案】【解析】解:(1)知识累计解方程组解:设a-1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法;(2)拓展提高设-1=x,+2=y,方程组变形得:,解得:,即,解得:;(3)能力运用设,可得,解得:,故答案为:(1)知识累计观察阅读材料的解题方法,理解换元法;(2)拓展提高设-1=x,+2=y,根据(1)中的结论确定出关于x与y方程组,求出解得到x与y的值,即可求出a与b的值;(3)能力运用设,根据已知方程组的解确定出m与n的值即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m-3|-|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.【答案】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得-2<m≤3;(2)|m-3|-|m+2|=3-m-m-2=1-2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<-,∴-2<m<-,∴m=-1.【解析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
济宁市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)点(0,1)在()A . x轴上B . y轴上C . 第一象限D . 第三象限2. (2分) (2017七下·台山期末) 如图,∥ ,分别与,相交于点E、F,则图中与相等的角的个数有()A . 2个B . 3个C . 4个D . 5个3. (2分) (2020七上·渭滨期末) 下列调查最适合抽样调查的是()A . 甲流期间,同学的体温B . 某品牌的粽子质量C . 班里同学的视力情况D . 我校八年级学生的数学学习情况4. (2分) (2019八下·枣庄期中) 若m>n,则下列不等式正确的是()A . m-2<n-2B .C . 6m<6nD . -8m>-8n5. (2分) (2017七下·巢湖期末) 下列说法正确的是()A . -2是-4的平方根B . 2是(-2)2的算术平方根C . (-2)2的平方根是2D . 8的立方根是46. (2分)已知下列命题:①若a≤0,则|a|=-a;②若ma²>na²,则m>n;③同位角相等,两直线平行;④对顶角相等.其中原命题与逆命题均为真命题的个数是()A . 1 个B . 2 个C . 3 个D . 4 个7. (2分) (2020七下·湛江期中) 在中,无理数有()个A . 1B . 2C . 3D . 48. (2分)如下图所示,图中是沈阳市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()D E F6鼓楼大北门7故宫8大南门东华门A . D7,E6B . D6,E7C . E7,D6D . E6,D79. (2分)(2017·安陆模拟) 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y钱,可列方程组为()A .B .C .D .10. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .二、填空题 (共10题;共12分)11. (1分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=________.12. (1分)﹣的绝对值的相反数是________.13. (1分) (2018九上·西峡期中) 如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为________.14. (3分)学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则可列方程组________ ,方程组的解为x=________ ,y=________ .15. (1分)当代数式﹣3x的值大于10时,x的取值范围是________.16. (1分) (2018七上·灵石期末) 为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于________.17. (1分)(2016·三门峡模拟) 如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=________.18. (1分) (2019八上·庆元期末) 点(1,-3)关于y轴的对称点坐标是________.19. (1分) (2019八上·重庆月考) 在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2 ,点A2的伴随点为A3 ,点A3的伴随点为A4 ,…,这样依次得点A1 , A2 ,A3…,An ,…若点A1的坐标为(3,1),则点A2019的坐标为________.20. (1分) (2015七下·双峰期中) 如果单项式﹣3x4a﹣by2与 x3ya+b是同类项,那么这两个单项式的积是________.三、解答题 (共7题;共77分)21. (5分)(2019·北京模拟)22. (15分) (2020七下·古冶月考)(1)已知 x2-25=0,求x的值(2)计算:;(3)计算:.23. (10分) (2019八下·南岸期中) 解不等式组,并把它们的解集表示在数轴上(1)(2)24. (10分) (2019八下·北京期末) 如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.(1)求直线y=kx+b(k≠0)的表达式;(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.25. (7分)(2018·安徽模拟) 为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图(1)根据直方图提供的信息,这组数据的中位数落在________范围内.(2)估计数据落在1.00~1.15中的频率是________.(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.26. (15分) (2020八上·青山期末) 如图已知点E、F在直线AB上,点G在线段CD上,ED与FC交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数。
