高中物理实验
- 格式:docx
- 大小:333.17 KB
- 文档页数:7
高中物理实验(超详细)本文档旨在提供一份超详细的高中物理实验指南,以帮助学生更好地理解和掌握物理实验。
实验1: 马赫-朗伯仪器测速实验实验目的通过马赫-朗伯仪器测量运动物体的速度,加深对速度的理解。
实验器材- 马赫-朗伯仪器- 运动物体实验步骤1. 准备马赫-朗伯仪器和物体。
2. 将物体放在仪器底座上,并调整光线,使之通过物体底部的夹角最小。
3. 开始测速,记录仪器上显示的速度值。
实验结论通过马赫-朗伯仪器,可以准确地测量运动物体的速度。
实验2: 牛顿冷却定律实验实验目的验证牛顿冷却定律,并了解物体的冷却过程。
实验器材- 试管装置- 温度计- 热水源- 冷却水源实验步骤1. 准备试管装置,并将温度计插入试管中。
2. 将热水源中的水倒入试管中,记录初始温度。
3. 启动计时器,观察温度的变化,并记录下来。
4. 将冷却水源中的水倒入试管中,继续观察温度的变化。
实验结论实验结果验证了牛顿冷却定律,即物体的冷却速度与温度差成正比。
实验3: 光的折射实验实验目的通过光的折射实验,观察光在不同介质中的传播规律。
实验器材- 光具- 光源- 介质实验步骤1. 准备光具和光源,并将光源固定在适当位置。
2. 在介质中装入不同介质,如水和玻璃。
3. 点亮光源,观察通过不同介质后光线的折射情况。
4. 记录观察结果并比较不同介质的折射角度。
实验结论实验结果表明,光在不同介质中的传播路径会发生折射,折射角度与介质的折射率有关。
以上是三个简单的高中物理实验,通过这些实验的实施,希望能够帮助学生更好地理解各个物理概念和定律,提高实验操作能力。
希望本文档对您有所帮助。
高中物理实验计划5篇1. 简介本文档旨在提供五个高中物理实验计划的详细描述,供教师和学生参考。
这些实验计划涉及到物理学的不同领域,旨在帮助学生深入了解物理概念和现象,并培养他们的实验技能。
2. 实验计划1: 弹簧振子实验目的通过弹簧振子实验,学生将研究如何测量振动周期和频率,以及了解弹簧的弹性特性。
实验步骤1. 准备材料: 弹簧,质量,计时器。
2. 悬挂弹簧并固定质量。
3. 测量弹簧的自然长度和弹性系数。
4. 用计时器测量振动周期和频率。
5. 改变弹簧的质量和长度,观察振动周期和频率的变化。
结论学生将学会如何测量和计算弹簧的弹性系数,以及振动周期和频率的关系。
3. 实验计划2: 焦耳等量实验目的通过焦耳等量实验,学生将研究如何测量物体的热量和热容量,以及了解能量守恒和焦耳定律。
实验步骤1. 准备材料: 烧杯,水,温度计和加热装置。
2. 测量烧杯中水的初始温度。
3. 加热水,记录水的温度变化。
4. 根据温度变化计算加热水的热量。
5. 重复实验,改变加热时间和加热功率。
结论学生将学会如何测量和计算物体的热量和热容量,以及了解能量转化和焦耳定律。
4. 实验计划3: 光的折射实验目的通过光的折射实验,学生将研究如何测量光线在不同介质中的折射角,以及了解折射定律和光的折射原理。
实验步骤1. 准备材料: 光源,直尺,三棱镜,标尺和纸张。
2. 将三棱镜放在纸上并固定。
3. 调整光源的位置和角度,使光线照射到三棱镜上。
4. 在纸上标出入射角和折射角的位置。
5. 测量入射角和折射角,并计算折射率。
结论学生将学会如何测量和计算光线的折射角,以及了解折射定律和光的折射原理。
5. 实验计划4: 电路实验目的通过电路实验,学生将研究如何测量电流,电压和电阻,以及了解欧姆定律和串并联电路。
实验步骤1. 准备材料: 电池,导线,电阻器,电子表。
2. 搭建串联电路和并联电路。
3. 测量电流和电压,并计算电阻。
4. 改变电阻和电源电压,观察电流和电压的变化。
高中物理小实验
1.光的折射实验:用一块玻璃板和一束激光,观察激光在玻璃板中的折射现象。
2. 牛顿环实验:用一块凸透镜和一片平板玻璃,观察光在两个透镜表面之间形成的彩色环带。
