河北省保定市高阳县2015-2016学年八年级数学上学期期末试卷(含解析) 新人教版
- 格式:doc
- 大小:437.50 KB
- 文档页数:23
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2016—2017学年度第一学期期末调研考试八年级数学试题亲爱的同学们:请你保持轻松的心态,认真审题,仔细作答,相信你在120分钟的时间内一定会很好的展示你的学习成果,祝你成功!一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效)1.下列图形对称轴最多的是…………………………………………………………( ) A .正方形 B .等边三角形 C .等腰三角形 D .线段2.若分式112+-x x 的值为零,那么x 的值为…………………………………………( )A .x=1B .x=﹣1C .x=±1D .x=03.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则a ﹣b 的值为…………( ) A . ﹣1 B . 1 C . ﹣3 D . 34.1纳米等于0.000000001米,则35纳米用科学记数法表示为 …………………( ) A .35×10-9米 B .3.5×10-9米 C .3.5×10-10米 D .3.5×10-8米 5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为…( )A . 50°B . 45°C . 30°D . 25° 6.根据分式的基本性质,分式aa b--可变形为………………………………………( ) A .a a b -- B .a a b + C .a a b -- D .aa b-+7.如图,AE ,AD 分别是△ABC 的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为………………………………………………………………………………( ) A . 40° B . 20° C . 18° D . 38°8.计算:852﹣152=………………………………………………………………………( ) A .70 B .700 C . 4900 D . 70009.已知三角形三边长分别为2x ,,13,若x 为正整数,则这样的三角形个数为…( ) A .2 B .3 C . 5 D .1310.若224x mxy y ++是完全平方式,则常数m 的值为………………………………( )A .4B .-4C .±4D .以上结果都不对 11.如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ;②AB=DE,∠B=∠E .BC=EF ; ③∠B=∠E ,BC=EF ,∠C=∠F ; ④AB=DE,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有…………………………………………( ) A .1组 B .2组 C .3组 D .4组12.若a >0且2=x a ,3=y a ,则y x a -的值为…………………………………………( ) A .6 B .5 C .﹣1 D .3213.一个多边形截去一个角后,形成的另一个多边形的内角和为720°,那么原多边形的边数为 …………………………………………………………………………………( ) A .5 B .5或6C .5或 7D .5或6或714.计算2442221x x x -+++-的结果是……………………………………………( ) A .23+x B .23-xC .4232-+x xD .41032--x x15.如下图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24, ∠B=30°,则DE 的长是………………………………………………………………( ) A . 12 B . 10 C . 8 D . 616.如下图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点,若∠MON=35°,则∠GOH=…………( ) A . 60° B . 70° C . 80° D . 90°二、填空题(本大题共4个小题;每小题3分,共12分.请将答案写在答题卡的横线上,答在试卷上无效)17.若01)1(-=-a,则=a;18.当x=2017时,分式3962+++xxx的值为;19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如下图,则∠3+∠1-∠2=_____________°;20.如下图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为cm.三、解答题(本大题共7个小题,共66分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在答题卡的相应位置,答在试卷上无效)21.计算(本题满分8分)(1)32221)()3(---⋅-baab(2))2(2ababaaba--÷-22.(本题满分8分)阅读下面的问题,然后回答,分解因式:322-+xx,解:原式上述因式分解的方法称为配方法。
河北省保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·岳麓模拟) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (2分) (2019八上·江阴期中) 等腰三角形的两边长分别为4和9,这个三角形的周长是()A . 17B . 22C . 17或22D . 17和223. (2分)下列计算中,正确的是()A . x3•x2=x6B . x3﹣x2=xC . (﹣x)2•(﹣x)=﹣x3D . x6÷x2=x34. (2分) (2019九上·通州期末) 若一个正多边形的一个内角是,则这个正多边形的中心角为A .B .C .D .5. (2分) (2019八下·卫辉期中) 无论x取何值,下列分式总有意义的是()A .B .C .D .6. (2分)一个三角形的三个外角中,钝角的个数最少为()A . 0个B . 1个C . 2个D . 3个7. (2分)如图,在Rt△ABC中,∠ABC=90°,AC=20,AB=,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是()A .B .C .D .8. (2分)下列等式中正确的是()A .B .C .D .9. (2分) (2019八上·长安期中) 2017年12月28日,全长817米的太行山高速公路功德隧道提前100天顺利实现贯通.设原计划每天开凿x米,实际开凿速度是原计划速度的1.5倍,则所列方程为()A .B .C .D .10. (2分) .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作。
