人教版八年级数学上册 《整式的乘法》教案
- 格式:pptx
- 大小:122.98 KB
- 文档页数:15
整式的乘法一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
● 掌握单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,并能运用它们进行运算。
重点难点:● 重点:整式乘法性质的准确掌握和熟练运用。
● 难点:字母的广泛含义的理解。
学习策略:● 结合具体实例,再类比有理数的乘方的意义,归纳出幂的乘法、乘方与积的乘方法则,再通过练习,加深理解与运用。
二、学习与应用(一)乘方的意义:求几个 的积的运算,叫做乘方,乘方的结果叫做 ,在a n 中,a 叫做 ,n 叫做 。
(二)a n 表示的意义是 个 的 。
(三)计算:(1) 102×103= (2)12×⎪⎭⎫⎝⎛654332+-=“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:同底数幂的乘法法则:同底数幂相乘,。
公式:请你注意:(1)公式推导:对于任意底数a与任意正整数m、n,则有:a m·a n=(幂的意义)=(乘法结合律)=(幂的定义)∴(2)说明:①三个或三个以上同底数幂相乘时,也具有这一,即a m·a n·a p=(m、n、p都是正整数)。
②逆用公式:把一个幂分解成两个或多个的积,其中它们的底数与原来的底数,它们的等于原来的幂的指数。
即(m、n都是正整数)。
③在运用公式进行计算时,一定要弄清楚底数是什么,指数是什么,是不是同底数幂,如:计算-a3·(-a)2,其中-a3的底数为,表示a3的;(-a)2的底数为,表示。
人教版八年级数学上册---《整式的乘法》课堂设计整式的乘法(第一课时)整式的乘法(第二课时)3 分钟4 分钟(2)创设情境引入新知【引入】为了扩大绿地面积,要把街心花园的一块长为p米,宽b米的长方形绿地,向两边分别加宽a米和c米.教师提出问题:(4)你能用哪些方法表示扩大后的绿地面积;(5)不同的表示方法之间有什么关系?为什么?学生并回答问题:(1)()cbap++或pcpbpa++或()p a b pc++或)(cbppa++(2)相等,都表示扩大后的长方形的面积.追问1:你还能通过别的方法得到等式()pcpbpacbap++=++吗?学生回答:乘法分配律.追问2:()pcpbpacbap++=++,请问这属于什么运算?学生回答:单项式乘多项式.教师引出本节课的课题——单项式乘多项式,明确本节课探究的主要内容:单项式乘多项式的运算是怎样进行的?如何确定运算结果?【问题1】:你能尝试计算()yxx22-吗?教师引导学生利用乘法分配律进行运算.()yxxxyxx22222⋅-⋅=-xyx422-=追问1:你能尝试归纳单项式与多项式乘法运算法则吗?学生尝试进行归纳,用自己的语言加以概括,小组讨论,教师在学生表述的基础上,和学生共同得到单项式乘以多项式的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.追问2:你能尝试归纳单项式与多项式相乘的步骤吗?①用单项式去乘多项式的每一项;②转化为单项式与单项式的乘法运算;整式的乘法(第三课时)5 分钟2 探究新知得出pbpabap+=+)(活动2:问题引入:为了扩大街心花园的绿地面积,把一块原长am、宽pm的长方形绿地,加长了bm, 加宽了qm.你能用几种方法求出扩大后的绿地面积?教师设问:(1)扩大后的公园的面积有几种表示法?学生思考,得出结论:第一种:整体求面积,得))((qpba++第二种:先求A和B的总面积为)(bap+再求C和D的总面积为)(baq+最后求和,得)()(baqbap+++第三种:先求A和C的总面积为)(qpa+再求B和D的总面积为)(qpb+最后求和,得)()(qpbqpa+++第四种:分别求出A,B,C,D的面积,再求和,得bqbpaqap+++教师设问:(2)用四种方法表示出来的代数式是什么关系呢?为什么呢?学生回答:用四种方法表示出来的代数式是相等关系,因为图形的面积是相等的。
《整式的乘法》教案教学目标:1.掌握单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘的运算方法。
2.学会用整式的乘法公式进行简便运算。
3.培养初步的运算能力,发展逻辑思维能力。
教学重点:掌握整式的乘法运算方法及简便运算。
教学难点:正确地进行整式的乘法运算。
教学准备:小黑板,投影仪。
教学过程:一、创设情境1.复习单项式与单项式的乘法法则及单项式与多项式的乘法法则。
2.列出算式:(4x+6)×5+7;(6+8y)×3+9。
二、探索新知1.教师讲解例5的题目(小黑板出示)。
(1)列出算式:(4x+6y)×3=12x+18y(教师板书)。
(2)讲解算式中各字母的意义及运算顺序。
(3)讲解整式的乘法法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
1.讲解例6的题目(小黑板出示)。
(1)教师列算式:(4x+6y)×(2x+3y)=8x2+12xy+6xy+18y2=8x2+18xy+18y2。
(2)讲解算式中各字母的意义及运算顺序。
(3)讲解整式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