3. 线性热膨胀实验:用一根金属棒和一个热水浴,观察金属棒在受热时的伸长现象。
4. 阻尼振动实验:用一个弹簧和一块小木块,观察小木块在弹簧上振动时的阻尼现象。
5. 电动势实验:用一个电池和一些导线,观察电池的正负极之间的电动势和电流的关系。
6. 马达转动实验:用一个直流电动机和一个电池,观察电动机在电池供电下的转动现象。
7. 共振实验:用一个声源和一个共振管,观察共振管在特定频率下的共振现象。
8. 磁场感应实验:用一个导线圈和一个恒定磁场,观察导线圈在磁场中运动时所感应出的电动势。
9. 声速测量实验:用一个共振器和一支频率可调的声源,测量声波在空气中的传播速度。
10. 万有引力实验:用一对质量不同的物体和一个支架,观察两个物体之间的万有引力和引力的大小关系。
- 1 -。
高中物理课本实验全
实验一:测量木块的密度
实验目的
通过测量木块的密度,学生可以了解物体密度的概念,并掌握密度计算的方法。
实验步骤
1. 准备一个木块和一个测量密度的;
2. 用天平测量木块的质量;
3. 将木块放入中,记录的初始体积;
4. 添加一定量的水到中,记录的末尾体积;
5. 使用公式计算木块的密度。
实验二:测量小车的加速度
实验目的
通过测量小车的加速度,学生可以了解力学中的运动和力的关系,并研究如何计算加速度。
实验步骤
1. 准备一个小车和一条光滑的倾斜面;
2. 将小车放在倾斜面上,并确保它处于静止状态;
3. 用尺子测量小车的起点和终点位置;
4. 通过计算公式计算小车的加速度。
实验三:测量电池的电动势
实验目的
通过测量电池的电动势,学生可以了解电压的概念,并掌握如何使用电动势计进行测量。
实验步骤
1. 准备一个电池和一个电动势计;
2. 将电动势计的正负极连接到电池的正负极;
3. 读取电动势计上的电动势数值。
实验四:测量光的折射角
实验目的
通过测量光的折射角,学生可以了解光的折射规律,并掌握如何使用折射仪进行测量。
实验步骤
1. 准备一个折射仪和一束光源;
2. 将光源对准折射仪,使光线通过折射仪的入口面;
3. 通过观察刻度盘上的指示,测量光的入射角和折射角。
......(以此类推,列出所有的高中物理课本实验)
以上是一份高中物理课本实验全的简要列表,希望对您有所帮助!。
高中物理光学实验
1. 双缝干涉实验:使用一台激光器和双缝实验台,通过调节缝宽和间距来观察干涉条纹的产生和运动。
2. 杨氏双缝衍射实验:使用一台激光器、双缝和屏幕,在不同的距离和角度下观察衍射图样的形态和变化规律。
3. 单缝衍射实验:使用一台激光器、黑色单缝和屏幕,通过调节单缝宽度和光源的位置来观察衍射现象。
4. 光的折射实验:使用一个玻璃棱镜、一台激光器和屏幕,观察光线在棱镜内部折射和反射的情况。
5. 凸透镜成像实验:使用一个凸透镜、光源和屏幕,通过调节物体离透镜的距离和凸度来观察成像的过程和规律。
6. 平面镜成像实验:使用一个平面镜、光源和屏幕,通过调节物体距离镜面的距离和角度来观察成像的规律。
7. 光栅谱仪实验:使用一台光栅谱仪和光源,观察通过光栅的光线被分散成各种颜色条纹的现象,并测量其频率和波长。
100个高中物理趣味实验1. 空气漏斗2. 球与滑板3. 滑轮组4. 原子固定架5. 简易望远镜6. 雾化器7. 弹簧振动测试8. 分光镜的运用9. 电动力加速器的使用10. 三种物质的密度比较11. 谐振12. 弹簧时间13. 波浪模拟14. 半导体15. 反射16. 超声波测量17. 重量轻轻地挥舞18. 火箭运动19. 角动量20. 热能转换21. 热传递实验22. 锡箔船23. 电线组织24. 透镜实验25. 摆动测量26. 半导体激光器27. 电动泵实验28. 音叉测量实验29. 波浪干涉30. 摩擦力测量实验31. 万有引力32. 声音测量实验33. 运动实验34. 电流实验35. 弹性实验36. 机械势能转换实验37. 热能实验38. 动量实验39. 电流测量实验40. 摩擦力实验41. 活塞和压缩气体42. 