按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为()A . 5次B . 6次C . 7次D . 8次11. (2分) (2019八下·江津期中) 如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论正确的是()①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=122.5°;④BC+FG=1.5A . ①②③B . ①②C . ②③④D . ①②③④12. (2分) (2016七下·天津期末) 不等式组的整数解的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分) (2016七下·柯桥期中) 在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的直径约为0.00000156米,用科学记数法表示为________米.14. (1分) (2019九下·武冈期中) ________15. (1分)(2018·义乌) 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为________.16. (1分) (2017七下·无锡期中) 若多项式4a2+kab+9b2是完全平方式,则k=________.17. (1分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.18. (1分) (2018八上·硚口期末) 某次列车平均提速 .用相同的时间,列车提速前行驶,提速后比提速前多行驶50 .可求得提速前列车的平均速度为________ .三、解答题 (共8题;共85分)19. (15分) (2019九上·萧山开学考) 如图,在正方形ABCD中,G是对角线BD上的点,GE⊥CD,GF⊥BC,E,F分别为垂足,连结EF.设M,N分别是AB,BG的中点,EF=5,求MN的长.20. (10分)把下列多项式分解因式(1)12x3y﹣3xy2;(2)x﹣9x3;(3)3a2﹣12b(a﹣b).21. (10分)先化简,再求值:(x+3)(x﹣3)+2(x2+4),其中x=.22. (10分) (2019七下·交城期中)(1)如图,AD平分∠BAC,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的平分线?如果是,请给予证明;如果不是,请说明理由.(2)若将(1)中的结论与①AD平分∠BAC;②DE∥AB;③DF∥AC这三个条件中的任一个互换,所得命题符合题意吗?请选择一种情况说明理由.23. (10分)(2018·安顺模拟) 跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.24. (10分)(2017·天津模拟) 将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.25. (5分) (2019七下·郑州开学考) 观察下列两个等式:,,给出定义如下:我们称使等式a−b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2, ),(5, ),都是“共生有理数对”.(1)数对(−2,1),(3, )中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(−n,−m)________“共生有理数对”(填“是”或“不是”);说明理由;(3)若(a,3)是“共生有理数对”,求a的值.26. (15分)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共85分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
河北省保定市满城区2015-2016学年八年级数学上学期期末考试试题一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 2.下面四个图案中,是轴对称图形的是( )A.B.C.D.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.124.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y25.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)8.下列各式中,正确的是( )A.B.C.D.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=__________.12.一个多边形的内角和是1440°,那么这个多边形边数是__________.13.计算4x2y•(﹣x)=__________.14.计算:()﹣2=__________.15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为__________.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为__________.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=__________.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为__________.19.分式方程的解是__________.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为__________.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.23.解方程:2﹣=.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB 距离的2倍.(不写作法,保留作图痕迹)25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F 处.求证:EF=EC.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.2015-2016学年河北省保定市满城区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵1+2=3,∴1,2,3不能组成三角形,故本选项正确;B、∵2+3=5>4,∴2,3,4能组成三角形,故本选项错误;C、∵1+2=3>2,∴1,2,2能组成三角形,故本选项错误;D、∵2+2=4>1=3,∴2,2,3能组成三角形,故本选项错误.故选A.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下面四个图案中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.12【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故选B.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握,比较简单.4.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y2【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘;积的乘方等于乘方的积;单项式的乘法,系数相乘、同底数的幂相乘,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C错误;D、单项式的乘法,系数相乘、同底数的幂相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件对各选项进行逐一分析即可.