数值分析第二章 习题
- 格式:pdf
- 大小:195.94 KB
- 文档页数:3
1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。
第二章复习与思考题1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质?答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件(),,,1,0,,,0,,1n k j j k j k x l k j =⎩⎨⎧≠==则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数.以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设()()()()()n k k k x x x x x x x x A x l ----=+- 110,其中A 为常数,利用()1=k k x l 得()()()()n k k k k k k x x x x x x x x A ----=+- 1101,故()()()()n k k k k k k x x x x x x x x A ----=+- 1101,即()()()()()()()()∏≠=+-+---=--------=n kj j jk j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( .对于()),,1,0(n i x l i =,有()n k xx l x ni ki k i ,,1,00==∑=,特别当0=k 时,有()∑==ni i x l 01.2.什么是牛顿基函数?它与单项式基{}nxx ,,,1 有何不同?答:称()()()(){}10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为()()()()10010---++-+=n n n x x x x a x x a a x P其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如()()()()k k k k x x x x a x P x P --+=++ 011,其中1+k a 是节点110,,,+k x x x 上的1+k 阶差商,这一点要比使用单项式基{}nx x ,,,1 方便得多.3.什么是函数的n 阶均差?它有何重要性质?答:称[]()()000,x x x f x f x x f k k k --=为函数()x f 关于点k x x ,0的一阶均差,[][][]110010,,,,x x x x f x x f x x x f k k k --=为()x f 的二阶均差. 一般地,称[][][]11102010,,,,,,,,-----=n n n n n n x x x x x f x x x f x x x f 为()x f 的n 阶均差.均差具有如下基本性质:(1) n 阶均差可以表示为函数值()()()n x f x f x f ,,,10 的线性组合,即[]()()()()()∑=+-----=nj n j j j j j jj n x x x x x x x xx f x x x f 011010,, ,该性质说明均差与节点的排列次序无关,即均差具有对称性.(2) [][][]01102110,,,,,,,,x x x x x f x x x f x x x f n n n n --=- .(3) 若()x f 在[]b a ,上存在n 阶导数,且节点[]b a x x x n ,,,,10∈ ,则n 阶均差与n 阶导数的关系为[]()()!,,10n f x x x f n n ξ= ,[]b a ,∈ξ. 4.写出1+n 个点的拉格朗日插值多项式与牛顿均差插值多项式,它们有何异同? 答:给定区间[]b a ,上1+n 个点b x x x a n ≤<<<≤ 10上的函数值()),,1,0(n i x f y i i ==,则这1+n 个节点上的拉格朗日插值多项式为()()∑==nk k k n x l y x L 0,其中()n k x x x x x l n kj j jk jk ,,1,0,0 =⎪⎪⎭⎫⎝⎛--=∏≠=. 这1+n 个节点上的牛顿插值多项式为()()()()10010---++-+=n n n x x x x a x x a a x P ,其中[]n k x x x f a k k ,,1,0,,,,10 ==为()x f 在点k x x x ,,,10 上的k 阶均差.由插值多项式的唯一性,()x L n 与()x P n 是相同的多项式,其差别只是使用的基底不同,牛顿插值多项式具有承袭性,当增加节点时只需增加一项,前面的工作依然有效,因而牛顿插值比较方便,而拉格朗日插值没有这个优点.5.插值多项式的确定相当于求解线性方程组y Ax =,其中系数矩阵A 与使用的基函数有关.y 包含的是要满足的函数值()Tn y y y ,,,10 .用下列基底作多项式插值时,试描述矩阵A 中非零元素的分布.(1) 单项式基底;(2) 拉格朗日基底;(3) 牛顿基底.答:(1) 若使用单项式基底,则设()nn n x a x a a x P +++= 10,其中n a a a ,,,10 为待定系数,利用插值条件,有⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n nn nn y x a x a a y x a x a a y x a x a a 101111000010, 因此,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n nx x x x x x A 1111100为范德蒙德矩阵.(2) 若使用拉格朗日基底,则设()()()()x l a x l a x l a x L n n n +++= 1100,其中()x l k 为拉格朗日插值基函数,利用插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n n n n n n y x l a x l a x l a y x l a x l a x l a y x l a x l a x l a 11001111110000011000, 由拉格朗日插值基函数性质,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 A 为单位矩阵.