棒和弹簧43. 摩擦系数实验44. 反向吹气构造45. 弹簧实验46. 单摆实验47. 声波实验48. 热传导实验49. 磁力实验50. 强制指向实验51. 热容量实验52. 动量定律实验53. 麦克斯韦轮轨道分析实验54. 电学实验55. 凸透镜实验56. 热辐射实验57. 光波实验58. 测压实验59. 摆实验60. 电动力实验61. 光的折射实验62. 热扩散实验63. 磁场实验64. 引力和重力实验65. 投影机实验66. 磁感线实验67. 波速实验68. 压强测量实验69. 摆杆实验70. 电磁感应实验71. 自由落体实验72. 闪光灯实验73. 散热实验74. 两个电场实验75. 摩擦力学实验76. 磁性物质实验77. 动态平衡实验78. 棒实验79. 感应实验80. 火焰根据实验81. 摩擦抵抗实验82. 声速实验83. 混合气体实验84. 滚动摆实验85. 磁通量实验86. 力和能量实验87. 静电实验88. 磁场力和电场力实验89. 爆炸实验90. 磁扭矩实验91. 压力实验92. 电光源实验93. 光的干涉实验94. 海绵实验95. 高阻抗检测实验96. 引力对质量的影响实验97. 地声波实验98. 磁光效应实验99. 自然光的偏振实验100. 地球磁场实验。
高中物理18个实验及实验结论
高中物理有许多实验,以下是其中 18 个实验及实验结论的列表:
1. 平方反比定律实验:证明电流与电压成正比,与电阻成反比。
2. 单摆实验:证明物体在弹性限度内,外力愈大,振动愈短促。
3. 振动实验:证明物体振动时,振动频率与振幅无关,与外力
有关。
4. 碰撞实验:证明动量守恒定律,能量守恒定律。
5. 牛顿第一定律实验:证明任何物体都保持静止或匀速直线运
动状态,直到有外力作用于它为止。
6. 牛顿第二定律实验:证明物体所受的合外力等于物体质量与
加速度的乘积,即 F=ma。
7. 牛顿第三定律实验:证明任何作用力都有一个相等反作用力,且作用与反作用力的大小相等、方向相反。
8. 静电场实验:证明电荷守恒定律,库仑定律。
9. 直流电路实验:证明欧姆定律。
10. 波动实验:证明波的发生和传播依赖于介质。
11. 光的本性实验:证明光具有波动性和粒子性,提出“波粒二象性”理论。
12. 棱镜色散实验:证明光的颜色是由光波的振幅和频率决定的。
13. 光合作用实验:证明光合作用是光能转化为化学能的过程。
14. 浮力实验:证明物体沉浮与重力和浮力的关系。
15. 杠杆原理实验:证明杠杆的平衡条件。
16. 功和能的实验:证明功等于能量转化的量。
17. 温度实验:证明热胀冷缩规律,解释物体热胀冷缩的现象。
18. 万有引力实验:证明万有引力定律。
这些实验是物理学中非常重要的实验,它们证明了物理学中的基本定律,为物理学的发展做出了巨大贡献。
高中物理实验实验简介高中物理实验是培养学生对物理知识的理解和掌握能力的重要环节。
通过实验,学生能够亲自动手操作,观察实验现象,并通过数据分析和实验思考,深入理解物理规律和科学原理。
本文将介绍三个常见的高中物理实验,包括“牛顿第一定律实验”、“光的折射实验”和“电路实验”。
实验一:牛顿第一定律实验实验目的:验证牛顿第一定律。
实验器材:平滑水平面、滑块、弹簧测力计、线轴。
实验步骤:1. 将平滑水平面固定在桌上,并将滑块放置在平滑水平面上。
2. 将弹簧测力计的一端固定在滑块上,另一端固定在线轴上。
3. 逐渐增大滑块上的力,测量滑块的加速度和施加在滑块上的力的大小。
实验结果与分析:根据实验数据和分析,我们可以得出滑块的加速度与施加在滑块上的力成正比的结论。
这符合牛顿第一定律,即物体在受力作用下将以恒定速度运动或保持静止。
实验二:光的折射实验实验目的:观察光在不同介质中的折射现象。
实验器材:玻璃棱镜、直尺、平行光源。
实验步骤:1. 将玻璃棱镜放在直尺上,并将平行光源对准棱镜。
2. 观察光线从空气进入玻璃棱镜后的折射现象。