三、拓展应用1.完成P38练习七的第1题。
学生独立完成,教师巡回指导,注意检查学生运算顺序是否正确,对运算中出现的问题及时给予指导。
然后集体订正。
2.完成P38练习七的第2题。
学生先独立完成,然后集体订正,订正时请一名学生板演。
对有困难的学生可引导他们先模仿着做,然后逐步掌握解题方法。
最后集体订正。
人教版八年级上册14.1整式的乘法教学设计教学目标1.理解什么是整式、什么是多项式2.能够正确地进行整式的乘法3.运用整式乘法解决实际问题教学重点1.整式的概念2.整式的乘法方法3.整式的应用问题教学难点1.整式的乘法方法2.解决实际问题的能力教学准备1.教材:人教版八年级上册数学教材2.教学PPT3.白板、黑板、彩色粉笔4.教学工具箱教学过程第一步:引入1.几何意义:观察两个矩形的面积,将两个矩形的面积乘起来,提出问题:如何将两个整式相乘?2.数学意义:复习多项式和整式的概念。
第二步:整式乘法的基本方法1.先明确两个矩形的面积分别是多少,画图表示;2.将每一项都与另一个多项式的每一项相乘,写出乘积;3.将所有项的乘积相加,得到结果。
第三步:讨论实际问题1.解决实际问题中出现的多项式相乘,如:小明在A店花费3元买了2个馒头和5个油条,小红在B店花费4元买了3个馒头和4个油条,问两人共花费多少元钱?2.让学生自己思考,解决实际问题。
第四步:讲解并演示1.教师出示PPT,详细讲解整式乘法的基本方法,如何将整式相乘,如何加法运算,如何将乘法、加法结合起来;2.上黑板讲解并演示,让学生跟随教师操作,掌握整式乘法的基本方法。
第五步:练习1.课堂练习:出五个题目,让学生进行操作,检验学生掌握整式乘法的方法和能力;2.作业:布置乘法计算题,让学生自主完成。
教学反思1.整合新的教学资源和教学方法,让学生通过实际问题的拓展应用,同时也加深了学生对多项式和整式的理解;2.在教学过程中,尽量避开一个专业术语解释不清,并且通过大量的实例演示,加深学生的印象和理解;3.教材揭示了传统教学中存在的弊端,周日和假日可以让学生深入感受到本课程的精髓,调动学生立体感知的能力。
整式的乘法〔3〕〔一〕教学目标 知识与技能目标:理解多项式乘法的法那么,并会进行多项式乘法的运算. 过程与方法目标:经历探索多项式乘法的法那么的过程. 情感态度与价值观:通过探索多项式乘法法那么,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法那么及应用. 教学难点:● 多项式乘法法那么的推导. ● 多项式乘法法那么的灵活运用. 〔二〕教学程序 教学过程师生活动设计意图 一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m 米,宽为a 米的长方形绿地,增长了n 米,加宽了b 米.你能用几种方法求出扩大后的绿地面积?问题情境导入新课有助于激发学生的学习兴趣.二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+nb通过图示方法向学生展示多项式amb n多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 乘以多项式的过程.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX 于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n) 即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn为学生提供不同的思维方式,以使学生更好的掌握此内容.例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:多项式乘以多项式的具体应用,通过教师演示向学生提供严格的书写过程培养学生严谨的思维训练.〔1〕(a+3)·(b+5); 〔2〕(3x-y) (2x+3y); 〔3〕(a-b)(a+b); 〔4〕(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy-2xy-3y 2(多项式与多项式相乘的法那么) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2= a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b 3例题3:先化简,再求值:〔2a-3〕〔3a+1〕-6a 〔a-4〕其中a =2/17 解:〔2a-3〕〔3a+1〕-6a 〔a-4〕 =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察以下解法,判断是否正确,假设错请说出理由。
《整式的乘法》教案一、教学目标:1.掌握整式乘法的基本法则和运算步骤。
2.能够正确地进行整式的乘法运算。
3.培养学生的运算能力和代数思维,体验数学中的一般思想和方法。
二、教学内容:1.单项式与单项式相乘。
2.单项式与多项式相乘。
3.多项式与多项式相乘。
4.乘法公式。
三、教学重点:1.单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
