四川泸州2017高三三诊考试理科数学试题(word版含答案)
- 格式:doc
- 大小:1.21 MB
- 文档页数:13
四川省泸州市2017届高三二诊试题(理)考试时间:120分钟 分值:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数2(1i)i-(i 为虚数单位)的共轭复数为( )A .1i +B .1i -C .1i -+D .-1- i 2. 若X ~N (5,1),则P (6<X <7)=( )(参考值:P (μ﹣σ<X ≤μ+σ)=0.6826;P (μ﹣2σ<X ≤μ+2σ)=0.9544; P (μ﹣3σ<X ≤μ+3σ)=0.9974)A .0.4772B .0.1574C .0.2718D .0.1359 3. 已知1i 1i=-+ab ,其中,a b 是实数,i 是虚数单位,则|i |-a b =( ) A .3 B .2 CD .5 4.[]x 表示不超过x 的最大整数,例如:[]3π=.1233,10,21,,S S S =++==++++==++++++=依此规律,那么10S =( )A .210B .230C .220D .240 5.设随机变量X 的概率分布列为下图,则(|3|1)P X -==( )A .712 B .512 C .14 D .166.根据如下样本数据得到回归直线方程a x b yˆˆˆ+=,其中1.9ˆ=a ,则=b ˆ( )A. 9.4B. 9.5C. 9.6D. 9.7 7.设随机变量ξ~B (2,p ),η~B (3,p ),若()P ξ≥=519,则P (η≥2)的值为( ) A .2027B .827C .727 D .1278.先后掷骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正 面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“,x y 中有偶数且x y ≠”, 则概率()P B A =( )A.14 B. 13 C.12 D.259.某企业有4个分厂,现有新培训的6名技术人员,将这6名技术人员分配到各分厂,要 求每个分厂至少1人,则不同的分配方案种数为( )A .1080B .480C .1560D .30010.学校将5个参加知识竞赛的名额全部分配给高二年级的4个班级,其中甲班级至少分配2 个名额,其它班级可以不分配名额或分配多个名额,则不同的分配方案共有( )A .30种B .26种C .24种D .20种 11.已知45)21()1(x ax -+的展开式中2x 的系数为16-,则实数a 的值为( )A .-1B .-2C .1D .212.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为( )A .72B .96C .120D .156第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 13.已知随机变量η=23+ξ,且D ξ=2,则D η=________.14.已知252701271)(2)++-=+++⋅⋅⋅+x x x a a a x a x a x (的展开式中,032=-a , 则=a a a a +++⋅⋅⋅+0127__________.15.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回 地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的 概率为_________.16.给出下列5种说法:①标准差越小,样本数据的波动也越小; ②回归分析研究的是两个相关事件的独立性;③在回归分析中,预报变量是由解释变量和随机误差共同确定的;④相关指数2R 是用来刻画回归效果的,2R 的值越大,说明回归模型的拟合效果越好. ⑤对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,判断“X 与Y 有关系” 的把握越小.其中说法正确的是________(请将正确说法的序号写在横线上).三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分10分)已知)nx22(N *∈n )的展开式中第五项的系数与第三项的系数的比是10:1. (1)求展开式中含x 32的项;(2)求展开式中二项式系数最大的项.18.(本小题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,从该校抽取200名学生对其课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)(1)请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为 “课外体育达标”与性别有关?(23名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X ,求X 的数学期望和方差. 参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++参考数据:19. (本小题满分12分)已知某校5个学生的数学和物理成绩如下表(1出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程;参考公式:121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.20. (本小题满分12分)某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元。
