2019高考模拟试卷数学(理科)【杨顺国】
- 格式:doc
- 大小:581.32 KB
- 文档页数:16
FDCBA 数学科试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A .1x =-B .2x =-C .3x =- D .x =12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
全国高考2019届高三仿真测试(一)数学 (理科)本试题卷共8页,23题(含选考题),分选择题和非选择题两部分。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}6,5,4,3,2,1=U ,集合{}3,5,1=A ,集合{}Z x x x x B ∈≤--=,0)4)(2(|,则()U C A B = A .{}1,6 B .{}6 C .{}63,D .{}1,3 2.欧拉公式cos sin ixe x i x =+ (i 为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,3ie 表示的复数在复平面中位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限3.对任意非零实数b a ,,若b a ⊗的运算原理如图所示,则41log )21(22⊗-的值为( ) A .2 B .2- C .3 D .3-4.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为( ) A .14B .13C .23D .345.()()6221x x -+的展开式中4x 的系数为( )A .-160B .320C .480D .6406.某几何体的三视图如图所示,其侧视图为等边三角形,则该几何体的体积为A .3263+π B .43+π C .32123+π D .432+π 7.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( )A .-5B .7C .-11D .138.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为112V =⨯(底面圆的周长的平方⨯高),则由此可推得圆周率π的取值为( ) A .3B .3.1C .3.14D .3.29.已知向量,5=-=++的取值范围是A .]5,0[B .]25,5[C .]7,25[D .]10,5[10.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )A BC .41πD .31π11.已知圆22:1C x y +=,点P 为直线240x y +-=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A. 11,24⎛⎫ ⎪⎝⎭B. 11,42⎛⎫⎪⎝⎭C. ⎫⎪⎪⎝⎭D. ⎛ ⎝⎭12.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( )A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲ . 2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ .3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ . 6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x ,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分) 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF1=5.2(1)求椭圆C的标准方程;(2)求点E的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.。
2019届全国新高考原创仿真试卷(三)数学(理科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,若是复数的共轭复数,则()A. B. C. D.【答案】A【解析】由题意结合复数的运算法则有:.本题选择A选项.2. 已知集合,则的真子集个数为()A. 1B. 3C. 5D. 7【答案】B【解析】联立解得,则有两个元素,真子集个数为故选3. 已知变量之间满足线性相关关系,且之间的相关数据如下表所示:则()A. 0.8B. 1.8C. 0.6D. 1.6【答案】B【解析】由题意,,代入线性回归方程为,可得故选4. 下列说法中,错误的是()A. 若平面平面,平面平面,平面平面,则B. 若平面平面,平面平面,则C. 若直线,平面平面,则D. 若直线平面,平面平面平面,则【答案】C【解析】选项C中,若直线,平面平面,则有可能直线在平面内,该说法存在问题,由面面平行的性质定理可得选项A正确;由面面垂直的性质定理可得选项B正确;由线面平行的性质定理可得选项D正确;本题选择C选项.5. 已知抛物线的焦点为,抛物线上一点满足,则抛物线的方程为()A. B. C. D.【答案】D【解析】设抛物线的准线为,作直线于点,交轴于由抛物线的定义可得:,结合可知:,即,据此可知抛物线的方程为:.本题选择D选项.点睛:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.6. 已知函数,若,且函数存在最小值,则实数的取值范围()A. B. C. D.【答案】A【解析】代入,,则直线单调递减,又函数存在最小值则且,解得故选7. 已知,则()A. 0B.C.D.【答案】C【解析】由题意可知:,则:,结合诱导公式有:,,据此可得:.本题选择C选项.8. 运行如图所示的程序框图,若输出的的值为250,则判断框中可以填()A. B. C. D.【答案】B【解析】阅读流程图可得,该流程图输出的结果为:,注意到在求和中起到主导地位,且,故计算:当时,,结合题意可知:判断框中可以填.本题选择B选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.9. 现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了3场,各踢了4场,踢了2场,且队与队未踢过,队与队也未踢过,则在第一周的比赛中,队踢的比赛的场数是()A. 1B. 2C. 3D. 4【答案】D【解析】依据题意:踢了场,队与队未踢过,则C队参加的比赛为:;D踢了场,队与队也未踢过,则D队参加的比赛为:;以上八场比赛中,包含了队参加的两场比赛,分析至此,三队参加的比赛均已经确定,余下的比赛在中进行,已经得到的八场比赛中,A,B各包含一场,则在中进行的比赛中,,各踢了2场,即余下的比赛为:,综上可得,第一周的比赛共11场:,,则队踢的比赛的场数是.本题选择D选项.10. 已知双曲线的左、右顶点分别为,点为双曲线的左焦点,过点作垂直于轴的直线分别在第二、三象限交双曲线于两点,连接交轴于点,连接交于点,若是线段的中点,则双曲线的渐近线方程为()A. B. C. D.【答案】A【解析】由通径公式可得:,则:,直线的方程为:,令可得:,则:,可得直线方程为,令可得:,据此有:,整理可得:,则双曲线的渐近线方程为............................本题选择A选项.11. 如图,网格纸上小正方形的边长为1,下图画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】如图所示,三视图还原之后的几何体是两个全等的三棱柱和组成的组合体,其中棱柱的底面为直角边长为等腰直角三角形,高为,每个棱柱的表面积为:,两三棱柱相交部分的面积为:,据此可得,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.12. 已知函数,若,则实数的取值范围为()A. B. C. D.【答案】B【解析】由题意得,所以在单调递减,在单调递增,所以,则得令,,,在上,则单调递减,又,所以在单调递增,在单调递减,,所以,故选点睛:本题主要考查了不等式恒成立的问题,以及利用导数研究函数的单调性。