(3) 若使用牛顿基底,则设()()()()10010---++-+=n n n x x x x a x x a a x P ,由插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=--++-+=--++-+---nn n n n n n n n n y x x x x a x x a a y x x x x a x x a a y x x x x a x x a a 10010111010110010000010 即()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=-+=-nn n n n n y x x x x a x x a a y x x a a y a 100101011000 故求解y Ax =的系数矩阵A 为()()()()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------=-110100120202011111n n n n n n n x x x x x x x x x x x x x x x x x x xx A为下三角矩阵.6.用上题给出的三种不同基底构造插值多项式的方法确定基函数系数,试按工作量由低到高给出排序.答:若用上述三种构造插值多项式的方法确定基函数系数,则工作量由低到高分别为拉格朗日基底,牛顿基底,单项式基底.7.给出插值多项式的余项表达式,如何用它估计截断误差?答:设()()x fn 在[]b a ,上连续,()()x fn 1+在()b a ,内存在,节点b x x x a n ≤<<<≤ 10,()x L n 是满足条件()n j y x L j j n ,,1,0, ==的插值多项式,则对任何[]b a x ,∈,插值余项()()()()())(!111x n f x L x f x R n n n n +++=-=ωξ, 这里()b a ,∈ξ且与x 有关,()()()()n n x x x x x x x ---=+ 101ω.若有()()11max ++≤≤=n n bx a M x f,则()x L n 逼近()x f 的截断误差()()()x n M x R n n n 11!1+++≤ω.8.埃尔米特插值与一般函数插值区别是什么?什么是泰勒多项式?它是什么条件下的插值多项式?答:一般函数插值要求插值多项式与被插函数在插值节点上函数值相等,而埃尔米特插值除此之外还要求在节点上的一阶导数值甚至高阶导数值也相等.称()()()()()()()n n n x x n x f x x x f x f x P 00000!-++-'+= 为()x f 在点0x 的泰勒插值多项式,泰勒插值是一个埃尔米特插值,插值条件为()()()()n k x f x P k k n ,,1,0,00 ==,泰勒插值实际上是牛顿插值的极限形式,是只在一点0x 处给出1+n 个插值条件得到的n 次埃尔米特插值多项式.9.为什么高次多项式插值不能令人满意?分段低次插值与单个高次多项式插值相比有何优点?答:对于任意的插值结点,当∞→n 时,()x L n 不一定收敛于()x f ,如对龙格函数做高次插值时就会出现振荡现象,因而插值多项式的次数升高后,插值效果并不一定能令人满意.分段低次插值是将插值区间分成若干个小区间,在每个小区间上进行低次插值,这样在整个插值区间,插值多项式为分段低次多项式,可以避免单个高次插值的振荡现象.10.三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?请说明理由.答:三次样条插值要求插值函数()[]b a C x S ,2∈,且在每个小区间[]1,+j j x x 上是三次多项式,插值条件为()n j y x S j j ,,1,0, ==.三次分段埃尔米特插值多项式()x I h 是插值区间[]b a ,上的分段三次多项式,且满足()[]b a C x I h ,1∈,插值条件为()()k k h x f x I =,()()),,1,0(,n k x f x I k k h='='. 分段三次埃尔米特插值多项式不仅要使用被插函数在节点处的函数值,而且还需要节点处的导数值,且插值多项式在插值区间是一次连续可微的.三次样条函数只需给出节点处的函数值,但插值多项式的光滑性较高,在插值区间上二次连续可微,所以相比之下,三次样条插值更优越一些.11.确定1+n 个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?答:由于三次样条函数()x S 在每个小区间上是三次多项式,所以在每个小区间[]1,+j j x x 上要确定4个待定参数,1+n 个节点共有n 个小区间,故应确定n 4个参数,而根据插值条件,只有24-n 个条件,因此还需要加上2个条件,通常可在区间[]b a ,的端点0x a =,n x b =上各加一个边界条件,常用的边界条件有3种: (1) 已知两端的一阶导数值,即()00f x S '=',()n n f x S '='.(2) 已知两端的二阶导数值,即()00f x S ''='',()n n f x S ''='',特殊情况为自然边界条件()00=''x S ,()0=''n x S .(3) 当()x f 是以0x x n -为周期的周期函数时,要求()x S 也是周期函数,这时边界条件就满足()()00-=+n x S x S ,()()000-'=+'n x S x S ,()()000-''=+''n x S x S这时()x S 称为周期样条函数.12.判断下列命题是否正确?(1) 对给定的数据作插值,插值函数个数可以任意多.(2) 如果给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的.(3) ()),,1,0(n i x l i =是关于节点),,1,0(n i x i =的拉格朗日插值基函数,则对任何次数不大于n 的多项式()x P 都有()()()x P x P x l ini i=∑=0(4) 当()x f 为连续函数,节点),,1,0(n i x i =为等距节点,构造拉格朗日插值多项式()x L n ,则n 越大()x L n 越接近()x f .(5) 同上题,若构造三次样条插值函数()x S n ,则n 越大得到的三次样条函数()x S n 越接近()x f .(6) 高次拉格朗日插值是很常用的.(7) 函数()x f 的牛顿插值多项式()x P n , 如果()x f 的各阶导数均存在,则当),,1,0(0n i x x i =→时,()x P n 就是()x f 在0x 点的泰勒多项式.答:(1) 对.(2) 错.1+n 个节点上的拉格朗日插值和牛顿插值就是表示形式不同的两种插值多项式. (3) 对.(4) 错.当∞→n 时,()x L n 并一定收敛到()x f .(5) 对.(6) 错.高次拉格朗日插值不一定具有收敛性,因而并不常用. (7) 对.。
第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。