【解答】解:A、∵x2≥0,∴x2+1>0,∴无论x取何值,分式总有意义,故本选项正确;B、当x+1=0,即x=﹣1时分式无意义,故本选项错误;C、当x3﹣1=0,即x=1时分式无意义,故本选项错误;D、当x=0时分式无意义,故本选项错误.故选A.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法;因式分解-运用公式法.【分析】分别根据提取公因式法以及公式法、十字相乘法分解因式得出即可.【解答】解:A、10a3+5a2=5a2(2a+1),故此选项错误;B、4x2﹣9=(2x+3)(2x﹣3),故此选项错误;C、a2﹣2a﹣1,无法因式分解,故此选项错误;D、x2﹣5x﹣6=(x﹣6)(x+1),此选项正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法、十字相乘法分解因式,正确记忆公式是解题关键.8.下列各式中,正确的是( )A.B.C.D.【考点】分式的基本性质;分式的加减法.【分析】根据分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:A 分母中的a没除以b,故A错误;B 异分母分式不能直接相加,故B错误;C 分式的分子分母没同乘或除以同一个不为零整式,故C错误;D 分式的分子分母都乘以(a﹣2),故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,注意不能一部分乘或除.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点M关于直线m的对称点P′,连接nP′交直线L于P.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CO,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.【点评】本题考查了等腰三角新的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=60°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠B=40°,∠C的外角等于100°,∴∠A=100°﹣40°=60°.故答案为:60°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.一个多边形的内角和是1440°,那么这个多边形边数是10.【考点】多边形内角与外角.【分析】利用多边形的内角和为(n﹣2)•180°即可解决问题.【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.故答案为:10.【点评】本题考查了多边形的内角和,利用多边形的内角和公式结合方程即可解决问题.13.计算4x2y•(﹣x)=﹣x3y.【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.计算:()﹣2=.【考点】负整数指数幂.【分析】根据分式的乘方:分子分母分别乘方可得,再根据a﹣p=(a≠0,p为正整数)进行计算.【解答】解:原式==•=.故答案为:.【点评】此题主要考查了负整数指数幂,关键是掌握a﹣p=(a≠0,p为正整数).15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为7.【考点】线段垂直平分线的性质.【分析】先根据点D在BC的垂直平分线上得出BD=CD,故△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC.【解答】解:∵AB+AC=7,D是AB上一点,点D在BC的垂直平分线上,∴BD=CD,∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC=7.故答案为:7.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为AAS.【考点】全等三角形的判定.【专题】开放型.【分析】添加∠B=∠C,再加上∠1=∠2和公共边AD=AD可利用AAS可判定△ABD≌△ACD.【解答】解:添加∠B=∠C,∵在△ADB和△ADC中,∴△ABD≌△ACD(AAS),故答案为:AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,根据移项、合并同类项,可得答案.【解答】解:由点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,得1﹣m=﹣2﹣n,移项,得m﹣n=3,故答案为:3.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为4.【考点】完全平方公式.【分析】求出a=2+b,代入a2﹣b2﹣4b,再进行计算即可.【解答】解:∵a﹣b=2,∴a=2+b,∴那么a2﹣b2﹣4b的=(2+b)2﹣b2﹣4b=4+4b+b2﹣b2﹣4b=4,故答案为:4.【点评】本题考查了完全平方公式的应用,主要考查学生的化简能力.19.分式方程的解是x=9.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为(1,4).【考点】规律型:点的坐标.【专题】推理填空题;规律型.【分析】由图可知,每6次反弹为一个循环组依次循环,用2015除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:根据题意可得P(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3)…经过6次反弹后动点回到出发点(0,3),∵2015÷6=335…5,∴当点P第2015次碰到矩形的边时为第336个循环组的第5次反弹,∴点P的坐标为(1,4).故答案为(1,4).【点评】本题主要考查了点的坐标的规律,由图形观察出每6次反弹为一个循环组依次循环是解题的关键.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.【考点】分式的混合运算;平方差公式.【专题】计算题.【分析】(1)根据多项式乘以多项式,然后合并同类项即可解答本题;(2)先将括号内的式子通分,然后根据同分母分式的加法合并然后再化简即可.【解答】解:(1)(2a﹣3b)(﹣3b﹣2a)=﹣6ab﹣4a2+9b2+6ab=﹣4a2+9b2(2)(a+1+)•====a.【点评】本题考查分式的混合运算和平方差公式,解题的关键是明确分式的混合运算的计算方法和平方差公式.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式3,进而利用完全平方公式分解因式即可;(2)直接提取公因式xy,再利用平方差公式分解因式.【解答】解:(1)原式=3(m2﹣8m+16)=3(m﹣4)2;(2)原式=xy(x2﹣4)=xy(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.