2019年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1-i1+i+2i ,则|z|= A .0 B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A .-12B .-10C .10D .12 解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM →·FN →=89.已知函数f(x)= ⎩⎪⎨⎪⎧e x, x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<1 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3BC=52+12×π×22=258π(52)2- 12×3×-6;-(258π-6)=6=ΔABC 面积∴p1=p211.已知双曲线C :x 23 - y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|=A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3, 3),∴|MN|=3 12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334 B .233 C .324 D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。
2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版)的全部内容。
2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·深圳期末]已知集合(){}22log 815A x y x x ==-+,{}1B x a x a =<<+,若A B =∅,则a 的取值范围是( ) A .(],3-∞B .(],4-∞C .()3,4D .[]3,42.[2019·广安期末]已知i 为虚数单位,a ∈R ,若复数()1i z a a =+-的共轭复数z 在复平面内对应的点位于第三象限,且5z z ⋅=,则z =( )A .12i -+B .12i --C .2i -D .23i -+3.[2019·潍坊期末]我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷()gu ǐ长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为1996分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为( )A .19533分B .110522分C .211513分D .512506分4.[2019·恩施质检]在区间[]2,7-上随机选取一个实数x ,则事件“2log 10x -≥”发生的概率是( ) A .13B .59C .79D .895.[2019·华阴期末]若双曲线()2210mx y m -=>的一条渐近线与直线2y x =-垂直,则此双曲线的离心率为( ) A .2B .52C .3D .56.[2019·赣州期末]如图所示,某空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是四分之三圆,则该几何体的体积为( )A .π4B .π2C .3π4D .3π27.[2019·合肥质检]函数()2sin f x x x x =+的图象大致为( )A .B .C .D .8.[2019·江西联考]已知0.21.1a =,0.2log 1.1b =, 1.10.2c =,则( ) A .a b c >>B .b c a >>C .a c b >>D .c a b >>9.[2019·汕尾质检]如图所示的程序框图设计的是求9998210099321a a a a ++⋯+++的一种算法,在空白的“"中应填的执行语句是( )A .100i n =+B .99i n =-C .100i n =-D .99i n =+10.[2019·鹰潭质检]如图所示,过抛物线()220y px p =>的焦点F 的直线l ,交抛物线于点A ,B .交其准线l 于点C ,若2BC BF =,且21AF =+,则此抛物线的方程为( )A .22y x =B .22y x =C .23y x =D .23y x =11.[2019·陕西联考]将函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位,在向上平移一个单位,得到()g x 的图象若()()124g x g x =,且1x ,[]22π,2πx ∈-,则122x x -的最大值为( )A.9π2B .7π2C .5π2D .3π212.[2019·中山期末]如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是( )①当102CQ <<时,S 为四边形; ②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 交点R 满足1113C R =; ④当314CQ <<时,S 为六边形; ⑤当1CQ =时,S 的面积为6.A .①③④B .②④⑤C .①②④D .①②③⑤二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·西安一模]已知向量a 与b 的夹角为60︒,3=a ,13+=a b ,则=b _____. 14.[2019·吴忠中学]()()52x y x y +-的展开式中33x y 的系数为__________.15.[2019·广安一诊]某车间租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品8件和B 类产品15件,乙种设备每天能生产A 类产品10件和B 类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A 类产品100件,B 类产品200件,所需租赁费最少为_________元 16.[2019·湖师附中]已知数列{}n a 满足:11a =,()*12nn n a a n a +=∈+N ,()1121n n b n a λ+⎛⎫=-⋅+ ⎪⎝⎭()*n ∈N ,1b λ=-,且数列{}nb 是单调递增数列,则实数λ的取值范围是___________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·濮阳期末]已知ABC△的内角A,B,C所对的边分别为a,b,c,且()+=.c A a C1cos3sin(1)求角A的大小;(2)若7a=,1△的面积.b=,求ABC18.(12分)[2019·揭阳一模]如图,在四边形ABED中,AB DE∥,AB BE⊥,点C在AB上,且AC BC CD△沿CD折起,使点A到达点P的位置,且PE与平面PBC ===,现将ACD⊥,2AB CD所成的角为45︒.(1)求证:平面PBC⊥平面DEBC;(2)求二面角D PE B--的余弦值.19.