令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。
在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。
以上证明了求解,22b Ax b Ax −=等价于极小化即。
等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。
使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。
为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。
第二章插值法1.当兀= 1—2时,/(%) = 0-3,4^/(%)的二次插值多项式。
解:X。
= I/】=—l,x2 = 2, /Uo) =0,/(^)=-3,/(X2) = 4;一丄(兀+i)(一2),0(人)=Oo — xJOo — xJ 2加)=(_兀)(—心=丄(一1)(一2)(兀一兀)(州一呂)6(A-.VoX.V-Vj l(Y_1)(x+1)(x2-x Q)(x2-x t) 3则二次拉格朗口插值多项式为2厶⑴=£)恥)k=0=-3/0(X)+4/2(X)1 4= --U- 1)(A—2) + -(x-l)(x + 1)5r 3 7=-X" +—x--6 2 3/(x) = liix2.用线性插值及二次插值计算1110.54的近似值。
解:由表格知,x0 = 0・4,兀=0.59X2 = 0.6, x3 = 0.7,x4 = 0.8; f(x Q) = -0.916291,/(xj = -0.693147 /(A) = —0.510826,/a)= -0.356675 /(x4) =-0.223144若采用线性插值法计算hiO.54即/(0.54),则0.5 <0.54 <0.6/1(x) = ^—^ = -10(.v-0.6) 人一无X —X /.(%) = -__ =-10(x-0.5)厶⑴=/U1XW + /(x 2)/2(x)=6.93147(x — 0.6) - 5・ 10826(.— 0.5)・・・厶(0.54) = -0.6202186 « -0.620219若采用二次插值法计算lnO.54时, (V f _亠)=50(x-0.5)(x- 0.6)(x Q -xj(x 0-x 2)(工7。
)(工_亠)=-100(x- 0.4)(x — 0.6)(兀一 Xo )(X 】一XJ厶(x) = /UoVoW+/U1XW+/(x 2)/2(x )=-50 x 0.916291(%-0.5)(A -0.6)+ 69.3147(x-0.4)(x-0.6)-0.510826 x50(x-0.4)(x-0.5).14(0.54) = -0.61531984 « -0.615320 3.给全cosx,0 <x<90°的函数表,步长/? = r = (l/60)\若函数表具有5位有效数字,研 究用线性插值求cos 兀近似值时的总误差界。
第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。
证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。
2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。
解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。
解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。
,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。
1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。
第一章 绪论一、填空题1、 已知 71828.2e =,求x 的近似值a 的有效数位和相对误差:题号精确数xx 的近似数aa 的有效数位a 的相对误差⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷e/1000.027182、 设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下:a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430则 ⑴ a 1+a 2+a 4= ,相对误差界为 ; ⑵ a 1a 2a 3= ,相对误差界为 ; ⑶ a 2/a 4= ,相对误差界为 。
二、为使20的近似值的相对误差小于0.01%,问应取多少位有效数字?三、当x 接近于0时,怎样计算xxsin cos 1-以及当x 充分大时,怎样计算x x -+1,才会使其结果的有效数字不会严重损失。
四、在数值计算中,为了减小误差,应该尽量避免的问题有哪些?并举出相应的实例.五、对于序列,1,0,9991=+=⎰n dx x x I nn ,试构造两种递推算法计算10I ,在你构造的算法中,那一种是稳定的,说明你的理由;第二章 插值法1、在互异的n+1个点处满足插值条件P(x i )=y i ,(i=0,1,…n)的次数不高于n 的多项式是( )的(A)存在且唯一 (B)存在 (C)不存在 (D)不唯一2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( )(A)不确定 (B)次数为n (C)f(x)自身 (D )次数超过n 3、 插值基函数的和∑=nj jx l)(= ( )(A)0 (B)1 (C)2 (D)不确定4、 设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( )(A)0 (B)1 (C)2 (D)不确定5、( )插值方法具有公式整齐、程序容易实现的优点,而( )插值方法计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的方法(A)构造性 (B)解方程组 (C)拉格朗日 (D)牛顿6、一般地,内插公式比外推公式( ),高次插值比低次插值( ),但当插值多项式的次数高于七、八次时,最好利用( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)高次7、整体光滑度高,收敛性良好,且在外型设计、数值计算中应用广泛的分段插值方法为( ).(A)分段线性插值 (B)分段抛物插值 (C)分段三次埃尔米特插值 (D)三次样条插值。
第二章 习 题
1. 已知函数()f x 在3,1,4x =的值分别为4,2,5,求Lagrange 插值多项式的表达式.