解方程:2﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边都乘x(x+1),得2x(x+1)﹣1=x(2x+1),去括号得:2x2+2x﹣1=2x2+x,整理,得x=1,检验,当x=1时,x(x+1)≠0,则x=1是原分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB 距离的2倍.(不写作法,保留作图痕迹)【考点】作图—复杂作图.【专题】作图题.【分析】过点P作PD⊥AB于D,然后在CD的延长线上截取PD=2CD即可得到点P.【解答】解:如图,点P为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证BD=CE,可利用判定两个三角形全等的方法“两角和它们的夹边对应相等的两个三角形全等”证△DAB≌△EAC,然后由全等三角形对应边相等得出.【解答】证明:∵∠DAC=∠EAB,∴∠DAC+∠BAC=∠EAB+∠BAC.∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△DAB≌△EAC(ASA),∴BD=CE.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“角边边”判定方法.由∠EAB=∠DAC得∠EAC=∠DAB是解决本题的关键.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.求证:EF=EC.【考点】翻折变换(折叠问题).【专题】证明题.【分析】根据折叠的性质得到DA=DF,AE=FE,∠ADE=∠FDE,根据等腰三角形性质得∠B=∠DFB,再根据三角形外角性质得到∠ADE+∠FDE=∠B+∠DFB,则∠ADE=∠B,所以DE∥BC,易得DE为△ABC的中位线,得到AE=EC,于是EF=EC.【解答】证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,∴DA=DF,AE=FE,∠ADE=∠FDE,∴∠B=∠DFB,∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,∴∠ADE=∠B,∴DE∥BC,而D为AB的中点,∴DE为△ABC的中位线,∴AE=EC,∴EF=EC.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形中位线性质.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?【考点】分式方程的应用.【分析】设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书,根据同时开始工作,小伟比小明提前15分钟完成工作.列方程求解.【解答】解:设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书.由题意得,=+,解得:x=80,经检验:x=80是原方程的解且符合实际,则1.2x=1.2×80=96(册),答:小伟每小时可以整理80册图书,小明每小时可以整理96册图书.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.【考点】全等三角形的判定与性质.【分析】(1)在AB上截取AG=AF,进而得出∠FAD=∠DAG,利用SAS得出△AFD≌△AGD,进而得出∠AFD=∠AGD,FD=GD,即可得出∠B+∠AFD=∠DGB+∠AGD=180°;(2)首先过点E作∠DEH=∠DEA,点H在BC上,进而得出∠AFD=∠AGD=∠GEH,则GD∥EH,求出AE=AG+GE=AF+FD.【解答】解:(1)在AB上截取AG=AF.∵AD是△ABC的角平分线,∴∠FAD=∠DAG.在△AFD和△AGD中,∴△AFD≌△AGD(SAS),∴∠AFD=∠AGD,FD=GD,∵FD=BD,∴BD=GD,∴∠DGB=∠B,∴∠B+∠AFD=∠DGB+∠AGD=180°;(2)AE=AF+FD.过点E作∠DEH=∠DEA,点H在BC上.∵∠B+2∠DEA=180°,∴∠HEB=∠B.∵∠B+∠AFD=180°,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.又∵AF=AG,∴AE=AG+GE=AF+FD.【点评】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
河北省保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·凤翔模拟) 的算术平方根是()A .B .C .D .2. (2分)若一个数的平方根与它的立方根完全相同,则这个数是()A . 0B . 1C . -1D . ±1,03. (2分)已知a=(﹣2)0 , b=()﹣1 , c=(﹣2)﹣2 ,那么a、b、c的大小关系为()A . a>b>cB . c>a>bC . c>b>aD . b>a>c4. (2分) (2019八上·鄞州期中) 如果a>b,那么下列结论一定正确的是()A . a﹣3<b﹣3B . 1+a>1+bC . ﹣3a>﹣3bD . <5. (2分)下列二次根式属于最简二次根式的是()A .B .C .6. (2分) (2018七下·浏阳期中) 下列运算中,正确是()A .B .C .D .7. (2分)(2020·百色模拟) 对于任意实数m、n,定义一种新运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6﹣2﹣6+3=7.请根据上述定义解决问题:若a<4※x<8,且解集中有2个整数解,则a的取值范围是()A . ﹣1<a≤2B . ﹣1≤a<2C . ﹣4≤a<﹣1D . ﹣4<a≤﹣18. (2分) (2017八下·钦州港期中) 下列运算中,错误的是()A .B .C .D .9. (2分)(2016·黔东南) 不等式组的整数解有三个,则a的取值范围是()A . ﹣1≤a<0B . ﹣1<a≤0C . ﹣1≤a≤0D . ﹣1<a<010. (2分) (2017八上·泸西期中) 如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=()B . 35°C . 40°D . 45°11. (2分)(2017·定远模拟) 如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有()A . 1个B . 2个C . 3个D . 4个12. (2分)(2017·平塘模拟) 如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A .B . 16π﹣32C .D .二、填空题 (共6题;共6分)13. (1分) (2019八上·大连期末) 使式子有意义的实数的取值是________.14. (1分) (2017七下·大冶期末) 不等式2x﹣3≤1的正整数解为________.15. (1分) (2020八上·覃塘期末) 如图,点A、B、C、D在同一直线上,∠AEC=∠DFB,AB=DC,请补充一个条件:________能使用“ ”的方法得△ACE≌△DBF.16. (1分) (2018七上·皇姑期末) 补全下列解题过程:如图,OD是∠AOC的平分线,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°∴∠DOC= ∠________=________°.