数值计算方法与应用讲义第二章
- 格式:doc
- 大小:673.00 KB
- 文档页数:18
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
数值计算方法及其应用第一章引言数值计算方法是一种基于数学分析和计算机技术的计算方法,是概括了现代计算各个领域的一类方法。
随着计算机技术的不断进步,数值计算方法已经成为了计算机科学中的一个重要领域,涉及到计算机科学、数学、物理、工程等领域。
本文将从数值计算方法的基本概念、数值计算方法算法的分类、数值计算方法的优缺点以及数值计算方法的应用等方面加以探讨。
第二章数值计算方法的基本概念数值计算方法是使用数学方法和数值技术处理各种数学问题的一种方法。
它是一种解决数学问题的有效工具,不同于传统的数学方法,数值计算方法采用的是数值计算机计算技术,使得计算机可以精确计算、预测和模拟各种数学问题,如数值微积分、连续函数数值解、离散方程数值解等。
数值计算方法的核心概念就是数值算法,数值算法是指实现数值计算方法的算法,包括基于数学分析的算法和基于经验数据的算法。
第三章数值计算方法算法的分类数值计算方法算法可以分为以下几类:1.数值微积分算法2.解线性方程组的数值方法3.常微分方程的数值解法4.偏微分方程的数值解法5.数值优化方法6.数值统计算法7.数学模型的数值计算方法第四章数值计算方法的优缺点数值计算方法的优点:1.数值计算方法可以解决非常复杂和高度非线性的数学问题2.数值计算方法无所不能,可做大量的计算3.数值计算方法具有较高的可重复性和可验证性4.数值计算方法可以通过计算机进行高速计算,节省了人力成本和时间成本数值计算方法的缺点:1.数值计算方法的实现程序错误会导致计算结果失真2.数值计算方法对于计算精度的要求很高3.数值计算方法对于计算机硬件和软件的要求也很高第五章数值计算方法的应用数值计算方法已经被广泛应用于各个领域,如:1.科学研究:能够用计算机进行大规模复杂计算,计算机模拟得出科学研究结论,如气象学模拟,生命科学中的反应动力学分析等。
2.工程设计:例如结构力学分析、电路设计、流体力学分析和控制系统等。
3.数据科学:如数据挖掘、计算机视觉、自然语言处理、人脸识别等。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与意义介绍数值计算的概念解释数值计算在科学研究与工程应用中的重要性1.2 数值计算方法分类介绍数值逼近、数值积分、数值微分、数值解方程等基本方法分析各种方法的适用范围和特点1.3 误差与稳定性解释误差的概念及来源讨论数值计算中误差的控制与减小方法介绍稳定性的概念及判断方法第二章:插值与逼近2.1 插值法的基本概念介绍插值的概念及意义解释插值函数的性质和条件2.2 常用的插值方法介绍线性插值、二次插值、三次插值等方法分析各种插值方法的优缺点及适用范围2.3 逼近方法介绍切比雪夫逼近、傅里叶逼近等方法解释逼近的基本原理及应用场景第三章:数值积分与数值微分3.1 数值积分的基本概念介绍数值积分的概念及意义解释数值积分的原理和方法3.2 常用的数值积分方法介绍梯形公式、辛普森公式、柯特斯公式等方法分析各种数值积分方法的适用范围和精度3.3 数值微分的基本概念与方法介绍数值微分的概念及意义解释数值微分的原理和方法第四章:线性方程组的数值解法4.1 线性方程组数值解法的基本概念介绍线性方程组数值解法的概念及意义解释线性方程组数值解法的原理和方法4.2 常用的线性方程组数值解法介绍高斯消元法、LU分解法、迭代法等方法分析各种线性方程组数值解法的优缺点及适用范围4.3 稀疏矩阵技术解释稀疏矩阵的概念及意义介绍稀疏矩阵的存储和运算方法第五章:非线性方程和方程组的数值解法5.1 非线性方程数值解法的基本概念介绍非线性方程数值解法的概念及意义解释非线性方程数值解法的原理和方法5.2 常用的非线性方程数值解法介绍迭代法、牛顿法、弦截法等方法分析各种非线性方程数值解法的优缺点及适用范围5.3 非线性方程组数值解法介绍消元法、迭代法等方法讨论非线性方程组数值解法的特点和挑战第六章:常微分方程的数值解法6.1 常微分方程数值解法的基本概念介绍常微分方程数值解法的概念及意义解释常微分方程数值解法的原理和方法6.2 初值问题的数值解法介绍欧拉法、改进的欧拉法、龙格-库塔法等方法分析各种初值问题数值解法的适用范围和精度6.3 边界值问题的数值解法介绍有限差分法、有限元法、谱方法等方法讨论边界值问题数值解法的特点和挑战第七章:偏微分方程的数值解法7.1 偏微分方程数值解法的基本概念介绍偏微分方程数值解法的概念及意义解释偏微分方程数值解法的原理和方法7.2 偏微分方程的有限差分法介绍显式差分法、隐式差分法、交错差分法等方法分析各种有限差分法的适用范围和精度7.3 偏微分方程的有限元法介绍有限元法的原理和步骤讨论有限元法的适用范围和优势第八章:数值模拟与计算可视化8.1 数值模拟的基本概念介绍数值模拟的概念及意义解释数值模拟的原理和方法8.2 计算可视化技术介绍计算可视化的概念及意义解释计算可视化的原理和方法8.3 数值模拟与计算可视化的应用讨论数值模拟与计算可视化在科学研究与工程应用中的重要作用第九章:数值计算软件与应用9.1 数值计算软件的基本概念介绍数值计算软件的概念及意义解释数值计算软件的原理和方法9.2 常用的数值计算软件介绍MATLAB、Mathematica、Python等软件的特点和应用领域9.3 数值计算软件的应用案例分析数值计算软件在科学研究与工程应用中的典型应用案例第十章:数值计算方法的改进与新发展10.1 数值计算方法的改进讨论现有数值计算方法的局限性介绍改进数值计算方法的研究现状和发展趋势10.2 新的数值计算方法介绍近年来发展起来的新型数值计算方法分析新型数值计算方法的优势和应用前景10.3 数值计算方法的未来发展探讨数值计算方法在未来可能的发展方向和挑战重点和难点解析一、数值计算概述难点解析:对数值计算概念的理解,误差来源及控制方法的掌握。
《数值计算方法与应用》讲义考核方式:期末考试、上机大练习与平时作业相结合预修课程:流体力学、数值分析、高等数学、线性代数适用专业:供热、供燃气、通风与空调工程,热能工程一、课程目标:本课程是为动力工程、热能工程、燃烧、供热、制冷空调及能源工程等专业研究生所设的一门专业理论基础课程。
本课程侧重于计算流体力学的理论知识和相关软件的具体使用。
计算流体力学是利用计算方法,在计算机上数值模拟流动问题的一门学科,是研究流体流动、传热和传质的重要方法,也是流体工程中分析和设计流动元件的重要手段。
本课程通过讲授计算流体力学的基本概念、理论和方法,培养学生利用计算流体力学方法,解决工程中遇到的流动问题的能力。
并通过介绍相关商业软件FLUENT帮助学生提高利用商业CFD软件解决工程实际问题的能力。
二、教学要求:本课程要求学生掌握计算流体力学的基本理论知识,并结合FLUENT商业软件求解实际的工程问题。
三、教学内容:第一章计算流体力学基础知识;第二章基于有限体积法的控制方程离散;第三章流动问题的数值解法;第四章湍流与湍流模型;第五章边界条件的应用;第六章网格的生成;第七章常用计算流体力学软件介绍;第八章CFD后处理问题第一章:计算流体力学基础知识.................................................................................................. 错误!未定义书签。
1. 计算流体力学的概念、特点及意义................................................................................. 错误!未定义书签。
CFD的基本思想:......................................................................................................... 错误!未定义书签。
CFD的特点:................................................................................................................. 错误!未定义书签。