2.乘法公式的推导和应用。
四、教学难点:1.乘法公式的推导和理解。
2.运用乘法公式进行复杂整式乘法的运算。
五、教学方法:1.通过实例引入,引导学生自主探究,发现整式乘法的规律和法则。
2.通过讲解、示范和练习相结合的方式,使学生掌握运算法则和运算步骤。
3.运用多媒体教学工具,帮助学生更好地理解抽象的概念和解决问题的方法。
六、教学过程:1.导入新课:通过复习旧知,引出新课题。
引导学生观察、思考整式乘法的规律和特点。
2.新课学习:通过实例讲解和示范,引导学生探究单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
然后通过练习题和例题讲解,使学生掌握运算法则和运算步骤。
最后推导乘法公式,并讲解其意义和应用。
3.课堂练习:通过练习题和例题讲解,使学生能够正确地进行整式的乘法运算,并运用乘法公式进行复杂整式乘法的运算。
同时引导学生发现整式乘法中的规律和特点,培养其代数思维和运算能力。
4.归纳小结:总结整式乘法的运算法则和运算步骤,强调重点和难点。
同时强调学生在运算中需要注意的事项,如符号问题、括号问题等。
整式的乘法教案(通用3篇)整式的乘法篇1内容:整式的乘法单项式乘以多项式 P58—59课型:新授时间:学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则学习难点:对法则的理解学习过程1、学习准备1、叙述单项式乘以单项式的法则2、计算(1)(— a2b)(2ab)3=(2)(—2x2y)2 (— xy)—(—xy)3(—x2)3、举例说明乘法分配律的应用。
2、合作探究(一)独立思考,解决问题1、问题:一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面 m2。
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2。
因此,有 = 。
3、你能用字母表示乘法分配律吗?4、你能尝试总结单项式乘以多项式的法则吗?(二)师生探究,合作交流1、例3 计算:(1)(—2x)(—x2x+1)(2)a(a2+a)— a2 (a—2)2、练一练(1)5x(3x+4)(2)(5a2 a+1)(—3a)(3)x(x2+3)+x2(x—3)—3x(x2x—1)(4)(a)(—2ab)+3a(ab—b—1))(三)学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?(四)自我测试1、教科书P59 练习 3,结合解题,体会单项式乘以多项式的几何意义。
2、判断题(1)—2a(3a—4b) =—6a2—8ab ()(2)(3x2—xy—1) x =x3 —x2y—x ()(3)m2—(1— m) = m2—— m ()3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于()A、—1B、0C、1D、无法确定4、计算(20xx贺州中考)(—2a)( a3 —1) =5、(3m)2(m2+mn—n2)=(五)应用拓展1、计算(1)2a(9a2—2a+3)—(3a2)(2a—1)(2)x(x—3)+2x(x—3)=3(x2—1)2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
人教版八年级上册14.1整式的乘法15.1:整式的乘法教学设计一、教学目标1.知道什么是整式的乘法,会进行整式的乘法计算。
2.运用整式的乘法解决实际问题。
3.培养学生的数学思维能力和解决实际问题的能力。
二、教学内容整式的乘法。
三、教学重难点1.整式的乘法的定义,如何进行计算。
2.运用整式的乘法解决实际问题。
四、教学方法1.案例讲解法:通过讲解一些实际问题,引导学生探索使用整式的乘法来解决问题的方法。
2.组内合作法:将学生分成小组,让他们在小组内合作探讨,再共同完成课堂任务。
五、教学过程5.1 导入新课1.引入整式的乘法的概念,让学生从实际问题中感受整式的乘法的必要性。
例如:小明每天早上从家里步行5分钟到车站,然后再乘坐公交车去上学。
如果小明每天都要进行这样的行程,那么7天一周,他一周在路上所花费的时间是多少?2.帮助学生理解整式的乘法的概念,例如:2(a+b)表示2个a加2个b,(a+b)^2表示(a+b)乘以(a+b)。
3.通过乘积的运算法则,讲解整式的乘法的计算方法。
例如:(ax+by)(cx+dy)=(ac)x2+(bc+ad)xy+bdy2。
5.2 整合知识1.让学生自己设计一个问题,并用整式的乘法来解决这个问题。
2.然后让学生将自己的问题和解决方法在小组间分享,评价和改进。
5.3 拓展应用1.让学生从实际问题中感受到应用整式的乘法所带来的便捷性和实用性。
2.让学生在实际生活中应用整式的乘法来解决一些实际问题。
六、教学评价1.教师通过观察学生课堂表现、听取他们的小组讨论以及评价自己设计问题的解决方法和应用整式的乘法解决实际问题等,进行综合性评价。
2.学生进行自评和互评,从不同的角度进行评价和提升。
七、教学反思整式的乘法是初中数学概念中较难理解的部分之一,需要进行系统、全面的教学。
要让学生从实际问题中感受到掌握整式的乘法的必要性和应用价值,让学生体验到数学的实用性,并培养学生的思维能力和解决问题的能力。