∵∠BOC+∠________=120°,∠BOC-∠AOB=40°∴∠BOC=80°∴∠BOD=∠BOC-∠________=________°17. (1分) (2019八下·瑞安期末) 如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.18. (1分) (2020八上·港南期末) 观察下列等式:① ;②③…参照上面等式计算方法计算:________.三、解答题 (共8题;共60分)19. (10分)先化简再求值:( + )÷ ,其中x=﹣1.20. (5分) (2016八上·瑞安期中) 下面两图均是4×4的正方形网格,格点A,格点B和直线l的位置如图所示,点P在直线l上.(1)请分别在图1和图2中作出点P,使PA+PB最短;(2)请分别在图3和图4中作出点P,使PA-PB最长.21. (10分) (2017七下·常州期末) 已知x+y=1,xy= ,求下列各式的值:(1) x2y+xy2;(2)(x2﹣1)(y2﹣1).22. (5分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.23. (5分)解下列不等式组,并把(1)的解集在数轴上表示出来,并指出(2)的所有的非负整数解.(1)(2).25. (10分) (2019七下·隆昌期中) 某商场计划购进A , B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?(1)若∠BAE=30°,AE=3,求菱形ABCD的周长.(2)作AF⊥C D于点F,连结EF,BD,求证:EF∥BD.(3)设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1-S2是的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、25-1、25-2、26-1、26-2、26-3、。
2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。
保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八上·中江期中) 下列银行标志中,不是轴对称图形的为()A .B .C .D .2. (2分)如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A . (0,3)B . (1,2)C . (0,2)D . (4,1)3. (2分)一个长方形花坛长是x3米,宽是(xy2)2米,则此长方形花坛的面积为()A . x6y4米2B . x6y2米2C . x5y4米2D . x5y2米24. (2分)(2016·成都) 分式方程 =1的解为()A . x=﹣2B . x=﹣3C . x=2D . x=35. (2分)李明的作业本上有四道题:(1)a·a=a2 ,(2)(2b)3=8b3 ,(3)-(x+1)=x+1,(4)4a÷(-2a)=-2,如果你是他的数学老师,请找出他做错的题是()A . (1)B . (2)C . (3)D . (4)6. (2分) (2017七下·宜兴期中) 下列各式从左到右的变形中,因式分解正确的是()A . x2﹣7x+12=x(x﹣7)+12B . x2﹣7x+12=(x﹣3)(x+4)C . x2﹣7x+12=(x﹣3)(x﹣4)D . x2﹣7x+12=(x+3)(x+4)7. (2分) (2020九上·沈河期末) 若==≠0,则下列各式正确的是()A . 2x=3y=4zB . =C . =D . =8. (2分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有()A . 0对B . 1对C . 2对D . 3对9. (2分) (2016八上·射洪期中) 如果x2+y2=8,x+y=3,则xy=()A . 1B .C . 2D . ﹣10. (2分) (2017八下·南召期中) 如果分式的值是零,则x的取值是()A . x=1B . x=﹣1C . x=±1D . x=011. (2分) (2019八上·天台期中) 如图△ABC和△DEF,下列条件中①∠B=∠E=90°,AC=DF;②∠B=∠E,AB=DE,AC=DF;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F;⑤∠A=∠D,BC=EF,∠C=∠F,能证明△ABC≌△DEF的是()A . ③ ⑤B . ① ③⑤C . ①② ③⑤D . ①② ③④⑤12. (2分) (2015八上·永胜期末) 如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A . 24B . 30C . 32D . 34二、填空题 (共8题;共8分)13. (1分) (2016八上·卢龙期中) 点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为________.14. (1分)正八边形的每个外角的度数为________° .15. (1分)长度为2cm、3cm、4cm和5cm的4根木棒,从中任取3根,可搭成________种不同的三角形.16. (1分) (2016八上·柘城期中) 如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为________ cm.17. (1分)(2012·徐州) 分解因式:a2﹣4=________18. (1分) (2017八上·德惠期末) 计算:﹣3xy2z•(x2y)2=________.19. (1分) (2018八上·如皋期中) 如图,点B、A、E在同一直线上,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAC=________°20. (1分) (2018八上·仁寿期中) 如右图所示,AD∥BC,AB∥DC,点O为线段AC的中点,过点O作一条直线分别与AB、CD交于点M、N.点E、F在直线MN上,且OE=OF.图中全等的三角形共有________对.三、解答题 (共7题;共70分)21. (10分)(2011·义乌) 计算下面各题(1)计算:;(2)解分式方程:.22. (9分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A . 提取公因式B . 平方差公式C . 两数和的完全平方公式D . 两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?________.(填“是”或“否”)如果否,直接写出最后的结果________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23. (5分) (2017八下·东台期中) 先化简代数式(1﹣)÷ ,再从0,﹣2,2,﹣1,1中选取一个恰当的数作为a的值代入求值.24. (11分)(2019·封开模拟) 如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点.动点P从点A 出发,沿着AB运动到点B停止,速度为每秒钟1个单位长度,连接PE,过点E作PE的垂线交射线AD与点Q,连接PQ,设点P的运动时间为t秒.