人教版初三数学下册第26章反比例函数数学活动
- 格式:docx
- 大小:24.44 KB
- 文档页数:9
人教版数学九年级下册第26章《反比例函数》课堂教学设计一. 教材分析人教版数学九年级下册第26章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步深化对函数概念的理解。
本章通过反比例函数的概念、图像和性质的学习,使学生掌握反比例函数的基本知识,提高学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了正比例函数和一次函数的知识,具备一定的函数观念。
但反比例函数的概念和性质与前两者的差异较大,学生可能存在理解上的困难。
因此,在教学过程中,要注重引导学生发现反比例函数与正比例函数、一次函数的联系和区别,激发学生学习兴趣,提高学生自主学习能力。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的抽象思维能力和创新能力。
四. 教学重难点1.反比例函数的概念。
2.反比例函数的性质。
3.反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现反比例函数的性质,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.教学课件。
2.反比例函数的实际问题案例。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念。
例如:一辆汽车以60公里/小时的速度行驶,行驶1小时后,距离是多少?当速度一定时,行驶的时间和距离之间的关系是什么?2.呈现(10分钟)讲解反比例函数的定义,引导学生发现反比例函数与正比例函数、一次函数的联系和区别。
通过多媒体课件,展示反比例函数的图像,使学生直观地理解反比例函数的性质。
3.操练(10分钟)让学生通过自主探究,发现反比例函数的性质。
教师提供几个实际问题,引导学生运用反比例函数解决问题。
例如:一个矩形的长和宽成反比例,长为8厘米,求矩形的面积。
4.巩固(10分钟)通过小组合作学习,让学生进一步巩固反比例函数的知识。
26.1.1《反比例函数》教案课标要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.教学目标知识与技能:1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解;2.使学生理解并掌握反比例函数的概念;3.能判断一个函数是否为反比例函数,并用待定系数法求函数解析式.过程与方法:1.经历对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点;2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识;3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会函数的建模思想.情感、态度与价值观:1.经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;2.通过分组讨论,培养学生合作交流意识和探索精神.教学重点理解反比例函数的概念,能根据已知条件写出函数解析式.教学难点理解反比例函数的概念.教学流程一、情境引入复习:什么是函数?问题:京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.你能写出关于t的解析式吗?1463vt引出课题:今天,我们就来研究这种形式的函数.二、探究归纳下列问题中,变量间具有函数关系吗?如果有,请直接写出解析式.(1)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.(2)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总人口n (单位:人)的变化而变化.1000y x=,41.6810S n ⨯= 归纳概念:一般地,形如ky x=(k 为常数,且k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.强调:自变量x 的取值范围是不等于0的一切实数. 例题指引:例:已知y 是x 的反比例函数,并且当x =2时,y =6. (1)写出y 关于x 的函数解析式; (2)当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以设ky x=,把x =2和y =6代入上式,就可求出常数k 的值. 解:(1)设ky x=,因为当x =2 时,y =6, 所以有62=.k 解得:k =2. 因此12=.y x(2)把x =4代入12y x=,得 1234y == 三、应用提高1.用函数解析式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为2000m 3,游泳池注满水所用时间t (单位:h )随注水速度v (单位:m 3/h )的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h (单位:cm )随底面积S (单位:cm 2)的变化而变化;(3)一个物体重100N ,物体对地面的压强p (单位:Pa )随物体与地面的接触面积S (单位:m 2)的变化而变化.2.下列哪些关系式中的y 是x 的反比例函数?4y x =,3y x =,2y x =-,61y x =+,21y x =-,21y x=,123xy =. 3.已知y 与x 2成反比例,并且当x =3时,y =4.(1)写出y 关于x 的函数解析式; (2)当x =1.5时,求y 的值; (3)当 y =6 时,求x 的值. 四、体验收获 说一说你的收获.1.今天我们学习了哪些知识? 2.我们是如何形成反比例函数概念的? 