3. 测量和记录不同角度入射光线和折射光线的角度。
实验结果与分析:根据实验数据和分析,我们可以发现光线在从空气进入玻璃棱镜时发生了折射现象,且入射角和折射角之间满足较为固定的关系。
这验证了折射定律:入射角、折射角和介质折射率之间的正弦比例关系。
实验三:电路实验实验目的:验证欧姆定律和串并联电阻的电流和电压关系。
实验器材:电源、电阻、电流表、电压表。
实验步骤:1. 连接电路,包括串联电路和并联电路,分别测量电流和电压。
2. 改变电阻值,重复测量电流和电压。
3. 记录数据并进行分析。
实验结果与分析:根据实验数据和分析,我们可以得出电流和电压之间满足欧姆定律,即电流与电压成正比,电阻为比例常数。
同时,串联电路中电阻的总和等于各电阻之和,而并联电路中电流的总和等于各分支电流之和。
这验证了串并联电路中电流和电压关系的基本定律。
高中物理创新实验40个1.瓶内吹气球思考:瓶内吹起的气球,为什么松开气球口,气球不会变小?材料:大口玻璃瓶,吸管两根:红色和绿色、气球一个、气筒操作:1、用改锥事先在瓶盖上打两个孔,在孔上插上两根吸管:红色和绿色,2、在红色的吸管上扎上一个气球3、将瓶盖盖在瓶口上4、用气筒打红吸管处将气球打大5、将红色吸管放开气球立刻变小6、用气筒再打红吸管处将气球打大7、迅速捏紧红吸管和绿吸管两个管口8、放开红色吸管口,气球没有变小讲解:当红色吸管松开时,由于气球的橡皮膜收缩,气球也开始收缩。
可是气球体积缩小后,瓶内其他部分的空气体积就扩大了,而绿管是封闭的,结果瓶内空气压力要降低一一甚至低于气球内的压力,这时气球不会再继续缩小了。
2.能抓住气球的杯子思考:你会用一个小杯子轻轻倒扣在气球球面上,然后把气球吸起来吗?材料:气球1~2个、塑料杯1~2个、暖水瓶1个、热水少许流程:1、对气球吹气并且绑好2、将热水(约70°C) 倒入杯中约多半杯3、热水在杯中停留20秒后,把水倒出来4、立即将杯口紧密地倒扣在气球上5、轻轻把杯子连同气球一块提起说明:1、杯子直接倒扣在气球上,是无法把气球吸起来的。
2、用热水处理过的杯子,因为杯子内的空气渐渐冷却,压力变小,因此可以把气球吸起来。
3.会吸水的杯子思考:用玻璃杯罩住燃烧中的蜡烛,烛火熄灭后,杯子内有什么变化呢?材料:玻璃杯(比蜡烛高) 1个、蜡烛1支、平底盘子1个、打火机1个、水若干操作:1.点燃蜡烛,在盘子中央滴几滴蜡油,以便固定蜡烛。
2.在盘子中注入约1厘米高的水。
3.用玻璃杯倒扣在蜡烛上4.观察蜡烛燃烧情形以及盘子里水位的变化4.会吃鸡蛋的瓶子思考:为什么,鸡蛋能从比自己小的瓶子口进去?材料:熟鸡蛋1个、细口瓶1个、纸片若干、火柴1盒操作:1、熟蛋剥去蛋壳。
2、将纸片撕成长条状。
3、将纸条点燃后仍到瓶子中。
4、等火一熄,立刻把鸡蛋扣到瓶口,并立即将手移开。
高中物理学趣味实验设计实验一:水火箭发射实验目的:通过设计和制作水火箭,观察并探究火箭发射原理和物理特性。
实验材料:- 一瓶空饮料瓶- 水- 塑料管- 口气球- 火箭鳍(纸板制作)- 胶带实验步骤:1. 将空饮料瓶底部剪去一小段,制作成火箭喷射口。
2. 在火箭身上粘贴纸板制作的鳍,以增加稳定性。
3. 将塑料管固定在火箭底部,作为气体通道。
4. 倒入适量的水到火箭瓶中。
5. 将口气球套在塑料管的一端,并用胶带固定。
6. 快速将气球口处捏住,让水从塑料管中喷射出去,产生反作用力。
7. 观察火箭的垂直发射高度和水喷射的速度。
实验原理:当水从火箭底部喷射出去时,产生的反作用力会推动火箭向上运动。
这是因为根据牛顿第三定律,每个作用力都有一个相等且反向的反作用力。
水的喷射产生的反作用力推动火箭向上运动,直到水完全喷射出去为止。
实验扩展:- 可以尝试不同比例的水和空气充入火箭中,观察其对火箭发射高度的影响。
- 可以设计不同形状和数量的火箭鳍,观察其对火箭稳定性和飞行轨迹的影响。
实验二:简易电磁铁实验目的:通过制作简易电磁铁,探索电流和磁场之间的关系,并观察电磁铁的吸附力。