(1)当t=1时,sin∠PEB=________;(2)是否存在这样的t值,使△APQ为等腰直角三角形?若存在,求出相应的t值,若不存在,请说明理由;(3)当t为何值时,△PEQ的面积等于10?25. (10分) (2016八上·上城期末) 如图,在Rt△ABC中,∠ACB=90°.(1)实践与操作:利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法);①作AB的垂直平分线交AB于点D,连接CD;②分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F.(2)求证:CE=DF.26. (10分)(2017·江北模拟) 我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.27. (15分) (2017九下·莒县开学考) 在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共70分)21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015-2016学年河北省保定市高阳县八年级(上)期末数学试卷一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分)1.下面四个图案中,是轴对称图形的是()A.B.C.D.2.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A.2×10﹣4B.0.2×10﹣5C.2×10﹣7D.2×10﹣63.若分式的值为0,则x的值为()A.﹣1 B.0 C.2 D.﹣1或24.下列运算正确的是()A.x6•x2=x12B.x6÷x2=x3C.(x2)3=x5D.(x﹣1y)3=x﹣3y35.已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A.﹣1 B.1 C.﹣3 D.36.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°7.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4+)C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x+4)(x﹣4)+3x8.如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30° B.36° C.60° D.72°9.化简的结果是()A.m B.C.﹣m D.﹣10.用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm11.下列各式中,正确的是()A.B.C. D.12.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()A.61° B.60° C.37° D.39°13.若3x=4,3y=6,则3x﹣2y的值是()A.B.9 C.D.314.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.无法确定15.如果(a﹣b﹣3)(a﹣b+3)=40,那么a﹣b的值为()A.49 B.7 C.﹣7 D.7或﹣716.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A .15°B .22.5°C .30°D .45°二、填空题(本大题共4个小题;每小题3分,共12分)17.计算:(﹣1)﹣2= .18.若a 2﹣b 2=,a ﹣b=,则a+b 的值为 .19.如图,AB+AC=7,D 是AB 上一点,若点D 在BC 的垂直平分线上,则△ACD 的周长为 .20.如图,△ABC 在直角坐标系中,现另有一点D 满足A ,B ,D 为顶点的三角形与△ABC 全等,则满足条件的D 点的个数为 .三、解答题(本大题共7个小题,共66分)21.因式分解:(1)y 3﹣y 2+y(2)m 4﹣n 4.22.先化简,再求值(1)[(3x+2y )(3x ﹣2y )﹣(x+2y )(5x ﹣2y )]÷8x ,其中x=2,y=2016.(2)﹣(),选择一个你喜欢的数代入求值.23.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO=DO.24.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?25.如图,△ABC位于直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,5),B(﹣4,1),C (﹣1,3),点P(x,y)是△ABC内任一点,直线m上各点的横坐标都为1.(1)作出△ABC关于x轴对称的图形△A1B1C1,并写出A1,B1,C1的坐标,A1;B1;C1;请写出点P(x,y)关于y轴对称的对称点P1的坐标;(2)作出△ABC关于直线m对称的图形△A2B2C2,并写出A2,B2,C2的坐标,A2;B2;C2;请写出点P(x,y)关于直线m对称的对称点P2的坐标.26.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).27.如图,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC 运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,AP的长为厘米,QC的长为厘米;(用含t的式子表示)(2)当t为何值时,△PBQ是直角三角形?(3)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.2015-2016学年河北省保定市高阳县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分)1.下面四个图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A.2×10﹣4B.0.2×10﹣5C.2×10﹣7D.2×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 002=2×10﹣6;故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.若分式的值为0,则x的值为()A.﹣1 B.0 C.2 D.﹣1或2【考点】分式的值为零的条件.【分析】根据分式的分子为0;分母不为0,分式的值为零,可得答案.【解答】解:由分式的值为0,得,解得x=﹣1,故选:A.【点评】本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算正确的是()A.x6•x2=x12B.x6÷x2=x3C.(x2)3=x5D.(x﹣1y)3=x﹣3y3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A.﹣1 B.1 C.﹣3 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值.