CFD的意义..................................................................................................................... 错误!未定义书签。
2.流体力学中控制方程组及其定解条件............................................................................ 错误!未定义书签。
定解条件—边界条件和初始条件.................................................................................. 错误!未定义书签。
3. 计算流体力学基本步骤..................................................................................................... 错误!未定义书签。
4. CFD软件结构..................................................................................................................... 错误!未定义书签。
前处理器 ......................................................................................................................... 错误!未定义书签。
求解器 ............................................................................................................................. 错误!未定义书签。
后处理器 ......................................................................................................................... 错误!未定义书签。
第二章:基于有限体积法的控制方程离散 .. (2)1. 方程离散的方法 (2)离散化的目的 (2)离散方法 (2)有限体积法的特点 (2)i. 节点为中心:CVs的节点在控制体积的中心。
()w xδ (3)ii. 界面为中心:CVs的边界线在节点间中心线上。
(3)2. 一维稳态对流扩散问题的有限体积法 (4)一维稳态对流扩散问题 (4)3. 对流扩散方程的五种常用离散形式 (5)一维稳态无源项对流扩散问题 (5)4.对流扩散方程的三种高阶离散格式 (8)5.一维瞬态问题的有限体积法 (11)6.二维及三维对流扩散方程的离散方法 (13)第三章:流动问题的数值解法...................................................................................................... 错误!未定义书签。
1.流动控制方程组的对流扩散形式.................................................................................... 错误!未定义书签。
2.数值求解流动控制方程组的几个困难............................................................................ 错误!未定义书签。
耦合式解法: ................................................................................................................. 错误!未定义书签。
分离式解法 ..................................................................................................................... 错误!未定义书签。
3.时间推进法基本思想........................................................................................................ 错误!未定义书签。
4.交错网格上的压力修正方程............................................................................................ 错误!未定义书签。
5.Navier-Stokes方程的压力修正方法及其改进方法 ........................................................ 错误!未定义书签。
第四章:湍流与湍流模型.............................................................................................................. 错误!未定义书签。
湍流的特点: ................................................................................................................. 错误!未定义书签。
1.湍流的基本方程................................................................................................................ 错误!未定义书签。
2.湍流的数值模拟方法........................................................................................................ 错误!未定义书签。
(1)直接数值模拟(DNS)Direct Numerical Simulation ......................................... 错误!未定义书签。
(2)大涡模拟(LES) ................................................................................................ 错误!未定义书签。
(3)Reynolds平均法(RANS)................................................................................. 错误!未定义书签。
零方程模型 ..................................................................................................................... 错误!未定义书签。
一方程模型 ..................................................................................................................... 错误!未定义书签。
标准k-ε两方程模型........................................................................................................ 错误!未定义书签。