(12分)[2019·合肥质检]某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(1)求X的分布列;(2)以方案一与方案二所需费用的期望值为决策依据,医院选择哪种延保方案更合算?20.(12分)[2019·鹰潭期末]已知椭圆C 的方程为()222210x y a b a b+=>>,1F ,2F 为椭圆C 的左右焦点,离心率为2,短轴长为2.(1)求椭圆C 的方程;(2)如图,椭圆C 的内接平行四边形ABCD 的一组对边分别过椭圆的焦点1F ,2F ,求该平行四边形ABCD 面积的最大值.21.(12分)[2019·菏泽期末]已知函数()ln 1a f x x x=+-,a ∈R .(1)当0a >时,若函数()f x 在区间[]1,3上的最小值为13,求a 的值;(2)讨论函数()()3x g x f x '-=零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4—4:坐标系与参数方程】[2019·哈三中]已知曲线1:C x 2:x C y ϕϕ⎧=⎪⎨=⎪⎩,(ϕ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线1C 和2C 的方程化为极坐标方程;(2)设C与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与1C,2C交于P,Q两1点,求P,Q两点间的距离.23.(10分)【选修4-5:不等式选讲】[2019·江南十校]设函数()()=-++-.lg2121f x x x a(1)当4f x的定义域;a=时,求函数()(2)若函数()f x的定义域为R,求a的取值范围.2019届高三第三次模拟考试卷理 科 数 学(一)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由题意,集合(){}{}{}222log 815815035A x y x x x x x x x x ==-+=-+>=<>或,{}1B x a x a =<<+;若A B =∅,则3a ≤且15a +≤,解得34a ≤≤,∴实数a 的取值范围为[]3,4.故选D . 2.【答案】A 【解析】由5z z⋅=可得()2215a a +-=,解得1a =-或2a =,∴12i z =-+或2i z =-,∵z 在复平面内对应的点位于第三象限,∴12i z =-+.故选A . 3.【答案】B【解析】一年有二十四个节气,每相邻两个节气之间的日影长度差为1996分, 且“冬至”时日影长度最大,为1350分;“夏至"时日影长度最小,为160分. ∴135012160d +=,解得119012d =-, ∴“立春”时日影长度为:11901135031052122⎛⎫+-⨯= ⎪⎝⎭(分).故选B .4.【答案】B【解析】区间[]2,7-的长度为()729--=;由2log 10x -≥,解得2x ≥,即[]2,7x ∈, 区间长度为725-=,事件“2log 10x -≥”发生的概率是59P =.故选B . 5.【答案】B【解析】设双曲线()2210mx y m -=>为2221x y a-=,它的一条渐近线方程为1y x a =,直线2y x =-的斜率为2-,∵直线1y x a =与2y x =-垂直,∴()121a⨯-=-,即2a =,∴2c e a ==.故选B .6.【答案】D【解析】由三视图可知,该几何体是底面半径为1、高为2的圆柱的34, ∴该几何体的体积为233ππ1242⨯⨯⨯=.故选D . 7.【答案】A【解析】∵()()()22sin sin f x x x x x x x f x -=--=+=,∴()f x 为偶函数,选项B 错误,()()2sin sin f x x x x x x x =+=+,令()sin g x x x =+,则()1cos 0g x x ='+≥恒成立, ∴()g x 是单调递增函数,则当0x >时,()()00g x g >=, 故0x >时,()()f x xg x =,()()()0f x g x xg x =+'>', 即()f x 在()0,+∞上单调递增,故选A . 8.【答案】C【解析】0.201.1 1.11a =>=,0.20.2log 1.1log 10b =<=, 1.1000.20.21c <=<=,故a c b >>.故选C . 9.【答案】C【解析】由题意,n 的值为多项式的系数,由100,99⋯直到1, 由程序框图可知,输出框中“”处应该填入100i n =-.故选C .10.【答案】A【解析】如图,过A 作AD 垂直于抛物线的准线,垂足为D ,过B 作BE 垂直于抛物线的准线,垂足为E ,P 为准线与x 轴的交点,由抛物线的定义,BF BE =,21AF AD =,∵2BC BF =,∴2BC BE =,∴45DCA ∠=︒, ∴222AC AD ==+,22211CF =+--=, ∴222CF PF ==,即22p PF ==,∴抛物线的方程为22y x =,故选A .11.【答案】D【解析】将函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位,再向上平移一个单位,得到()2ππsin 21cos 2136g x x x ⎛⎫=-++=-+ ⎪⎝⎭的图象,故()g x 的最大值为2,最小值为0,若()()124g x g x =,则()()122g x g x ==,或()()122g x g x ==-(舍去). 故有()()122g x g x ==,即12cos2cos21x x ==-,又1x ,[]22π,2πx ∈-,则12πx =,22πx =-,则122x x -取得最大值为π3ππ22+=.故选D . 12.【答案】D【解析】当102CQ <<时,如图,是四边形,故①正确;当12CQ =时,如图,S 为等腰梯形,②正确;当34CQ =时,如图,由三角形CQP 与三角形1A AH 相似可得123A H =,113D H =,由三角形ABP 与三角形1RD H 相似可得,123D R =,113C R =,③正确;当314CQ <<时,如图是五边形,④不正确;当1CQ =时,如图S 是菱形,面积为362⋅=,⑤正确,正确的命题为①②③⑤,故选D .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】1【解析】根据题意,设t =b ,()0t >,向量a 与b 的夹角为60︒,3=a ,则32t⋅=a b ,又由13+=a b ,则()222229313t t +=+⋅+=++=a b a a b b , 变形可得:2340t t +-=,解可得4t =-或1, 又由0t >,则1t =;故答案为1. 14.【答案】40【解析】()52x y -展开式的通项公式为()()()555155C 221C r r r r r r r r r T x y x y ---+=⋅=--.令52r -=,得3r =;令53r -=,得2r =;∴()()52x y x y +-的展开式中33x y 系数为()()3223325521C 2140C ⨯-⨯+⨯-=⨯. 故答案为40. 15.【答案】3800【解析】设甲种设备需要生产x 天,乙种设备需要生产y 天, 该公司所需租赁费为z 元,则300400z x y =+,甲、乙两种设备生产A ,B 两类产品的情况为45503540,x y x y x y +≥⎧⎪+≥⎨⎪∈∈⎩N N ,做出不等式表示的平面区域,由45503540x y x y +=⎧⎨+=⎩,解得()10,2,当300400z x y =+经过的交点()10,2时,目标函数300400z x y =+取得最低为3800元. 故答案为3800.16.