实验材料:- 长铁钉- 电线- 电池- 螺丝刀- 铁钉上的绝缘物(如绝缘胶带)实验步骤:1. 将铁钉的一端用螺丝刀刮去绝缘层,露出金属部分。
2. 将电线一端绕在铁钉上,确保电线与金属部分接触良好。
3. 将电线的另一端连接到电池的正极。
4. 将电池的负极用绝缘物(如绝缘胶带)与铁钉的另一端隔离开来。
5. 确保电路连接正确后,观察铁钉的吸附力。
实验原理:当电流通过铁钉时,会在铁钉周围产生一个磁场。
根据安培定则,电流通过的导线会产生一个磁场,而铁钉的金属部分可以增强磁场的强度。
这样产生的磁场会对铁钉产生吸引力,使其成为一个简易的电磁铁。
实验扩展:- 可以尝试改变电流的大小,观察对吸附力的影响。
- 可以尝试使用不同长度和直径的铁钉,观察对吸附力的影响。
高中物理实验1、互成角度的两个共点力的合成[实验目的]验证力的合成的平行四边形定则。
[实验原理]此实验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长一定的长度),看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的平行四边形定则。
[实验器材]木板一块,白纸,图钉若干,橡皮条一段,细绳套,弹簧秤两个,三角板,刻度尺,量角器等。
[实验步骤]1.用图钉把一张白纸钉在水平桌面上的方木板上。
2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。
3.用两个弹簧秤分别钩住两个细绳套,互成一定角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示)。
4.用铅笔描下结点O的位置和两个细绳套的方向,并记录弹簧秤的读数。
在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板,根椐平行四边形定则用画图法求出合力F。
5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。
按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。
6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。
7.改变两个分力F1和F2的大小和夹角。
再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。
[注意事项]1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。
2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。
[例题]1.在本实验中,橡皮条的一端固定在木板上,用两个弹簧秤把橡皮条的另一端拉到某一位置O点,以下操作中错误的是A.同一次实验过程中,O点位置允许变动B.在实验中,弹簧秤必须保持与木板平行,读数时视线要正对弹簧秤刻度C.实验中,先将其中一个弹簧秤沿某一方向拉到最大量程,然后只需调节另一弹簧秤拉力的大小和方向,把橡皮条的结点拉到O点D.实验中,把橡皮条的结点拉到O点时,两弹簧之间的夹角应取90°不变,以便于算出合力的大小答案:ACD2.做本实验时,其中的三个实验步骤是:(1)在水平放置的木板上垫一张白张,把橡皮条的一端固定在板上,另一端拴两根细线,通过细线同时用两个弹簧秤互成角度地拉橡皮条,使它与细线的结点达到某一位置O点,在白纸上记下O点和两弹簧秤的读数F1和F2。
(2)在纸上根据F1和F2的大小,应用平行四边形定则作图求出合力F。
(3)只用一个弹簧秤通过细绳拉橡皮条,使它的伸长量与用两个弹簧秤拉时相同,记下此时弹簧秤的读数F'和细绳的方向。
以上三个步骤中均有错误或疏漏,指出错在哪里?在(1)中是________________。
在(2)中是________________。