七年级下学期数学综合测试题一、选择题(每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.已知是方程2x﹣ay=3的一个解,那么a的值为()A.1 B.﹣1 C.5 D.﹣52.下列事件是确定事件的是()A.买彩票中奖B.走到路口正好是绿灯C.掷一枚均匀的骰子,掷出的点数为6 D.早上的太阳从西方升起3.如右图,下列选项中,不能判断a∥b的是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°4.一个小球在如下几种图案地砖上自由滚动,小球停在阴影区域的概率最大的是()A .B .C .D .5.下列命题中是假命题的是()A.两点确定一条直线B.如果两个角的两边分别平行,那么这两个角相等C.过直线外一点有且只有一条直线与这条直线平行D.同角(等角)的补角相等6.任意扔一枚均匀的骰子,扔出的点数大于4的概率是多少?A.0 B. 1/2 C. 1/3 D. 17.如右图,△ABC中,∠A=65°,直线DE交AB于点D,交AC于点E,∠BDE+∠CED的值为()A.180°B.215°C.235°D.245°8.下列语句中,哪个是命题?A. 对顶角相等B. ∠A=65°吗?C. 作线段AB=CDD.过直线外一点作a的平行线。
9.如右图,在△ABC和△ADE中,已知AB=AD,还需要添加两个条件,才能使△ABC≌△ADE,不能添加的一组是()A.BC=DE,AC=AE B.∠B=∠D,∠BAC=∠DAEC.BC=DE,∠C=∠E D.AC=AE,∠BAD=∠CAE10.已知一个等腰三角形的两边长a,b满足方程组,则此等腰三角形的周长为()A.3 B.4 C.5 D.4或511.如右图,m∥n,△ABC的顶点C在直线m上,若AB=AC,∠A=40°,∠1=20°,则∠2的度数为()A.40°B.50°C.60°D.70°12.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=5O°,求∠BFC的大小()A.100°B.115°C.60°D.130°二、填空题(共18分)13.“面积相等的两个三角形全等”的逆命题是:.14.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=,P(摸到白球)=,P(摸到黄球)=.15.如右图,BD,CE分别是△ABC两个外角的角平分线,DE过点A,且DE∥BC.若DE=14,BC=7,则△ABC的周长为.16.在△ABC中,∠C=90°,∠BAC=60°.AD平分∠BAC,交BC于点D,DE⊥AB,垂足为点E;DF平分∠BDE,交AB于点F,FG⊥BC,垂足为点G,若AC=9,则FG=.三、解答题19.解二元一次方程组(12分)(1)x + y = 8 (2) 2x - 5y = 75x +3y =34 2x - 3y = -120. 请从以下三个概念中选择一个,尝试给它下定义。
山东省济宁市微山县2015-2016学年七年级数学下学期期末考试试题一、精心选一选:本大题共10小题,每题3分,共30分。
在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷II的答题栏内,相信你一定能选对!1.根据下列表述,能确定一点位置的是()A.东经118°,北纬40° B.微山县文化街C.北偏东60°D.望湖楼电影院3排2.为了了解某校七年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.400 B.被抽取的50名学生C.400名学生的体重D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50° B.40° C.30° D.60°7.下列表述正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%.若设甲、乙商品原来的单价分别为x元、y元,则下面根据题意,所列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤二、细心填一填:本大题共有5小题,每题3分,共15分,请把结果直接填在题中的横线上。
微山县鲁桥一中2014-2015学年第二学期期末考试七年级数学试卷( 时间:120分钟 满分:100分)注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,一、精心选一选(本大题共10小题,每小题3分,共30分。
每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 )1.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-42.如果a >b ,那么下列结论一定正确的是( )A.a―3<b —3;B.3―a <3—b ;C.ac 2>bc 2D.a 2>b 23.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为A .x >-1B .x <1C .-1≤x <1D .-1<x ≤14.下列调查中,适合用全面调查的( )A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目5.若关于x ,y 的二元一次方程组42x y kx y k -=⎧⎨+=⎩的解也是二元一次方程102=-y x 的解,则k 的值为 ( )A .2B .-2C .0.5D .-0.56.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A . 15°B . 20°C . 25°D . 30°7.不等式组⎩⎨⎧+-a x x x <<5335的解集为4<x ,则a 满足的条件是( )A.4<aB.4=aC.4≤aD.4≥a 8.如图,若AB //CD ,∠BEF =70°,则∠ABE +∠EFC +∠FCD 的度数是 ( ) A .215° B .250°C .320°D .无法知道9.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)10方程组⎩⎨⎧=-=+32y x ay x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 二、细心填一填:(本大题共5个小题,每题3分,共15分,只要求填写最后结果)11.不等式5x-9≤3(x+1)的解集是________.12.