九年级数学全一册试卷
- 格式:doc
- 大小:75.67 KB
- 文档页数:2
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
人教版九年级全册试卷数学专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 已知一个正方形的对角线长为10cm,则这个正方形的面积为多少cm²?A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²3. 下列函数中,哪一个函数是增函数?A. y = -x²B. y = x²C. y = -xD. y = x4. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个等腰三角形的高为多少cm?A. 6cmB. 8cmC. 10cmD. 12cm5. 已知一个圆的半径为5cm,则这个圆的面积为多少cm²?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等边三角形的面积一定相等。
()2. 两个锐角互余,则这两个角的和为90°。
()3. 任何两个奇数之和都是偶数。
()4. 任何两个偶数之和都是偶数。
()5. 任何两个质数之和都是偶数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两边分别为5cm和12cm,则这个三角形的第三边长为______cm。
2. 已知一个正方形的对角线长为14cm,则这个正方形的边长为______cm。
3. 若一个等腰三角形的底边长为10cm,腰长为12cm,则这个等腰三角形的高为______cm。
4. 若一个圆的半径为7cm,则这个圆的面积为______cm²。
5. 若一个数的平方为64,则这个数的算术平方根为______。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请简述正弦定理。
学生做题前请先回答以下问题问题1:___________是研究函数、方程、不等式等的一种重要手段.①二次函数对称性:两点对称,则______相等;纵坐标相等,则两点______;由(x1,y1),(x2,y1)知,对称轴为直线_________.②二次函数增减性:y值比大小、取最值,常利用__________,借助____________求解.问题2:反比例函数与几何综合常见的结论和模型有哪些?如何证明?全一册综合测试(一)一、单选题(共10道,每道10分)1.关于x的一元二次方程的两个实数根分别为,且,,则m的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:根与系数的关系2.如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正切值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:锐角三角函数的定义3.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )A.三角形B.线段C.矩形D.正方形答案:A解题思路:试题难度:三颗星知识点:平行投影4.在等边三角形、矩形、菱形、等腰梯形中任选一个图形,下列说法正确的是( )A.选的图形是轴对称图形、中心对称图形的概率一样大B.选的图形是轴对称图形是确定事件C.选的图形是轴对称图形但不是中心对称图形的概率是D.选的图形是中心对称图形的概率为答案:B解题思路:试题难度:三颗星知识点:确定事件5.如图所示,在⊙O内有折线OA-AB-BC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( )A.19B.16C.18D.20答案:D解题思路:试题难度:三颗星知识点:垂径定理6.如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象交于A,B两点.若,则x的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数与反比例函数图象7.如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36~38小组,而不在34~36小组),根据图中提供的信息,下列说法错误的是( )A.该学校教职工总人数是50人B.年龄在40~42小组的教职工人数占该学校教职工人数的20%C.教职工年龄的中位数一定在40~42这一组D.教职工年龄的众数一定在38~40这一组答案:D解题思路:试题难度:三颗星知识点:众数8.在平面直角坐标系中,函数的图象为,关于原点对称的图象为,则直线y=a(a为常数)与的交点共有( )A.1个B.1个或2个C.1个或2个或3个D.1个或2个或3个或4个答案:C解题思路:试题难度:三颗星知识点:二次函数数形结合9.二次函数的图象如图,对称轴为直线x=1,若关于x的一元二次方程(t为实数)在的范围内有解,则t的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二次函数图象与方程、不等式10.如图,直线分别与x轴、y轴交于点C,D,与反比例函数的图象交于点A,B,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,连接EF,OA,OB.下列结论:①AD=BC;②EF∥AB;③四边形AEFC是平行四边形;④,其中正确的个数是( )A.1B.2C.3D.4答案:D解题思路:试题难度:三颗星知识点:反比例函数与几何综合。