【答案】2,3⎛⎫-∞ ⎪⎝⎭【解析】由题意,数列{}n a 满足12n n n a a a +=+ ,取倒数可得1121n na a +=+, 即111121n n a a +⎛⎫+=+ ⎪⎝⎭,∴数列11n a ⎧⎫+⎨⎬⎩⎭表示首项为2,公比为2的等比数列, ∴112n na +=,∴()()112122n n nb n n a λλ+⎛⎫=-+=-⋅ ⎪⎝⎭, ∵数列{}n b 是单调递增数列,∴当2n ≥时,1n n b b +>, 即()()122122n n n n λλ--⋅>--⋅,21n λ>-,221λ>-,32λ<; 当1n =时,21b b >,()122λλ-⋅>-,23λ<, 综上,23λ<.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3A =;(2)S =.【解析】(1)∵()1cos sin c A C +=,由正弦定理可得()sin 1cos sin C A A C +cos 1A A -=,∴π1sin 62A ⎛⎫-= ⎪⎝⎭,A 是ABC △的内角,∴ππ66A -=,∴π3A =.(2)∵a =1b =.由余弦定理可得2222cos a b c bc A =+-, 即217c c +-=,可得260c c --=,又0c >,∴3c =,∴ABC △的面积11sin 1322S bc A ==⨯⨯= 18.【答案】(1)见解析;(2).【解析】(1)证明:∵AB CD ⊥,AB BE ⊥,∴CD EB ∥,∵AC CD ⊥,∴PC CD ⊥,∴EB PC ⊥,且PC BC C =,∴EB ⊥平面PBC , 又∵EB ⊂平面DEBC ,∴平面PBC ⊥平面DEBC . (2)由(1)知EB ⊥平面PBC ,∴EB PB ⊥,由PE 与平面PBC 所成的角为45︒得45EPB ∠=︒,∴PBE △为等腰直角三角形,∴PB EB =,∵AB DE ∥,结合CD EB ∥得2BE CD ==,∴2PB =,故PBC △为等边三角形, 取BC 的中点O ,连结PO , ∵PO BC ⊥,∴PO ⊥平面EBCD ,以O 为坐标原点,过点O 与BE 平行的直线为x 轴,CB 所在的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系如图,则()0,1,0B ,()2,1,0E ,()2,1,0D -,(3P , 从而()0,2,0DE =,()2,0,0BE =,(2,1,3PE =,设平面PDE 的一个法向量为(),,x y z =m ,平面PEB 的一个法向量为(),,a b c =n ,则由00DE PE ⎧⋅=⎪⎨⋅=⎪⎩m m 得20230y x y z =⎧⎪⎨+=⎪⎩,令2z =-得()3,0,2=-m ,由00BE PE ⎧⋅=⎪⎨⋅=⎪⎩n n 得20230a abc =⎧⎪⎨+-=⎪⎩,令1c =得()3,1=n ,设二面角D PE B --的大小为θ,则7cos 72θ⋅===⋅⨯m n m n , 即二面角D PE B --的余弦值为7.19.【答案】(1)见解析;(2)选择延保方案二较合算. 【解析】(1)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(2)选择延保一,所需费用1Y 元的分布列为:117117697000900011000130001500010720100502525100EY =⨯+⨯+⨯+⨯+⨯=(元). 选择延保二,所需费用2Y 元的分布列为:267691000011000120001042010025100EY =⨯+⨯+⨯=(元). ∵12EY EY >,∴该医院选择延保方案二较合算.20.【答案】(1)2212x y +=;(2)【解析】(1)依题意得22b =,c e a ==,解得a =1b c ==,∴椭圆C 的方程为2212x y +=.(2)当AD 所在直线与x 轴垂直时,则AD 所在直线方程为1x =,联立2212x y +=,解得y =,此时平行四边形ABCD 的面积S =当AD 所在的直线斜率存在时,设直线方程为()1y k x =-,联立2212x y +=,得()2222124220k x k x k +-+-=,设()11,A x y ,()22,D x y ,则2122412k x x k +=+,21222212k x x k -=+,则)22112k AD k +=+,两条平行线间的距离d =则平行四边形ABCD的面积)22112k S k +==+令212t k =+,1t >,则S =()10,1t ∈,开口向下,关于1t单调递减,则(S 0,=,综上所述,平行四边形ABCD 的面积的最大值为 21.【答案】(1)13e a =;(2)见解析. 【解析】(1)()()2210a x af x x xx x-=-=>', 当01a <≤时,()0f x '>在()1,3上恒成立,这时()f x 在[]1,3上为增函数,∴()()min 11f x f a =-=,令113a -=得413a =>(舍去),当13a <<时,由()0f x '=得,()1,3x a =∈,若()1,x a ∈,有()0f x '<,()f x 在[]1,a 上为减函数, 若(),3x a ∈有()0f x '>,()f x 在[],3a 上为增函数,()()minln f x f a a '==,令1ln 3a =,得13e a =.当3a ≥时,()0f x '<在()1,3上恒成立,这时()f x 在[]1,3上为减函数, ∴()()min 3ln313a f x f ==+-',令1ln3133a +-=得43ln 32a =-<(舍去). 综上知,13e a =.(2)∵函数()()()21033x a xg x f x x xx -=--'=>, 令()0g x =,得()3103a x x x =-+>.设()()3103x x x x ϕ=-+>,()()()2111x x x x ϕ'=-+=--+, 当()0,1x ∈时,()0x ϕ'>,此时()x ϕ在()0,1上单调递增, 当()1,x ∈+∞时,()0x ϕ'<,此时()x ϕ在()1,+∞上单调递减,∴1x =是()x ϕ的唯一极值点,且是极大值点,因此1x =也是()x ϕ的最大值点,()x ϕ的最大值为()121133ϕ=-+=.又()00ϕ=,结合()x ϕ的图象可知: ①当23a >时,函数()g x 无零点;②当23a =时,函数()g x 有且仅有一个零点; ③当203a <<时,函数()g x 有两个零点; ④当0a ≤时,函数()g x 有且只有一个零点;综上所述,当23a >时,函数()g x 无零点;当23a =或0a ≤时,函数()g x 有且仅有一个零点; 当203a <<时,函数()g x 有两个零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1)1π:sin 6C ρθ⎛⎫+= ⎪⎝⎭,2226:12sin C ρθ=+;(2)1.【解析】(1)∵2C 的参数方程为x y ϕϕ⎧=⎪⎨=⎪⎩,(ϕ为参数),∴其普通方程为22162x y +=,又1:C x∴可得极坐标方程分别为1π:sin 6C ρθ⎛⎫+=⎪⎝⎭,2226:12sin C ρθ=+.(2)∵)M ,()0,1N ,∴12P ⎫⎪⎪⎝⎭,∴OP 的极坐标方程为π6θ=,把π6θ=代入πsin 6ρθ⎛⎫+= ⎪⎝⎭得11ρ=,π1,6P ⎛⎫ ⎪⎝⎭,把π6θ=代入22612sin ρθ=+得22ρ=,π2,6Q ⎛⎫⎪⎝⎭, ∴211PQ ρρ=-=,即P ,Q 两点间的距离为1.23.【答案】(1)53,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;(2)3a <.【解析】(1)当4a =时,()f x 定义域基本要求为21214x x -++>, 当1x ≤-时,5122244x x x --->⇒<-;2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word 版)当112x -<<时,12224x x -++>,无解; 当12x ≥时,3212244x x x -++>⇒>,综上:()f x 的定义域为53,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭; (2)由题意得2121x x a -++>恒成立()min 2121a x x ⇒<-++,()()()min 2121212221223x x x x x x -++=-++≥--+=,∴3a <.。