四川省泸州市2016届高三数学第三次教学质量诊断性考试试卷 理(含解析)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|60}M x x x =--<,{|10}N x x =->,则M N =I ( )A .(1,2)B .(1,3)C .(-1,2)D .(-1,3) 【答案】B 【解析】考点:集合的交集运算.2.若命题0:x R ρ∃∈,002lg x x ->,则ρ⌝是( )A .0x R ∃∈,002lg x x -≤B .0x R ∃∈,002lg x x -<C .x R ∀∈,2lg x x -<D .x R ∀∈,2lg x x -≤ 【答案】D 【解析】试题分析:因存在性命题的否定是全称命题,故应选D. 考点:含一个量词的命题的否定.3.已知3cos 25θ=,则44sin cos θθ-的值是( ) A .45 B .35 C .45-D .35-【答案】D 【解析】 试题分析:因44sincos θθ-532cos cos sin 22-=-=-=θθθ,故应选D.考点:三角变换及运用.4.圆2240x y x +-=的圆心到双曲线2213x y -=的渐近线的距离为( ) A .1 B .2 C .3 D .23 【答案】A 【解析】试题分析:因双曲线的一条渐近线为03=-y x ,故圆心)0,2(C 到这条直线的距离1132=+=d ,应选A.考点:圆与双曲线的标准方程及运用.5.执行如图所示的程序框图,若输入的,x y R ∈,则输出t 的最大值为( )A .1B .2C .3D .0【答案】C 【解析】考点:算法流程图及线性规划的知识的综合运用.6.从一个棱长为1 的正方体中切去一部分,得到一个几何体,其三视图如右图,则该几何体的体积为( ) A .23 B .56 C .12D .34【答案】B 【解析】试题分析:从三视图所提供的图形信息和数据信息可知该几何体是正方体中去掉一个角所剩余的部分.其体积为651112131111=⨯⨯⨯⨯-⨯⨯=V ,应选B. 考点:三视图的识读和理解.7.某学校一共排7节课(其中上午4节,下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有( )A .16B .15C .32D .30 【答案】C 【解析】考点:两个计数原理及运用.8.已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r ,则||QF =( )A .3B .52C .72D .32【答案】A 【解析】考点:抛物线的几何性质等有关知识的综合运用.【易错点晴】抛物线是圆锥曲线的重要代表曲线之一,也高考和各级各类考试的重要内容和考点.解答本题时要充分利用题设中提供的有关信息,运用抛物线的几何性质和题设中的条件将问题转化为求点),(00y x Q 的问题.解答时充分运用题设条件4FP FQ =u u u r u u u r建立方程组,然后通过解方程组求得点),(00y x Q 的横坐标为10=x .再应用抛物线的定义求得32||0=+=x QF .借助抛物线的定义进行转化是解答好本题的关键.9.如图,正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1//A F平面1AD E ,则1A F 与平面11BCC B 所成角的正切值t 构成的集合是( ) A .223{5}5t t ≤≤ B .{|23}t t ≤≤ C .2{|523}5t t ≤≤ D .{|22}t t ≤≤【答案】D 【解析】试题分析:建立如图所示的空间直角坐标系,则),1,(),0,1,21(),1,0,0(),0,0,1(1n m F E D A ,所以)1,1,1(),0,1,21(),1,0,1(11--=-=-=n m A AD ,设平面E AD 1的法向量为),,(z y x n =,则由题设⎪⎩⎪⎨⎧=⋅=⋅001AE n AD ,即⎪⎩⎪⎨⎧=+-=+-0210y x z x ,令2=x ,则)2,1,2(=n ,所以由//1F A 平面E AD 1,则01=⋅F A n ,即0)1(21)1(2=-++-n m ,也即23=+n m ,所以1)1()1(||221+-+-=n m F A .因平面11BCC B 的法向量为)0,1,0(=n ,故1A F 与平面11BCC B 所成角θ的正弦值1)1()1(1||||sin 2211+-+-=⋅=n m F A n θ,正切值)210(45321)1()1(1tan 222<≤+--+-==m m m n m t θ,令45322+-=m m u ,则21,81max min ==u u ,所以22tan 2≤≤θ,即222≤≤t ,所以应选D.FED1B 1C 1A 1BCD AOzyx考点:空间向量的数量积及运用.10.已知函数,0,()ln ,0x xx e f x x x x⎧-≤⎪⎪=⎨⎪>⎪⎩,12()421()xx g x a a a a R +=-+++-∈g,若(())f g x e >对x R ∈恒成立(其中e 是自然对数的底数),则a 的取值范围是( ) A.