数学九年级全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 22. 已知等差数列{an}中,a1=3,a3=9,则公差d为:A. 2B. 3C. 4D. 53. 若两个角的和为90°,则这两个角互为:A. 邻补角B. 对顶角C. 同位角D. 周角4. 下列函数中,奇函数是:A. y = x²B. y = |x|C. y = x³D. y = 2x²5. 在直角坐标系中,点P(2, -3)关于y轴的对称点坐标是:A. (-2, 3)B. (-2, -3)C. (2, 3)D. (3, -2)二、判断题(每题1分,共5分)1. 若|a|=|b|,则a和b相等。
()2. 两条平行线的同位角相等。
()3. 任何二次函数都有两个零点。
()4. 在三角形中,若两边之和等于第三边,则该三角形为直角三角形。
()5. 对数函数的定义域为实数集R。
()三、填空题(每题1分,共5分)1. 若a³ = 27,则a = ________。
2. 函数y = 2x + 1的图像是一条_________。
3. 在直角坐标系中,点(3, 4)到原点的距离是_________。
4. 若sinθ = 1/2,且θ为锐角,则θ的度数为_________°。
5. 二项式展开式(a + b)⁴的项数为_________。
四、简答题(每题2分,共10分)1. 解释等差数列和等比数列的定义。
2. 简述平行线的性质。
3. 描述二次函数图像的特征。
4. 解释直角三角形的勾股定理。
5. 什么是对数函数?给出一个对数函数的例子。
五、应用题(每题2分,共10分)1. 已知函数f(x) = 2x 5,求f(3)的值。
2. 若等差数列{an}中,a1=2,d=3,求a5的值。
3. 计算sin45°的值。
数学九年级上册全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是()A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 二项式 (a+b)^10 展开后的项数为()A. 10B. 11C. 20D. 214. 若直线 y = 2x + 3 与 x 轴相交于点 A,与 y 轴相交于点 B,则三角形 OAB(O 为坐标原点)的面积是()A. 3B. 4.5C. 6D. 95. 在等差数列 {an} 中,若 a1 = 3,d = 2,则 a10 = ()A. 19B. 20C. 21D. 22二、判断题(每题1分,共5分)6. 若两个实数的和为0,则这两个实数互为相反数。
()7. 任何两个奇函数的乘积一定是偶函数。
()8. 一元二次方程的解一定为实数。
()9. 在直角坐标系中,所有平行于 y 轴的直线都是 y 的函数。
()10. 等差数列的公差可以为0。
()三、填空题(每题1分,共5分)11. 若 |x| = 5,则 x = _______。
12. 二项式系数 C(10, 2) 的值为 _______。
13. 函数 y = 3x + 4 的图像是一条 _______。
14. 在等差数列 {an} 中,若 a3 = 8,a7 = 20,则公差 d = _______。
15. 若一个正方形的边长为 a,则其面积为 _______。
四、简答题(每题2分,共10分)16. 简述等差数列的定义及其通项公式。
17. 解释一元二次方程的判别式及其意义。
18. 描述直角坐标系中,一次函数图像的特点。
19. 什么是奇函数和偶函数?给出一个例子。
20. 解释二次函数的顶点公式及其应用。
五、应用题(每题2分,共10分)21. 解一元二次方程 x^2 5x + 6 = 0。
1. 下列各数中,无理数是()A. √4B. 3.1415926...C. √9D. 2.252. 已知方程x² - 5x + 6 = 0,则方程的解是()A. x₁ = 2,x₂ = 3B. x₁ = 3,x₂ = 2C. x₁ = -2,x₂ = -3D. x₁= -3,x₂ = -23. 若a² + b² = 25,且 a - b = 4,则 a + b 的值为()A. 3B. 5C. 7D. 94. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形6. 若a² + b² = 1,且 a - b = 0,则 ab 的值为()A. 0B. 1C. -1D. 27. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的高为()A. 5cmB. 6cmC. 7cmD. 8cm8. 若a² - 4a + 4 = 0,则 a 的值为()A. 2B. -2C. 0D. 49. 在平面直角坐标系中,点A(-1,2),点B(3,-4),则线段AB的中点坐标是()A.(1,-1)B.(2,-1)C.(1,-2)D.(2,-2)10. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² + b² = (a - b)²C. (a + b)² = a² + b² + 2abD. (a - b)² = a² + b² - 2ab1. 若a² - 2a + 1 = 0,则 a 的值为________。