2019年普通高等学校招生全国统一考试新课标3卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x-1NO},B={0,l,2},则ADB=()A.{0}B.{1}C.{1,2}D.{0,1,2}解析:选C2.(l+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i解析:选D3.中国古建筑借助样卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A BCD解析:选A4.若sin a日,则cos2a=()7-97-9-C.8-9-D.]8解析:选B cos2a=l-2sin2 a=1--=-y y25・或+-)5的展开式中x,的系数为()xA.10B.20C.40D.809解析:选C展开式通项为Tr+i=C5r x10-2r(-)r=C5r2r x10-3r,r=2,T3=。
522七[故选C6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y=2±,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[血3艘]D.[2近,3也]解析:选A,线心距d=2带,P到直线的最大距离为3彖,最小距离为^2,|AB|=2V2,S min=2,S max=67,函数y=-x4+x,+2的图像大致为()解析:选D原函数为偶函数,设t=x2,tNO,f(t)=-t2+t+2,故选D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B X〜B(10,p),DX=10p(l-p)=2.4,解得p=0.4或p=0.6,p=0.4时,p(X=4)=Cio4(0.4)4(0.6)6>P(X=6)= Cio6(O.4)6(0.6)4,不合。
2019届全国高考仿真模拟(三)理科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·郑州一模)设全集{}4U x N x *=∈≤,集合{}1,4A =,{}2,4B =,则()U AB =ð( )A .{}1,2,3B .{}1,2,4C .{}1,3,4D .{}2,3,4 2.(2018·保定市一模)设z 为复数12z i =-的共轭复数,则()2016z z -=( )A .20162B .20162- C .20162i D .i -3.(2018·河南八市质检)已知函数()2f x x x x =-+,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0,+∞B .()f x 是偶函数,递减区间是(),1-∞-C .()f x 是奇函数,递增区间是(),1-∞-D .()f x 是奇函数,递增区间是()1,1-4.(2018·太原一模)已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点坐标为()2,0,则双曲线方程为( )A .22126x y -= B .22162x y -= C.2213y x -= D .2213x y -= 5.(2018·咸阳市二模)如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A .21π-B .2πC.22π D .221π-6.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()1f α=,0,3πα⎛⎫∈ ⎪⎝⎭,则5cos 26πα⎛⎫+= ⎪⎝⎭( )A .13 B .3±3 D .3- 7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有坦厚十尺,两鼠对穿,初日各一尺,大鼠日自信,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .4B .5 C.2 D .3 8.(2018·海口市调研)cos104sin 80sin10-=( )A ..3 9.不等式组1,24x y x y +≥⎧⎨-≤⎩的解集为D ,下列命题中正确的是( )A .(),x y D ∀∈,21x y +≤-B .(),x y D ∀∈,22x y +≥-C .(),x yD ∀∈,23x y +≤ D .(),x y D ∀∈,22x y +≥10.已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若3FP FQ =,则QF =( ) A .83 B .52C.3 D .2 11.(2018·昆明市统测)设函数()ln f x x ax =+,若存在()00,x ∈+∞,使()00f x >,则a 的取值范围是( )A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭ C.()1,-+∞ D .1,e ⎛⎫-+∞ ⎪⎝⎭12.已知sin sin 3παα⎛⎫++= ⎪⎝⎭,则cos 3πα⎛⎫+= ⎪⎝⎭A .45-B .35- C.35 D .45第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量1e ,2e 的夹角为60,则向量12e e +与212e e -的夹角为 . 14.(2018·东北四市一联)在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀,当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是 .15.(2018·海口市调研)若()1021x a x x ⎛⎫-+ ⎪⎝⎭的展开式中6x 的系数为30,则a = .16.(2018·山西四校联考)在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且1cos cos 2a Bb Ac -=,当()tan A B -取最大值时,角B 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (2018·成都市二诊)已知数列{}n a 中,11a =,又数列()2n n N na *⎧⎫∈⎨⎬⎩⎭是首项为2、公差为1的等差数列.(1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n S .18. 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望()E ξ.19. (2018·邯郸模拟)如图,在四棱锥P ABCD -中,ABD △ 是边长为30CBD CDB ∠=∠=,E 为棱PA 的中点.(1)求证://DE 平面PBC ;(2)若平面PAB ⊥平面ABCD ,2PA PB ==,求二面角P BC E --的余弦值.20. (2018·河南九校联考)已知椭圆()2222:10x y W a b a b +=>>点A 在圆22:16O x y +=上.