3.如何根据已知条件确定反比例函数的解析式? 五、拓展提升1.关系式xy +4=0中y 是x 的反比例函数吗?若是,比例系数k 等于多少?若不是,请说明理由. 2.如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关系? 六、课内检测1.在下列函数中,y 是x 的反比例函数的是( ) A .85y x =+ B .37y x =+ C .5xy = D .22y x= 2.已知函数7m y x-=是正比例函数,则m = . 3.已知函数75m y x-=是反比例函数,则m = .4.已知y 是x 的反比例函数,并且当x =3时,y =-8. (1)写出y 与x 之间的函数关系式; (2)求y =2时x 的值. 七、布置作业必做题:教材8页习题26.1第1、2题. 选做题:教材9页习题26.1第7题. 附:板书设计教学反思:26.1.2《反比例函数的图象和性质》教案课标要求能画出反比例函数的图像,根据图像和表达式y =xk(k ≠0)探索并理解k >0和k <0时,图像的变化情况.教学目标知识与技能:1.会用描点法画反比例函数的图象; 2.结合图象分析并掌握其性质;3.能灵活运用反比例函数的图象和性质求函数的解析式,进而解决一些较综合的数学问题. 过程与方法:1.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征;2.经历观察、分析、交流的过程,逐步提高从函数图象中感受其规律的能力; 3.从较综合的题目的解答中学会使用数形结合的方法. 情感、态度与价值观:1.由图象的画法和分析,体验数学活动中的探索和创造性,感受数学美,并通过图象的直观教学激发学习兴趣;2.深刻领会函数解析式与和函数图象之间的联系,体会数形结合及转化的思想方法; 3.通过解决综合题,增强学生的自信心,涵育学生学习数学的兴趣.教学重点正确地进行描点、画出图象,理解并掌握反比例的图象和性质,能灵活运用反比例函数的性质解决一些综合问题.教学难点1.图象的对称性选点,归纳反比例函数的性质.2.利用数形结合思想比较大小以及对反比例函数几何意义的理解学会利用图象分析、解决问题.教学流程一、情境引入问题:我们知道一次函数y =kx +b (k ≠0)的图象是一条直线、二次函数y =ax 2 +bx +c (a ≠0)的图象是一条抛物线,反比例函数(0)=≠ky k x的图象是什么样呢? 我们用什么方法画反比例函数的图象呢? 有哪些步骤?根据k 的取值,应该如何分类讨论呢?引出课题:今天,我们就来研究反比例函数的图象和性质.二、探究归纳例1:画出反比例函数6=y x 和12=y x的图象. 解:列表思考:请观察反比例函数6=y x 与12=y x的图象,它们有哪些特征? (1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数(0)=>ky k x,考虑问题(1)(2),你能得出同样的结论吗? 归纳1:当k ﹥0时,反比例函数=ky x的图象: (1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y 随x 的增大而减小. 追问:你能由函数的解析式说明这些结论吗?探究:回顾上面我们利用函数图象,从特殊到一般研究反比例(0)=>ky k x的性质的过程,你能用类似的方法研究反比例(0)=<ky k x的图象和性质吗? 归纳2:当k ﹤0时,反比例函数=ky x的图象: (1)函数图象分别位于第二、第四象限; (2)在每一个象限内,y 随x 的增大而增大.强调:反比例函数的图象由两条曲线组成,它是双曲线.归纳:一般地,反比例函数=kyx的图象是双曲线,它具有以下性质:(1)当k﹥0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)当k﹤0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大. 例2:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)点B(3,4),14(24)25,C--,D(2,5)是否在这个函数的图象上?解:(1)∵点A(2,6)在第一象限,∴这个函数的图象位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)设这个反比例函数的解析式为=kyx.∵点A(2,6)在其图象上,62,k∴=解得:k=12.∴这个反比例函数的解析式为12 =yx.当x=3时,y=4,所以点B在这个函数的图像上;当x=122-时,y=445-,所以点C在这个函数的图像上;当x=2时,y=6≠5,所以点D不在这个函数的图像上.例3:如图,它是反比例函数5-=myx图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果x1>x2,那么y1和y2有怎样的关系?解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或者位于第二、第四象限.∵这个函数的图象的一支位于第一象限,∴另一支必位于第三象限.∵这个函数的图象位于第一、第三象限, ∴m -5﹥0, 解得m ﹥5. (2)∵m -5﹥0,∴在这个函数图象的任一支上,y 随x 的增大而减小, ∴当x 1>x 2时,y 1﹤y 2 . 三、应用提高1.下列图象中是反比例函数图象的是( )2.已知反比例函数=ky x的图象如图所示,则k 0,且在图象的每一支上,y 随x 的增大而 .3.已知反比例函数=ky x的图象过点(2,1),则它的图象在________象限,k ___0. 4.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数1y x=的图象上.如果x 1﹤x 2,而且x 1,x 2同号,那么y 1,y 2有怎样的大小关系?为什么?四、体验收获 说一说你的收获.1.