在(3)中是________________。
答案:本实验中验证的是力的合成,是一个失量的运算法则,所以即要验证力大小又要验证力的方向。
弹簧秤的读数是力的大小,细绳套的方向代表力的方向。
(1)两绳拉力的方向;(2)“的大小”后面加“和方向”;(3)“相同”之后加“使橡皮条与绳的结点拉到O点”2、测定匀变速直线运动的加速度(含练习使用打点计时器)[实验目的]1.练习使用打点计时器,学习利用打上点的纸带研究物体的运动。
2.学习用打点计时器测定即时速度和加速度。
[实验原理]1.打点计时器是一种使用交流电源的计时仪器,它每隔0.02s打一次点(由于电源频率是50Hz),纸带上的点表示的是与纸带相连的运动物体在不同时刻的位置,研究纸带上点之间的间隔,就可以了解物体运动的情况。
2.由纸带判断物体做匀变速直线运动的方法:如图所示,、s2、s3、……为0、1、2……为时间间隔相等的各计数点,s相邻两计数点间的距离,若△s=s2-s1=s3-s2=……=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。
3.由纸带求物体运动加速度的方法:(1)用“逐差法”求加速度:即根据s4-s1=s5-s2=s6-s3=3aT2(T为相邻两计数点间的时间间隔)求出a1= 、a2= 、a3= ,再算出a1、a2、a3的平均值即为物体运动的加速度。
(2)用v-t图法:即先根据v n= 求出打第n点时纸带的瞬时速度,后作出v-t图线,图线的斜率即为物体运动的加速度。
[实验器材]小车,细绳,钩码,一端附有定滑轮的长木板,打点计时器,低压交流电源,导线两根,纸带,米尺等。
[实验步骤]1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。
2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点,取下纸带,换上新纸带,重复实验三次。
4.选择一条比较理想的纸带,舍掉开头的比较密集的点子,确定好计数始点0,标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。
也可求出各计数点对应的速度,作v-t图线,求得直线的斜率即为物体运动的加速度。
[注意事项]1.纸带打完后及时断开电源。
2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。
3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。
4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。
[例题]1.电磁打点计时器是一种使用______电源的计时仪器,它的工作电压是______。
如图所示,A 是______,B是______,C是______,D是______,E是______,F是______。
答案:交流,4至6V,线圈,振动片,振针,纸带,接线柱,永磁体。
2.如图是某同学测量匀变速直线运动的加速度时,从若干纸带中选中的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计数点间距离的测量结果。
(1)为了验证小车的运动是匀变速运动,请进行下列计算,填入表内(单位:cm)各位移差与平均值最多相差______cm,由此可以得出结论:小车的位移在________范围内相等,所以小车的运动是________。
(2)根据匀变速直线运动的规律,可以求得物体的加速度a= =______m/s2。
(3)根据a n-3= ,可求出a1= =______m/s2,a2= =______m/s2,a3= =______m/s2,所以,==______m/s2。