(1)求椭圆W 的方程;(2)若点P 为椭圆W 上不同于点A 的点,直线AP 与圆O 的另一个交点为Q .是否存在点P ,使得3PQ AP=?若存在,求出点P 的坐标;若不存在,说明理由.21. (2018·唐山市二模)设函数()()21ln 2x f x k x k x =+--.(1)讨论()f x 的单调性;(2)若k 为正数,且存在0x 使得()2032f x k <-,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为32cos 42sin x y θθ=+⎧⎨=-+⎩(θ为参数).(1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)已知()2,0A -,()0,2B ,圆C 上任意一点(),M x y ,求ABM △面积的最大值. 23.选修4-5:不等式选讲(1)已知a ,b 都是正数,且a b ≠,求证:3322a b a b ab +>+;(2)已知a ,b ,c 都是正数,求证:222222a b b c c a abc a b c++≥++.数学试卷参考答案一、选择题1-5:AADCA 6-10:DABBA 11、12:DD 二、填空题 13.23π 14.丙 15.2 16.6π 三、解答题17.解析:(1)∵数列2n na ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列, ∴()2211nn n na =+-=+, 解得()21n a n n =+.(2)∵()211211n a n n n n ⎛⎫==- ⎪++⎝⎭.∴11111212231n S n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-=⎪++⎝⎭. 18.解析:(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为11114624P =⨯=, 两人都付40元的概率为2121233P =⨯=,两人都付80元的概率为311121111142634624p ⎛⎫⎛⎫=--⨯--=⨯=⎪ ⎪⎝⎭⎝⎭, 则两人所付费用相同的概率为12311152432412P P P P =++=++=. (2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,()11104624P ξ==⨯=,()121114043264P ξ==⨯+⨯=,()11121158046234612P ξ==⨯+⨯+⨯=,()1112112026434P ξ==⨯+⨯=,()1111604624P ξ==⨯=,ξ的分布列为()040801201608024412424E ξ=⨯+⨯+⨯+⨯+⨯=.19. 解析:(1)证明:如图,取AB 的中点F ,连接EF 、DF ,∴//EF PB ,∵30CBD FDB ∠=∠=,ABC △为正三角形, ∴//DF BC ,∵EF DF ⊂、平面DEF ,PB BC ⊂、平面PBC , ∴平面//DEF 平面PBC , ∵DE ⊂平面DEF , ∴//DE 平面PBC . (2)∵2PA PB ==, ∴PF AB ⊥,∵平面PAB ⊥平面ABCD ,交线为AB , ∴PF ⊥平面ABCD ,且1PF =,连接DF ,分别取FB ,FD ,FP 所在直线为x ,y ,z 轴,建立空间直角坐标系,如图所示.则点()A ,)B,)2,0C,()0,3,0D ,()0,0,1P ,12E ⎫⎪⎪⎝⎭, 设平面BCP的法向量为(,m x y =, 则()0,2,0BC =,()BP =, ∴0m BC ⋅=,0m BP ⋅=,0y =,1x =即(m =,设平面BCE的法向量为(,n a b =,122BE ⎛⎫-= ⎪ ⎪⎝⎭,∴13a =,0b =,∴13n ⎛= ⎝.∴57cos ,m n m nm n⋅<>==⋅ 20.解析:(1)因为椭圆W 的左顶点A 在圆22:16O x y+=上,令0y =,得4x =±,所以4a =,所以c e a ==,所以c =,所以2224b a c =-=, 所以W 的方程为221164x y +=. (2)设点()11,P x y ,()22,Q x y ,设直线AP 的方程为()4y k x =+,与椭圆方程联立得()224,1,164y k x x y ⎧=+⎪⎨+=⎪⎩化简得到()2222143264160k x k x k +++-=,因为4-为方程的一个根,所以()21232414k x k -+-=+,所以21241614k x k -=+,所以214AP k=+. 因为圆心到直线AP的距离为d =,所以AQ ===, 因为1PQ AQ AP AQ APAPAP-==-,代入得到222221433113111PQk k AP k k k +=-=-==-+++, 显然23331k -≠+,所以不存在直线AP ,使得3PQ AP=.21. 解析:(1)()()()()2111x k x k x x k k f x x k x x x+--+-'=+--==,(0x >), ①当0k ≤时,()0f x '>,()f x 在()0,+∞上单调递增;②当0k >时,()0,x k ∈,()0f x '<;(),x k ∈+∞,()0f x '>, 所以()f x 在()0,k 上单调递减,在(),k +∞上单调递增.(2)因为0k >,由(1)知()232f x k +-的最小值为()2233ln 222k f k k k k k +-=+--,由题意得23ln 022k k k k +--<,即31ln 022k k k +--<. 令()31ln 22k g k k k =+--,则()222113230222k k g k k k k -+'=-+=>, 所以()g k 在()0,+∞上单调递增,又()10g =, 所以()0,1k ∈时,()0g k <,于是23ln 022k k k k +--<;- 11 - ()1,k ∈+∞时,()0g k >,于是23ln 022k k k k +-->. 故k 的取值范围为01k <<.22. 解析:(1)圆C 的参数方程为32cos 42sin x y θθ=+⎧⎨=-+⎩(θ为参数), 所以普通方程为()()22344x y -++=.由cos x ρθ=,sin y ρθ=,可得()()22cos 3sin 44ρθρθ-++=,化简可得圆C 的极坐标方程:26cos 8sin 210ρρθρθ-++=.(2)点(),M x y 到直线:20AB x y -+=的距离为d =ABM △的面积12cos 2sin 9924S AB d πθθθ⎛⎫=⨯⨯=-+=-+ ⎪⎝⎭,所以ABM △面积的最大值为9+23.证明:(1)∵a b ≠,∴0a b -≠,∴2220a ab b -+>,∴22a ab b ab -+>,而a ,b 均为正数,∴0a b +>,∴()()()22a b a ab b ab a b +-+>+, ∴3322a b a b ab +>+成立.(2)∵a ,b ,c 都是正数,∴222222a b b c acb +≥,222222a b c a bca +≥,222222c a b c abc +≥,三式相加可得()()22222222a b b c c a abc a b c ++≥++,∴()()222222a b b c c a abc a b c ++≥++, ∴222222a b b c c a abc a b c++≥++.。