反比例函数的图象是怎样得到的?画图时要注意什么问题? 2.反比例函数的性质是怎样的?为什么要强调在每一个象限内的性质? 3.在反比例函数图象及性质的应用中体现了数形结合思想,能否谈谈你的体会? 五、拓展提升1.在同一直角坐标系中,函数=y kx 与(0)=≠ky k x的图象大致是( ). A .(1)(2) B .(1)(3) C .(2)(4) D .(3)(4)2.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数(0)=≠ky k x的图象上,如果x 1>0>x 2,那么y 1和y 2有怎样的关系?六、课内检测1.如图所示的图象对应的函数解析式为( ). A .5y x = B .23y x =+ C .4y x =D .3y x=-2.反比例函数5y x=的图象在第 象限. 3.已知一个反比例函数的图象经过点A (3,-4).(1)这个函数的图象位于哪些象限?在图象的每一支上,y 随 x 的增大如何变化? (2)点B (-3,4),C (-2,6),D (3,4)是否在这个函数的图象上?为什么? 七、布置作业必做题:教材8页习题26.1第3、5题. 选做题:教材9页习题26.1第9题. 附:板书设计教学反思:26.2《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入2220PR=,得P最大值=2220440110=(W);把电阻R最大值=220代入2220PR=,得P最小值=2220220220=(W);因此用电器功率的范围为220~440W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L(1L=1dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?答案:(1)3Sd=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)480Vt=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510nS⨯=(2)250000块,250000块,125000块四、体验收获说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。
2024九年级春季数学下册听课笔记:第二十六章反比例函数- 数学活动1.1 教师行为导入环节:•实例引入:教师以一个贴近学生生活的实例开始,比如“如果你驾驶一辆汽车,在油箱容量一定的情况下,汽车的行驶里程与油耗之间有什么关系?这种关系能否用我们学过的函数来表示?”通过这样的实例,激发学生的好奇心,引导他们思考反比例函数在实际生活中的应用。
•概念回顾:随后,教师简要回顾反比例函数的基本定义和性质,为接下来的数学活动做铺垫。
教学过程:•活动设计:•活动一:绘制反比例函数图像•教师给出几个具体的反比例函数表达式(如y = 1/x, y = -2/x等),要求学生分组使用计算器或图形软件绘制这些函数的图像,并观察图像的特点(如双曲线形状,两支曲线关于原点对称等)。
•学生完成绘制后,教师组织小组分享,引导学生总结反比例函数图像的共同特征。
•活动二:探索反比例函数性质•教师设计一系列问题,如“当x增大时,y如何变化?”“反比例函数的图像是否会经过坐标轴?”“如何判断反比例函数图像的增减性?”等,让学生分组讨论并尝试给出答案。
•教师鼓励学生利用之前绘制的图像和已知性质进行推理,同时适时给予提示和纠正。
•活动三:应用反比例函数解决问题•教师提供几个实际问题(如“某工厂生产一种产品,其总成本C 与产量Q成反比,已知当产量为100单位时,总成本为2000元,求产量Q与总成本C之间的函数关系,并计算产量为200单位时的总成本”),让学生分组尝试用反比例函数的知识进行求解。
•学生完成后,教师选取几个小组进行展示,并引导学生对解题思路和方法进行点评和总结。
板书设计(提纲式):作业布置:•完成课后相关练习题,特别是涉及反比例函数图像绘制、性质探索和应用解题的题目,以巩固所学内容。
•预习下一节内容,思考反比例函数与一次函数、二次函数等其他类型函数之间的区别和联系,为深入学习做好准备。
课堂小结:•教师总结本节课的数学活动内容和学生的表现,强调反比例函数的重要性和应用价值。
新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。
反比例函数数学活动旬阳县仁河口镇中心学校汪延俊
2、请全班同学分成几个
小组,合作完成下面的活动:
数学活动2:
如右图,取一根长100厘米的匀质木杆,用细绳绑在木杆的中点0并将其吊起来,在中点的左侧
距离中点25厘米处挂一个重9.8牛顿的物体,在中点右侧用一个弹簧秤与中点0的距离L (单位:厘米),看弹簧秤的
示数 F (单位:牛顿)
有什么变化,填表:
L
5
01
5
1
2
5
2
3
5
3
4
5
F
以L为横坐标,以F为纵坐标建立直角坐标系, 4
【教师活动】师出示多
媒体课件
1.由第一个活动导入第
二个活动。
2.引导学生完成活
动2。
3.师总结:在此活动
中,弹簧秤的示数F就是距
离L反比例函数,
k
即F=-
根据已知条件得
k=9.8x25=245
则
245
F= _
4.引导学生分享活
动成果。
表格,展示各组探
究结果,总结探究
结论。
在坐标系内描出以上表中的数对为坐标各点, 用平
滑曲线连接这些点。
这条曲线是反比例函数图像的一支吗?为什么?点(50, 4.9 )在这条曲线上吗?
【学生活动】
1.每个小组看弹簧
秤的示数的变化。
【设计意
图】
用数学的眼
光观察事物,常常
能引起“探究”问
题的兴趣;研究解
决问题之前,要设
计方案,并尽量考
虑周全;在解决问
题过程中,又要根
据需要调整原来的
方案;问题得到解
决以后,要总结经
验,相互交流。
同
时,在过程中,要
学会互相帮助,团
结协作,还要发挥
自己的聪明才智
和创造能力。
通
设
计
自我反思:。