2. 在直角坐标系中,点P(3,-2)关于y轴的对称点坐标是________。
数学九年级上册全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是:A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 下列函数中,哪个是增函数?A. y = -2x + 3B. y = x²C. y = -3/xD. y = 1/x²4. 若平行四边形的对角线互相垂直,则这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 无法确定5. 下列哪个角是锐角?A. 120°B. 135°C. 150°D. 60°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 两个负数相乘的结果是正数。
()3. 对角线相等的平行四边形一定是矩形。
()4. 任何数的平方都是非负数。
()5. 一元二次方程的解可能是两个相等的实数根。
()三、填空题(每题1分,共5分)1. 两个质数的和一定是______。
2. 若a² = b²,则 a 与 b 的大小关系可能是______。
3. 一次函数 y = kx + b 的图像是一条______。
4. 若平行四边形的对角线互相平分,则这个平行四边形是______。
5. 两个等腰三角形的面积相等,若它们的底边长相等,则它们的顶角也相等。
(______)四、简答题(每题2分,共10分)1. 简述实数的分类。
2. 解释一元二次方程的判别式。
3. 什么是平行四边形的对角线定理?4. 简述正弦函数的定义域和值域。
5. 什么是相似三角形?它们有哪些性质?五、应用题(每题2分,共10分)1. 已知 a > b,求证 -a < -b。
2. 解一元二次方程x² 5x + 6 = 0。
3. 计算三角形的面积,已知底边长为 10,高为 5。
一、选择题(每题4分,共40分)1. 若实数a、b满足a+b=1,则a^2+b^2的最小值为()。
A. 0B. 1C. 2D. 32. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()。
A. 45°B. 60°C. 75°D. 90°3. 下列函数中,在其定义域内单调递增的是()。
A. y=x^2B. y=2^xC. y=x^3D. y=x^44. 若方程x^2-4x+4=0的两个根分别为a和b,则a+b和ab的值分别是()。
A. 4,4B. 4,-4C. 2,4D. 2,-45. 已知数列{an}的通项公式为an=3n-2,则数列的前10项和S10为()。
A. 145B. 150C. 155D. 1606. 在平面直角坐标系中,点P(-2,3)关于原点的对称点为()。
A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)7. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn=()。
A. na1+n(n-1)d/2B. n(a1+an)/2C. n(a1+an)/4D. n(a1+an)/38. 若函数y=f(x)在区间[0,1]上单调递增,且f(0)=1,f(1)=3,则f(0.5)的值在()。
A. 1.5~2之间B. 1~1.5之间C. 0.5~1之间D. 0~0.5之间9. 下列图形中,对称轴为x=1的是()。
A. B. C. D.10. 若等比数列{an}的公比为q,首项为a1,且a1+a2+a3=27,a2+a3+a4=81,则q 的值为()。
A. 2B. 3C. 4D. 5二、填空题(每题4分,共40分)11. 若x=2+√3,则x^2-4x+3的值为______。
12. 在△ABC中,若∠A=30°,∠B=45°,则△ABC的外接圆半径R为______。
13. 函数y=2^x在定义域内是______函数。
一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √16B. √-1C. πD. 2/32. 若a、b是方程2x^2 - 3x + 1 = 0的两个实数根,则a + b的值为()A. 2B. 3C. 1/2D. 13. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)4. 已知等边三角形ABC的边长为6,则其内切圆的半径为()A. 2B. 3C. 4D. 65. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x + 1二、填空题(每题4分,共16分)6. 若|a| = 5,则a的值为______(写出所有可能的值)。
7. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为______。
8. 若x^2 - 5x + 6 = 0,则x的值为______。