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!2019年高考数学(理)模拟题及答案带解析【满分150分,考试时间为120分钟】一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 4 = {-2,-1,0,2,3},B = {y | y =对-1, x w 4},则 4 B 中兀素的个数是A. 2B. 3C. 4D. 52.,是虚数单位,复数z = a + i(^a e R)满足z2 + z = l-3i,贝!]忖=A.血或厉 B 2 或5 C. A/5 D. 53.设向量°与〃的夹角为0,且a = (-2,1), a + 2"(2,3),则cos& =A. —E B 2 C. D.5 5 5 2^5__5-A. 7B. -7C.75.《九章算术》中,将底面是直角二角形的直二棱柱称之为"堑堵",已知某"堑堵"的三视图如图所示,则该"堑堵" 的表面积为A. 4B. 6 + 4 血C. 4 + 4^2D. 26.已知数列{a n},{b n}满足b n=a n+a n+l,则"数列匕}为等差数列"是"数列{$}为等差数列"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件7.执行如图所示的程序框图,则输出的"A. 1 D.-8.在(x-2)10展开式中,二项式系数的最大值为a,含F项的系数为方,则2 = aA. —B. —C.D.21 80 80 21x — 2y— 5 W 09.设实数满足约束条件x+y-4<0 ,贝% = /+尸的最小值为3.x+y-10>0A. VioB. 10C. 8D. 510.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为A A/6 g V6 c 3V2 D 3V23龙6718^. 2 211.已知O为坐标原点,F是双曲线-与= l(a>0』>0)的左焦a b点,4,B分别为「的左、右顶点,P为厂上一点,且PF丄兀轴,过点4的直线/与线段PF交于点M ,与y轴交于点E,直线BM与y轴交于点N,若|OE\ = 2\ON\ ,则「的离心率为A. 3B. 2C. -D.212.已知函数/(x) = ln(e' +e-') + x2 ,则使得/(2x) >/(x + 3)成立的■x的取值范围是A. (-1,3)B. (^0,-3)(3,+co)C. (-3,3)D. (YO,—1)(3,4W)二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。
{x|-2≤x<2}B。
{x|x<2}C。
{x|-2<x<2}D。
{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。
(-∞,1)B。
(-∞,-1)C。
(1,+∞)D。
(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。
6斤B。
9斤C。
9.5斤D。
12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。
60B。
30C。
20D。
105.设x∈R,[x]表示不超过x的最大整数。
若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。
3B。
4C。
5D。
66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。
0,0B。
1,1C。
0,1D。
1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。
10B。
11C。
12D。
138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。
[0,6]B。
[0,4]C。
[6,+∞)D。
[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。
2019高考模拟试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前.考生务必将自己的姓名.准考证号填写在本试卷相应的位置。
3.全部答案写在答题卡上.写在试卷上无效。
4.本试卷满分150分.测试时间120分钟。
5.考试范围:高考全部内容。
第Ⅰ卷一.选择题:本大题共12小题.每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的。
(1) 负数i33+4i的实数与虚部之和为A.725B.-725C.125D.-125(2)已知集合A={x∈z}|x2-2x-3˂0},B={x|sinx˂x-12},则A∩B=A.{2}B.{1,2}C.{0,1,2}D.{2,3}(3).某高中在新学期开学初,用系统抽样法从1600名学生中抽取20名学生进行问卷调查,将1600名学生从1开始进行编号,然后按编号顺序平均分成20组(1-80号,81-160号,...,1521-1600号),若第4组与第5组抽出的号码之和为576,则第7组抽到的号码是A.248B.328C.488D.568(4).在平面直角坐标系x o y 中,过双曲线c :x 2-y 23=1的右焦点F 作x 轴的垂线l,则l与双曲线c 的渐近线所围成的三角形的面积为A.2√3B.4√3C.6D.6√3(5).袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球得2分,若摸出黑球得1分,则3次摸球所得总分至少是4分的概率为A.13B.14C.34D.78(6).已知数到{a n }是等差数列,Sn 为其前n 项和,且a 10=19,s 10=100,记bn=an+1a n,则数列{b n}的前100项之积为A.3100B.300C.201D.199(8).执行如图所示的流程图,输出的结果为A.2B.1C.0D.-1 (9).函数f(x )=|x|+ax 2(其中a ∈R)的图像不可能是(10).已知点P(x 0,y 0)是抛物线y 2=4x 上任意一点,Q 是圆C:(x +2)2+(y −4)2=1上任意一点,则|PQ|+x 0的最小值为 A.5 B.4 C.3 D.2(11).如图所示,AB 是圆O 的直径,P 是圆弧AB 上的点,M ,N 是直径AB 上关于O 对称的两点,且|AB|=6|AM|=6,则PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ = A.5 B.6 C.8 D.9(11题图)(12).已知f (x )=e xx,若方程f2(x )+2a 2=3a|f (x )|有且仅有4个不等实根,则实数a 的取值范围为A.(0,e2) B.(e2,e) C.(0 ,e) D.(e ,+ ∞)第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考生都必须作答,第22题~第23题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13).已知平面向量a=(1 ,2),b=(-2,m ),且|a+b|=|a -b|,则则z=x 2+y 2+4x+2y 的最小值为__________(15).函数f(x )=sin x (sin −2cos 2x2+1)在[0,π2]上的值域为___________。
(16).过双曲线x 2a2-y 2b 2=1(a>0,b>0)的左焦点向圆x 2+y 2=a 2作一条切线,若该切线被双曲线的两条渐近线截得的线段的长为√3a ,则双曲线的离心率为____________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17).(本小题满分12分)已知公差不为零的等差数列{a n }中,Sn 为其中n 项和,a 1=1,S 1,S22,S44成等比数列。
(Ⅰ)求数列{a n}的通项公式:(Ⅱ)记b n=a n·2a n,求数列{b n}的前几项和T n。