【解答】解:∵点P(1,a)与Q(b,2)关于x轴成轴对称,∴b=1,a=﹣2,∴a﹣b=﹣3,故选:C.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【专题】计算题.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.7.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4+)C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x+4)(x﹣4)+3x【考点】因式分解的意义.【专题】计算题;整式.【分析】利用因式分解的意义判断即可.【解答】解:下列各式由左边到右边的变形中,属于分解因式的是10x2﹣5x=5x(2x﹣1),故选C【点评】此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.8.如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30° B.36° C.60° D.72°【考点】多边形内角与外角.【专题】计算题.【分析】设这个多边形是n边形,它的内角和可以表示成(n﹣2)•180°,就得到关于n的方程,求出边数n.然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)•180°=1800,解得n=12;那么这个多边形的一个外角是360÷12=30度,即这个多边形的一个外角是30度.故本题选A.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.同时考查了多边形内角与外角的关系.9.化简的结果是()A.m B.C.﹣m D.﹣【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=﹣•=﹣m.故选C【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.10.用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm【考点】等腰三角形的性质;三角形三边关系.【分析】分已知边4cm是腰长和底边两种情况讨论求解.【解答】解:4cm是腰长时,底边为16﹣4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为(16﹣4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.故选:B.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.11.下列各式中,正确的是()A.B.C. D.【考点】分式的加减法;分式的基本性质.【专题】计算题.【分析】根据分式的加减法,以及分式的基本性质逐一判断即可.【解答】解:∵ +≠,∴选项A不正确;∵≠,∴选项B不正确;∵≠,∴选项C不正确;∵==,∴选项D正确.故选:D.【点评】此题主要考查了分式的加减法,以及分式的基本性质的应用,要熟练掌握.12.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()A.61° B.60° C.37° D.39°【考点】三角形的外角性质.【分析】作直线AD,根据三角形的外角性质可得:∠3=∠B+∠1,∠4=∠C+∠2,从而推出∠BAC=∠1+∠2=∠3+∠4﹣∠B﹣∠D=37°.【解答】解:作直线AD,∴∠3=∠B+∠1﹣﹣﹣(1)∴∠4=∠C+∠2﹣﹣﹣(2)由(1)、(2)得:∠3+∠4=∠B+∠C+∠1+∠2,即∠BDC=∠B+∠C+∠BAC,∵∠BDC=98°,∠C=38°,∠B=23°∴∠BAC=98°﹣38°﹣23°=37°.故选C.【点评】解答此题的关键是构造三角形,应用三角形内角与外角的关系解答.13.若3x=4,3y=6,则3x﹣2y的值是()A.B.9 C.D.3【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】利用同底数幂的除法运算法则得出3x﹣2y=3x÷(3y)2,进而代入已知求出即可.【解答】解:3x﹣2y=3x÷(3y)2=4÷62=.故选:A.【点评】此题主要考查了同底数幂的除法运算法则以及幂的乘方运算法则,正确转化为同底数幂的除法是解题关键.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.无法确定【考点】角平分线的性质;垂线段最短.【分析】作PE⊥OM于E,根据角平分线的性质求出PE的长即可.【解答】解:作PE⊥OM于E,∵OP平分∠MON,PA⊥ON,PE⊥OM,∴PE=PA=3,故选:B.【点评】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.如果(a﹣b﹣3)(a﹣b+3)=40,那么a﹣b的值为()A.49 B.7 C.﹣7 D.7或﹣7【考点】平方差公式.【专题】计算题;整式.【分析】原式利用平方差公式化简,计算即可求出a﹣b的值.【解答】解:(a﹣b﹣3)(a﹣b+3)=(a﹣b)2﹣9=40,即(a﹣b)2=49,则a﹣b=7或﹣7,故选D【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15° B.22.5°C.30° D.45°【考点】轴对称-最短路线问题;等边三角形的性质.【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M 关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.【点评】本题考查了轴对称﹣最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.二、填空题(本大题共4个小题;每小题3分,共12分)17.计算:(﹣1)﹣2= .【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式==1,故答案为:1.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.18.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】平方差公式.【专题】计算题.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为.【考点】线段垂直平分线的性质.【分析】先根据点D在BC的垂直平分线上得出BD=CD,故△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC.【解答】解:∵AB+AC=7,D是AB上一点,点D在BC的垂直平分线上,∴BD=CD,∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC=7.故答案为:7.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,△ABC在直角坐标系中,现另有一点D满足A,B,D为顶点的三角形与△ABC全等,则满足条件的D点的个数为.