2. 已知函数
()f x 在3x =和
4的值分别为0.5和0.64,用线性插值求此函数在
3.8x =的函数值.
3. 证明:对于
()f x 的以01x x <为节点的一次插值多项式1()p x ,有
2
101()()()8
x x f x p x M −−≤,01x x x ≤≤,
其中01
max ()x x x M f x ≤≤′′=
.
4. 已知函数
()f x 的函数值表:
x 0.1 0.2 0.3 0.4 0.5 ()f x
0.70010
0.40160
0.10810
-0.17440
-0.43750
试利用这个函数表求函数()f x 在0.3和0.4之间的零点.
5. 设
01,,,n x x x ⋅⋅⋅为1n +个互异的节点,()k l x 为n 阶
Lagrange 插值基函数,
0()()n
k k x x x ω==−∏.证明:
(1)
0()1n
k k l x =≡∑;
(2)
0(),0,1,2,,k
n
j
j
k
k x l x x j n =≡=⋅⋅⋅∑;
(3)
()()0,0,1,2,,n
j
k k k x x l x j n =−≡=⋅⋅⋅∑; (4)()
()()()
k k k x l x x x x ωω=
′−.
6. 若73()1f x x x =−+,求0172,2,,2f ⎡⎤⋅⋅⋅⎣⎦和018
2,2,,2f ⎡⎤⋅⋅⋅⎣⎦.
7. 设
53()1f x x x =++,求以1x =−,-0.8,0,0.5,1为插值节点的Newton 插值多
项式和插值余项.
8. 已知函数值表:
x 0 1 4 3 6 ()f x
-7
8
5
14
求Newton 插值多项式的表达式.
9. 分别在下列情况下计算 1n −次多项式()p t 在指定点t 的的值,各需要多少次乘 法运
算?
(a)多项式()p t 按照单项式基函数展开; (b)多项式()p t 按照Lagrange 基函数展开; (c)多项式()p t 按照Newton 基函数展开.
10. 在区间[]0,/2π上使用5个等距节点对函数sin t 进行插值,试计算最大误差. 在
[]0,/2π上选取若干点,比较函数值和插值多项式的值,验证误差界. 如果希望最大误
差为10
10
−,需要多少个插值节点?
11. 一直平面曲线()y f x =过点(0,1)
,(1,3),(2,4),试求一个三次多项式3()p x ,使其经过这3个点,并且满足3(1)1p ′=;然后给出余项3()()()R x f x p x =−的表达式. 12. 试求一个四次多项式4()p x ,使其满足44
44(0)(0)0(1)(1)1p p p p ′′====,,4(2)1p =.
13. 能否通过使用分段二次多项式进行插值,使插值函数是二次连续可微的?为什么? 14. 设[]4
(),f x C
a b ∈. 求三次多项式()p x ,使之满足插值条件
11
()(),0,1,2,
()(),i i p x f x i p x f x ==⎧⎨
′′=⎩
上机习题
1. 对Runge 函数()R x ,利用下列条件做插值逼近,并与()R x 的图像进行比较.
(1)用等距节点5i x i =−+,0,1,2,,10i =⋅⋅⋅,绘出它的10次Newton 插值多项式的图像; (2)用节点21
5cos(
)42
i i x π+=,0,1,2,,20i =⋅⋅⋅,绘出它的20次Lagrange 插值多项式的图像;
(3)用等距节点5i x i =−+,0,1,2,,10i =⋅⋅⋅,绘出它的分段线性插值函数的图像; (4)用等距节点5i x i =−+,0,1,2,,10i =⋅⋅⋅,绘出它的分段三次Hermite 插值函数的图像; (5)用等距节点5i x i =−+,0,1,2,,10i =⋅⋅⋅,绘出它的三次自然样条插值函数的图像;。