(18).如图所示,几何体A1B1D1-ABCD中,四边形A A1B1B,AD D1A1均为边长为6的正方形,四边形ABCD为菱形,且∠BAD=120°,点E在棱B1D1上,且B1E=2E D1,过A1、D、E的平面交C D1于F。
(Ⅰ).作出过A1、D、E的平面被该几何体A1B1D1-ABCD截得的截面,并说明理由;(Ⅱ)求直线BF与平面E A1D所成角的正弦值。
19为了解公众对“延迟退休”的态度,某课外学习小组从某社区年龄在[15,75]的居民中随机抽取50人进行调查,他们的年龄的频率分布直方图如下年龄在[15,25)、[25,35)、[35,45)、[45,55)、[55,65)、[65,75]的被调查者中赞成人数分别为a,b,12, 5,2和1,其中a˂b,若前三组赞成的人数的平均数为8,方差为328。
(Ⅰ)根据以上数据,填写下面2x2列联表,并回答是否有99%的把握认为年龄以55岁为分界点对“延迟退休”的态度有差异?(Ⅱ)若分别从年龄在[15,25)、[25,35)的被调查对象中各随机选取两人进行调查,记选中的4个人中不赞成“延迟退休”的人数为x,求随机变量x的分布列和数学期望。
参考数值:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)其中n=a+b+c+d20.已知直线x-2y+2=0经过椭圆c:x2a2+y2b2=1 (a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=103分别交于M , N两点(Ⅰ)求椭圆的方程。
(Ⅱ)求线段MN的长度的最小值。
21.已知函数f(x)=lnxx+a(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直(Ⅰ)试比较20162017与20172016的大小,并说明理由(Ⅱ)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1·x2>e2请考生从22.23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所选涂题号进行评分:多涂,多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。
(22).(本小题满分10分)[选修4-4:坐标系与参数方程]以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2sin(π2-θ)。
(Ⅰ)求曲线C的直角坐标方程;设p (1,1),直线l与曲线C 相交于A,B 两点,求1|PA|+1|PB|的值.(23).(本小题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|x|+|2x -3| (Ⅰ)求不等式f (x )≤9的解集;(Ⅱ)若函数y=f (x )-a 的图像与x 轴围成的四边形的面积不小于212,求实数a 的取值范围.理科数学(答案)1. B [解析]因为i33+4i=−i(3−4i)(3+4i)(3−4i)=−4−3i25,所以复数i33+4i 的实部为4−25,虚部为-325,实部与虚部之和为7−25,故选B 。
2. A[解析]因为A={x ∈z1x 2−2x −3˂0}={x ∈z1-1˂x˂3}={0,1,2}由sino=o>−12,sin1>sin π6=12,sin2˂32,可得O ∉B,1∉B,2∈B ,所以A ∩B={2},故选A 。
3. C[解析]各组抽到的编号按照从小到大的顺序排成一列,恰好构成公差为80的等差数列,设第4组与第5组抽出的号码分别为x ,x+80,则x+x+80=576,x=248,所以第7组抽到的号码是248+(7-4)x80=488,故选C 4. B [解析]双曲线C:=x 2-y 23=1的右焦点F=(2,0),则l:x=2,所以l与双曲线c 的渐近线y=±√3x的交点分别为(2, ±2√3),所以直线l与双曲线c 的两条渐近线所围成的面积为12x4√3x2=4√3,故选B 。
5. D[解析]3次摸球所得总分少于4分的情况只有1种,即3次摸到的球都是黑球,所以P=1-(12)3=78,故选D 。
10a 1+10x92d=100,所以d=2,a 1=1,∴an=2n -1,又bn =an+1a n=2n+12n−1,所以T n=b 1b 2...bn=31·53· ... ·2n−12n−3·2n+12n−1=2n+1,∴T 100=201 7. C[解析]该几何体可以看成由一个四棱锥和一个四分之一圆锥组成,四棱锥的底面面积为16,高为4,故其体积为643:四分之一圆锥的体积为14x13x4xπx16=163π,所以整个几何体的体积为16π+643,故选C8. C[解析]cos 2π2=-1,cos −π2=0,coso=1,cos π2=0,coso=1,....可见循环20次后,n=0 故选C 9. C[解析]当a=0时,图像可以是B ;当a>0时,图像可以是A ;当a˂0时,图像可以是D ,故答案为C10. C[解析]抛物线y 2=4x 的焦点F(1,0),准线l:x=-1,圆C :(x +2)2+(y −4)2=1的圆心C (-2,4)半径r =1,由抛物线定义知,点P 到抛物线的准线x =-1的距离d=|PF|,点P 到y 轴的距离为x 0=d -1,所以当C,P ,F 三点共线时,|PQ|+d 取最小值,所以(|PQ|+x 0)min=|FC|-r -1=5-1-1=3,故选C 。
11. A法一:[解析]连接AP ,BP ,则PM ⃗⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +PN ⃗⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ ,所以PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(PA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ )·(PB ⃗⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ -PA ⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ -AM 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-PA ⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ +AM⃗⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ -AM 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ -AB 2⃗⃗⃗⃗⃗⃗⃗⃗ =1x6-1=5故选A 法二:以O 为原点,AB 所在直线为x 轴建立平面直角坐标系,可设P (3c0S θ,3s in θ)由题意M (-2,0),N (2,0),则PM ⃗⃗⃗⃗⃗⃗ =(-2-3c0S θ,-3S in θ),PN⃗⃗⃗⃗⃗⃗ =(2-3COS θ,-3S in θ),PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ =9cos 2θ-22+9s in 2θ=5 法三:取特殊点P 取A 点,则PM⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =512. B[解析]f'(x )=(x−1)e xx 2,则f(x )在(-∞,0)和(0,1)上单调递增,在(1,+∞)上单二、填空题:本大题共4小题,每小题5分。