[1,0]- B .(-1,0) C .[2,0]- D .1[,0]2- 【答案】A 【解析】e exx =-,可得1-=x ,故不等式(())f g x e >可化为1)(-<x g ,即不等式02242<++⋅+-a a a x x 在]0,(-∞恒成立,令]1,0(,2∈=t t x ,也即不等式0222<+++-a a at t 在]1,0(上恒成立.当对称轴0≤a 时,只需02≤+a a ,即01≤≤-a时不等式恒成立;当1≥a 时,只需0212<+++-a a a ,但这不可能;当10<<a 时,则只需02222<+++-a a a a ,这也不可能.所以综上实数a 的取值范围是01≤≤-a ,应选A.考点:导数和函数的图象及性质等有关知识的综合运用.【易错点晴】导数是研究函数的单调性和极值问题的重要工具,也高考和各级各类考试的重要内容和考点.解答本题时要充分利用题设中提供的有关信息,先运用求导法则对函数,0,()ln ,0xxx e f x x x x⎧-≤⎪⎪=⎨⎪>⎪⎩的分类求其导数,借助导数与函数的单调性的关系从细微的角度研究函数的图象和性质.搞清函数的图象的大概形状,从而将不等式(())f g x e >化为1)(-<x g ,再借助函数的)(x f 的图象,将问题进一步转化为几不等式02242<++⋅+-a a a xx在]0,(-∞恒成立问题,然后分类求出满足题设条件的实数a 的取值范围,从而使得问题获解.第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每题5分,满分25分.) 11.复数21iz i=-(i 是虚数单位)的虚部是_______. 【答案】1 【解析】考点:复数的有关概念和运算.12.在二项式62()x x-的展开式中,常数项的值是__________.(用具体数字作答) 【答案】160- 【解析】试题分析:因r r r r rr r x C xxC T 266661)2()2(--+-=-=,令026=-r 得3=r ,故常数项是1601234568)2(336-=⨯⨯⨯⨯⨯-=-C ,应填160-.考点:二项式定理及运用.13.下表给出的是某港口在某季节每天几个时刻的水深关系.若该港口的水深()y m 和时刻(024)t t ≤≤的关系可用函数sin()y A t h =ω+(其中0A >,0ω>,0h >)来近似描述,则该港口在11:00的水深为___________.【答案】4 【解析】考点:三角函数的图象和性质在实际生活中的运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以三角函数的图象和性质为背景设置了一道求函数解析表达式为sin()y A t h =ω+的实际应用问题.解答本题时,首先要求确定其中的未知参数h A ,,ω的值,然后再求11=t 时的函数值.体现了三角函数的图象和性质等有关知识的在实际问题中的运用价值.解答过程中先求h A ,,ω的值时,充分利用题设中提供的数表信息,通过建立方程组,从而求出h A ,,ω的值,进而使得问题获解.14.若直线10()ax y a a R +-+=∈与圆224x y +=交于A B 、两点(其中O 为坐标原点),则AO AB u u u r u u u rg 的最小值为_________.【答案】4 【解析】考点:直线与圆的位置关系及综合运用.【易错点晴】直线和圆的位置关系是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以两条平行直线与圆的位置关系为背景,设置了一道求圆方程中的参数a 的取值范围的问题.求解时充分借助题设条件“直线10()ax y a a R +-+=∈与圆224x y +=有两个不同的交点”,然后依据弦心距与圆的半径弦长之间的数量关系求出2228d -=⋅-=⋅,再转化为1)1()1|1|(22222+-=+-=a a a a d 的最大值,也就是求1222++t t 的最小值问题.最后通过求得当211-=t ,即2-=t 时,1222++t t取最小值为2,212max =d ,求得AO AB u u u r u u u r g 取最小值为448=-,使得问题简捷巧妙获解. 15.函数()f x 图像上不同两点11(,)A x y ,22(,)B x y 处的切线的斜率分别是A k ,B k ,||AB 为A B 、两点间距离,定义||(,)||A B k k A B AB ϕ-=为曲线()f x 在点A 与点B 之间的“曲率”,给出以下命题:①存在这样的函数,该函数图像上任意两点之间的“曲率”为常数;②函数32()1f x x x =-+图像上两点A 与B 的横坐标分别为1,2,则 “曲率”(,)3A B ϕ>③函数2()(0,)f x ax b a b R =+>∈图像上任意两点A B 、之间 的“曲率” (,)2A B a ϕ≤;④设11(,)A x y ,22(,)B x y 是曲线()xf x e =上不同两点,且121x x -=,若(,)1t A B ϕ<g恒成立,则实数t的取值范围是(,1)-∞.其中正确命题的序号为_____________(填上所有正确命题的序号).【答案】①③【解析】考点:函数的图象性质及导数等有关知识的综合运用.【易错点晴】函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以定义新的概念“||(,)||A Bk kA BABϕ-=为曲线()f x在点A与点B之间的“曲率”为背景精心设置了一道选择填空形式的问题.