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】根据全等三角形的判定方法:SSS,画出△ABD,因为没有确定其对应关,可以分情况画出:①AD与AC对应,②AC与BD对应,发现有3个满足条件.【解答】解:如图,由勾股定理得:AC=AD1==,BC=BD1==,在△ACB和△AD1B中,∵∴△ACB≌△AD1B,同理:△BD2A≌△ACB,△ACB≌△BD3A,所以满足条件的D有3个,故答案为:3.【点评】本题考查了全等三角形的性质和判定,当两个三角形全等时,如果对应位置没有完全确定时,要分三种对应关系进行讨论;同时根据格点利用勾股定理确定其位置.三、解答题(本大题共7个小题,共66分)21.因式分解:(1)y3﹣y2+y(2)m4﹣n4.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式y,再利用完全平方公式进行二次分解即可;(2)首先利用平方差公式进行分解,再利用平方差进行二次分解即可.【解答】解:(1)原式=y(y2﹣y+)=y(y﹣)2;(2)原式=(m2﹣n2)(m2+n2)=(m﹣n)(m+n)(m2+n2).【点评】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.先化简,再求值(1)[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷8x,其中x=2,y=2016.(2)﹣(),选择一个你喜欢的数代入求值.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先算括号里面的,再算除法,最后把x=2,y=2016代入进行计算即可;(2)先算括号里面的,再算乘法,最后算减法,再找出合适的x的值代入进行计算即可.【解答】解:(1)原式=[9x2﹣4y2﹣(5x2﹣2xy+10xy﹣4y2)]÷8x=[9x2﹣4y2﹣5x2﹣8xy+4y2]÷8x=[4x2﹣8xy]÷8x=x﹣y,当x=2,y=2016时,原式=1﹣2016=﹣2015;(2)原式=•﹣=•﹣=﹣=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.23.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.【考点】全等三角形的判定与性质.【专题】证明题.【分析】用AAS判定△ABC≌△ADC,得出AB=AD,再利用SAS判定△ABO≌△ADO,从而得出BO=DO.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC(ASA);(2)∵△ABC≌△ADC,∴AB=AD.又∵∠1=∠2,AO=AO,即,∴△ABO≌△ADO(SAS).∴BO=DO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【考点】分式方程的应用.【专题】压轴题;阅读型.【分析】应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50.【解答】解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意,得,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.∴甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,∴乙同学获胜.答:乙同学获胜.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.25.如图,△ABC位于直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,5),B(﹣4,1),C (﹣1,3),点P(x,y)是△ABC内任一点,直线m上各点的横坐标都为1.(1)作出△ABC关于x轴对称的图形△A1B1C1,并写出A1,B1,C1的坐标,A1;B1;C1;请写出点P(x,y)关于y轴对称的对称点P1的坐标;(2)作出△ABC关于直线m对称的图形△A2B2C2,并写出A2,B2,C2的坐标,A2;B2;C2;请写出点P(x,y)关于直线m对称的对称点P2的坐标.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)先根据关于x轴对称的点的坐标特征写出A1,B1,C1的坐标和点P1的坐标,然后描点即可得到△A1B1C1;(2)先写出点A、B、C关于y轴对称的点的坐标,然后把各对应点向右平移2个单位得到A2,B2,C2的坐标和点P2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1,为所作;A1,B1,C1的坐标分别为(﹣3,5)、(﹣4,﹣1)、(﹣1,﹣3),点P(x,y)关于y轴对称的对称点P1的坐标为(x,﹣y);(2)如图,△A2B2C2为所作,A2,B2,C2的坐标分别为(5,5)、(6,1)、(3,3),点P(x,y)关于直线m对称的对称点P2的坐标为(﹣x+2,y).故答案为(﹣3,5)、(﹣4,﹣1)、(﹣1,﹣3),(x,﹣y);(5,5)、(6,1)、(3,3),(﹣x+2,y).【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是有点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形26.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).【考点】多项式乘多项式.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.如图,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC 运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,AP的长为厘米,QC的长为厘米;(用含t的式子表示)(2)当t为何值时,△PBQ是直角三角形?(3)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.【考点】三角形综合题.【分析】(1)结合路程=速度×时间进行填空;(2)需要分类讨论:分∠PQB=90°和∠BPQ=90°两种情况;(3)∠CMQ=60°不变.通过证△ABQ≌△CAP(SAS)得到:∠BAQ=∠ACP,由三角形外角定理得到∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.【解答】解:(1)依题意得:AP=t,QC=4﹣t.故答案是:t;4﹣t;(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BP Q=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(2)∠CMQ=60°不变.理由如下:∵在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.【点评】本题考查了三角形综合题,其中涉及到了全等三角形的判定与性质,等边三角形的性质.掌握判定三角形全等的方法,分类讨论是解决问题的关键.。