9. 已知一次函数y = kx + b,其中k < 0,且图象经过点(2,3),则b的值为______。
10. 圆的直径为10cm,则其周长为______cm。
三、解答题(每题10分,共40分)11. (10分)解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 2\end{cases}\]12. (10分)已知函数y = -3x^2 + 6x + 1,求:(1)函数的对称轴;(2)函数的最大值。
13. (10分)已知等腰三角形ABC中,底边BC的长度为8cm,腰AB和AC的长度分别为5cm和6cm,求:(1)底边BC上的高;(2)三角形ABC的面积。
14. (10分)某校计划用10000元购买图书,若每册图书的价格为20元,则可以购买图书______册(用含n的分式表示,n为正整数)。
四、附加题(每题10分,共20分)15. (10分)已知函数y = 2x^2 - 4x + 1,求:(1)函数的顶点坐标;(2)函数的增减性质。
人教版九年级全册试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 17B. 27C. 37D. 474. 若一个圆的半径为5cm,则这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π5. 若一个长方体的长、宽、高分别为10cm、6cm和4cm,则这个长方体的对角线长度为多少cm?A. 12cmB. 14cmC. 16cmD. 18cm二、判断题(每题1分,共5分)1. 任何两个等边三角形都是相似的。
()2. 两个负数相乘的结果一定是正数。
()3. 任何数乘以0都等于0。
()4. 一个数的平方根有两个,且互为相反数。
()5. 任何数除以它自己都等于1。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第5项是______。
2. 若一个圆的直径为14cm,则这个圆的周长是______cm。
3. 若一个长方体的长、宽、高分别为8cm、6cm和4cm,则这个长方体的体积是______立方厘米。
4. 若一个等比数列的首项为2,公比为3,则第3项是______。
5. 若一个正方形的边长为10cm,则这个正方形的对角线长度是______cm。
四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。
2. 请简要说明平行线的性质。
3. 请简要说明勾股定理。
4. 请简要说明圆的面积公式。
5. 请简要说明长方体的体积公式。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
1
全一册
基础巩固:
一、选择题
1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B.
C.
D.
2. 函数y=x 2-2x+3的图象的顶点坐标是( )
A. (1,-4)
B.(-1,2)
C. (1,2)
D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( )
A. 第一象限
B. 第二象限
C. x 轴上
D. y 轴上
4.
抛物线
的对称轴是( )
A. x=-2
B.x=2
C. x=-4
D. x=4 5. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
6. 如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A .4
B .6
C .7
D .8
7.把抛 物线
的图象向左平移2个单位,
再向上平移3个单位,所得的抛物线的函数关系
式是( ) A. B. C.
D.
8. 如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组
成
图24—A —
1
图24—A —6
2
的圆环的面积是( )
A .16π
B .36π
C .52π
D .81π
二、填空题
9. 二次函数y=x 2-2x+1的对称轴方程是______________.
1、 10在Rt △ABC 中,∠C =900,AB =
,3,5cm BC cm =则A sin = ,
B cos = ;
11.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 ;
12. 、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为
( ) (A )
cm 41 (B ) cm 21 (C ) cm 4
3 (D )
13根据下列条件解直角三角形。
在Rt △ABC 中。
1、︒=∠=45,20A c 2. ︒=∠=30,36B a
14. ︒-︒45cos 30sin 2 2、3245cos 2-+
︒
3、︒30sin 22
·︒+︒60cos 30tan ·︒30cot 4、︒-︒30tan 45sin 2
2
15
如图,海岛A 四周20海里范围内是暗礁区,一艘货轮由东向西航行,在B 处见岛A 在北偏西︒60,航行24海里后到C 处,见岛A 在北偏西︒30,货轮继续向西航行,有无触礁危险?
A
B
C 30
60。