把二元一次方程3x -2y -5=0改成含x 的代数式表示y 的形式:y = .13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.已知二元一次方程组⎩⎨⎧=+=+54ay bx by ax 的解是⎩⎨⎧==12y x ,则a +b 的值为 .15.如图,将长方形纸片ABCD 进行折叠,如果∠BHG = 70°, 那么∠BHE =______度.三、认真答一答(本大题共7个小题,共55分,解答应写出文字说明、计算过程或推演步骤)16、 解方程组⎩⎨⎧=-=+823132y x y xA BCD E F (第15题图)GH ABC DEF(第8题图)小刚小军小华17.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.18.如图,EF ∥AD ,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整.∵EF ∥AD ,( _________ )∴∠2= _________ .(两直线平行,同位角相等;) 又∵∠1=∠2,( _________ ) ∴∠1=∠3.( _________ ) ∴AB ∥DG .( _________ ) ∴∠BAC+ _________ =180°( _________ ) 又∵∠BAC=70°,( _________ ) ∴∠AGD= _________ .19..如图,在平面直角坐标系中,O 为坐标原点,△ABC 的三个顶点坐标分别为A (-1,-2),B (1,1),C (-3,1),△A 1B 1C 1是△ABC 向下平移2个单位,向右平移3个单位得到的.(1)写出点A 1、B 1、C 1的坐标,并在右图中画出△A 1B 1C 1;(2)求△A 1B 1C 1的面积.xyO --1 1(第19题图)20.(8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A 、B 、C 、D 分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B 的部分补充完整;(3)图2中的色素含量为D 的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?21如图,已知直线1l ∥2l ,3l 、4l 和1l 、2l 分别交于点A 、B 、C 、D ,点P 在直线3l 或4l 上且不与点A 、B 、C 、D 重合.记1AEP ∠=∠,2PFB ∠=∠,3EPF ∠=∠. (1)若点P 在图(1)位置时,求证:312∠=∠+∠;(2)若点P 在图(2)位置时,请直接写出1∠、2∠、3∠之间的关系; (3)若点P 在图(3)位置时,写出1∠、2∠、3∠之间的关系并给予证明.22.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.微山县鲁桥一中2014-2015学年第二学期期末考试七年级数学试卷答案一、选择题:(共30分)CBDAA,CBBDC二、填空题:(共15分)11.x≤6 12.13.三 14.3。
2014-2015学年山东省济宁市微山县鲁桥一中七年级(下)期末数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣42.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.ac2>bc2 D.a2>b23.(3分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>﹣1 B.x<1 C.﹣1≤x<1 D.﹣1<x≤14.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目5.(3分)若关于x,y的二元一次方程组的解也是二元一次方程x﹣2y=10的解,则k的值为()A.2 B.﹣2 C.0.5 D.﹣0.56.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°7.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥48.(3分)如图,若AB∥CD,∠BEF=70°,则∠ABE+∠EFC+∠FCD的度数是()A.215°B.250°C.320° D.无法知道9.(3分)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.(3分)方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8二、细心填一填:(本大题共5个小题,每题3分,共15分,只要求填写最后结果)11.(3分)不等式5x﹣9≤3(x+1)的解集是.12.(3分)把二元一次方程3x﹣2y﹣5=0改成含x的代数式表示y的形式:y=.13.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.14.(3分)已知方程组的解是,则a+b的值为.15.(3分)如图所示,将长方形纸片ABCD进行折叠,如果∠BHG=70°,那么∠BHE=度.三、认真答一答(本大题共7个小题,共55分,解答应写出文字说明、计算过程或推演步骤)16.(7分)解方程组.17.(8分)解不等式组,并将它的解集在数轴上表示出来.18.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,()∴∠2=.(两直线平行,同位角相等)又∵∠1=∠2,()∴∠1=∠3.()∴AB∥DG.()∴∠BAC+ =180°()又∵∠BAC=70°,()∴∠AGD=.19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABC的三个顶点坐标分别为A(﹣1,﹣2),B(1,1),C(﹣3,1),△A1B1C1是△ABC向下平移2个单位,向右平移3个单位得到的.(1)写出点A1、B1、C1的坐标,并在图中画出△A1B1C1;(2)求△A1B1C1的面积.20.(8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?21.(8分)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.22.(8分)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.2014-2015学年山东省济宁市微山县鲁桥一中七年级(下)期末数学试卷参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.2.