答案:(1)1.60,1.55,1.62,1.53,1.61,1.58,0.05,任意两个连续相等的时间里、在误差允许的,匀加速直线运动;(2)1.58;(3)1.59,1.57,1.59,1.58。
3、验证牛顿第二定律[实验目的]验证牛顿第二定律。
[实验原理]1.如图所示装置,保持小车质量不变,改变小桶内砂的质量,从而改变细线对小车的牵引力,测出小车的对应加速度,作出加速度和力的关系图线,验证加速度是否与外力成正比。
2.保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量,测出小车的对应加速度,作出加速度和质量倒数的关系图线,验证加速度是否与质量成反比。
[实验器材]小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫木,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺等。
[实验步骤]1.用天平测出小车和小桶的质量M和M',把数据记录下来。
2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在斜面上可以保持匀速直线运动状态(也可以从纸带上打的点是否均匀来判断)。
4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量m和m'记录下来。
把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。
6.算出每条纸带对应的加速度的值。
7.用纵坐标表示加速度a,横坐标表示作用力,即砂和桶的总重力(M'+m')g,根据实验结果在坐标平面上描出相应的点,作图线。
若图线为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所受作用力成正比。
8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数,在坐标平面上根据实验结果描出相应的点,并作图线,若图线为一条过原点的直线,就证明了研究对象所受作用力不变时其加速度与它的质量成反比。
[注意事项]1.砂和小桶的总质量不要超过小车和砝码的总质量的。
2.在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。
用手轻轻地给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡。
3.作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽可能对称地分布在直线的两侧,但如遇个别特别偏离的点可舍去。
4、研究平抛物体的运动[实验目的]1.用实验方法描出平抛物体的运动轨迹。
2.从实验轨迹求平抛物体的初速度。
[实验原理]平抛物体的运动可以看作是两个分运动的合运动:一是水平方向的匀速直线运动,另一个是竖直方向的自由落体运动。
令小球做平抛运动,利用描迹法描出小球的运动轨迹,即小球做平抛运动的曲线,建立坐标系,测出曲线上的某一点的坐标x和y,根据重力加速度g的数值,利用公式y= 1/2gt2求出小球的飞行时间t,再利用公式x=vt,求出小球的水平分速度,即为小球做平抛运动的初速度。
[实验器材]斜槽,竖直固定在铁架台上的木板,白纸,图钉,小球,有孔的卡片,刻度尺,重锤线。
[实验步骤]1.安装调整斜槽:用图钉把白纸钉在竖直板上,在木板的左上角固定斜槽,可用平衡法调整斜槽,即将小球轻放在斜槽平直部分的末端处,能使小球在平直轨道上的任意位置静止,就表明水平已调好。
2.调整木板:用悬挂在槽口的重锤线把木板调整到竖直方向,并使木板平面与小球下落的竖直面平行。
然后把重锤线方向记录到钉在木板的白纸上,固定木板,使在重复实验的过程中,木板与斜槽的相对位置保持不变。
3.确定坐标原点O:把小球放在槽口处,用铅笔记下球在槽口时球心在图板上的水平投影点O,O点即为坐标原点。