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.ac2>bc2 D.a2>b2【解答】解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故选:B.3.(3分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>﹣1 B.x<1 C.﹣1≤x<1 D.﹣1<x≤1【解答】解:由数轴得出,故选:D.4.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目【解答】解:A、了解某班同学立定跳远的情况难度较小、工作量不大,故适合用全面调查;B、了解一批炮弹的杀伤半径具有一定的破坏性,适合用抽样调查;C、了解某种品牌奶粉中含三聚氰胺的百分比具有一定的破坏性,适合用抽样调查;D、了解全国青少年喜欢的电视节目普查的难度较大,适合用抽样调查.故选:A.5.(3分)若关于x,y的二元一次方程组的解也是二元一次方程x﹣2y=10的解,则k的值为()A.2 B.﹣2 C.0.5 D.﹣0.5【解答】解:,①+②得:x=3k,将x=3k代入①得:y=﹣k,将x=3k,y=﹣k代入x﹣2y=10中得:3k+2k=10,解得:k=2.故选:A.6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4【解答】解:解不等式组得,∵不等式组的解集为x<4,∴a≥4.故选:D.8.(3分)如图,若AB∥CD,∠BEF=70°,则∠ABE+∠EFC+∠FCD的度数是()A.215°B.250°C.320° D.无法知道【解答】解:分别过点E、F作EG∥AB,HF∥CD,则AB∥EG∥HF∥CD,∵AB∥EG,∴∠ABE=∠BEG,又∵EG∥HF,∴∠EFH=∠GEF,∴∠ABE+∠EFH=∠BEG+∠GEF=∠BEF=70°,∵∠HFC+∠FCD=180°,∠EFH+∠HFC=∠EFC,∴∠ABE+∠EFC+∠FCD=180°+70°=250°.故选:B.9.(3分)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.10.(3分)方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选:C.二、细心填一填:(本大题共5个小题,每题3分,共15分,只要求填写最后结果)11.(3分)不等式5x﹣9≤3(x+1)的解集是x≤6.【解答】解:不等式去括号,得5x﹣9≤3x+3,移项合并同类项,得2x≤12,系数化1,得x≤6.所以,不等式5x﹣9≤3(x+1)的解集是x≤6.12.(3分)把二元一次方程3x﹣2y﹣5=0改成含x的代数式表示y的形式:y=.【解答】解:方程3x﹣2y﹣5=0,解得:y=,故答案为:.13.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.14.(3分)已知方程组的解是,则a+b的值为3.【解答】解:将代入方程,得到2a+b=4,2b+a=5,解得a=1,b=2.∴a+b=1+2=3.15.(3分)如图所示,将长方形纸片ABCD进行折叠,如果∠BHG=70°,那么∠BHE=55度.【解答】解:由题意得EF∥GH,∴∠1=∠BHG=70°,∴∠FEH+∠BHE=110°,由折叠可得∠2=∠FEH,∵AD∥BC∴∠2=∠BHE,∴∠FEH=∠BHE=55°.故答案为55.三、认真答一答(本大题共7个小题,共55分,解答应写出文字说明、计算过程或推演步骤)16.(7分)解方程组.【解答】解:,①×2+②×3得:13x=26,即x=2,把x=2代入①得:y=﹣1,则方程组的解为.17.(8分)解不等式组,并将它的解集在数轴上表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:18.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(内错角相等,两直线平行;)∴∠BAC+ ∠AGD=180°(两直线平行,同旁内角互补;)又∵∠BAC=70°,(已知)∴∠AGD=110°.【解答】解:∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABC的三个顶点坐标分别为A(﹣1,﹣2),B(1,1),C(﹣3,1),△A1B1C1是△ABC向下平移2个单位,向右平移3个单位得到的.(1)写出点A1、B1、C1的坐标,并在图中画出△A1B1C1;(2)求△A1B1C1的面积.【解答】解:(1)画出△A1B1C1,如图所示,点A1、B1、C1的坐标分别为(2,﹣4);(4,﹣1);(0,﹣1)’(2)根据网格得:B1C1=4,边B1C1上的高为3,则△A1B1C1的面积S=×4×3=6.20.(8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.21.(8分)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.【解答】解:(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1;证明:过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2;①当P在C点上方时,同(2)可证:∠3=∠DFP﹣∠CEP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠DFP﹣∠CEP+∠2﹣∠1=0,即∠3=∠1﹣∠2.②当P在D点下方时,∠3=∠2﹣∠1,解法同上.综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.22.(8分)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.【解答】解:设用A型货厢x节,则用B型货厢(50﹣x)节,由题意,得:解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地(50﹣x)的值为22,21,20.所以共有三种调运方案:第一种调运方案:用A型货厢28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.。