重在考查推理判断的推理论证能力,求解时要充分借助题设中新定义的新的信息,对所给的四个命题进行逐一检验和推断,最后通过推理和判断得出命题①③是真命题,命题②④是假命题,从而获得本题的正确答案为①③.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)设等比数列{}na的前n项和为nS,已知332a=,392S=.(Ⅰ)求数列{}na的通项公式;(Ⅱ)设2216lognnba+=,nT为数列{}nb的前n项和,求使1052nnT=+成立的n的值.【答案】(Ⅰ)32n a =或116()2n n a -=⨯-;(Ⅱ)70n =或10. 【解析】试题分析:(Ⅰ)借助题设条件运用等比数列的知识求解;(Ⅱ)借助题设条件运用等差数列的知识求解. 试题解析:(Ⅰ)因为332a =,392S =, 当1q =时,3139332S a a ===,…………………………1分则32n a =;…………………………2分当1q ≠时,2132a q =,31(1)912a q q -=-,…………………………3分 所以16a =…………………………4分12q =-,…………………………5分综上可得:数列{}n a 的通项公式为32n a =或116()2n n a -=⨯-;…………………………6分故数列{}n b 为等差数列,所以(1)n T n n =+.…………………………11分 由1052n n T =+,得:(1)1052nn n +=+, 所以10n =;综上知,70n =或10.…………………………12分 考点:等比数列等差数列等有关知识的综合运用. 17.(本小题满分12分)PM采用如下标准:若对 2.5PM监测数据中,随机抽取10天的数据作为样本,检测值某市环保局从180天的市区 2.5如茎叶图所示(十位为茎,个位为叶).(Ⅰ)从这10天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列;PM日均值来估计这180天的空气质量情况,其中大约有多少天的空(Ⅱ)以这10天的 2.5气质量达到一级?【答案】(Ⅰ)分布列见解析;(Ⅱ)72.【解析】试题分析:(Ⅰ)借助题设条件排列组合数公式求解;(Ⅱ)借助题设条件运用贝努力分布的公式求解.试题解析:所以,ξ的分布列为:…………………………7分(Ⅱ)由已知可得总体容量10N =,空气质量达到一级的天数4M =,…………………………8分因为这10天中 2.5PM 日均值空气质量达到一级的频率为25,…………………………9分 所以180天中 2.5PM 日均值空气质量达到一级的概率为25;…………………………11分设η为180天中每天空气质量达到一级的天数,则2(180,)5B η:,2180725E η=⨯=,因此180天中空气质量达到一级的天数为72天.…………………………12分 考点:随机变量的概率分布列和贝努力分布等有关知识的综合运用. 18.(本小题满分12分)ABC ∆中,角,,A B C 所对的边分别为,,a b c 33cos sin a c B b C =+.(Ⅰ)求C 的值;(Ⅱ)若D 是AB 上的点,已知13cos 14BCD ∠=,2a =,3b =,求sin BDC ∠的值. 【答案】(Ⅰ) 3C π=;(Ⅱ)14213. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦定理及三角变换的公式求解;(Ⅱ)借助题设条件运用余弦定理及三角变换公式求解. 试题解析:(Ⅱ)由余弦定理:2221(2)(3)22372AB =+-⨯⨯⨯=,所以7AB =,…………………………7分因为13cos 14BCD ∠=且03BCD π<<,所以33sin 14BCD ∠=,…………………………8分因为222(7)7cos 14227ABC ∠==⨯⨯,所以321sin 14ABC ∠=,…………………………9分 所以sin sin(())BDC BCD CBD π∠=-∠+∠…………………………10分sin()BCD CBD =∠+∠sin cos cos sin BCD CBD BCD CBD =∠∠+∠∠…………………………11分337133213211414141414=+⨯=.…………………………12分 考点:正弦定理余弦定理和三角变换等有关知识的综合运用. 19.(本小题满分12分)如图,在空间多面体ABCDE 中,四边形ABCD 为直角梯形,//AB DC ,AD CD ⊥,ADE ∆是正三角形,2CD DE AB ==,2CE CD =.(Ⅰ)求证:平面CDE ⊥平面ADE ; (Ⅱ)求二面角C BE A --的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)6-. 【解析】试题分析:(Ⅰ)借助题设条件运用面面垂直的判定定理推证;(Ⅱ)借助题设条件运用二面角的定义进行转化为平面角或运用空间向量的数量积公式求解. 试题解析:证明:(Ⅰ)因为CD DE =,2CE CD =,所以222CD DE CE +=,…………………………1分 所以CD DE ⊥,…………………………2分 因为AD CD ⊥,所以CD ⊥平面ADE ,…………………………4分 因为CD ⊂平面CDE ,所以平面ADE ⊥平面CDE ,…………………………6分在NEP ∆中,所以5PE =, 因为PG ABPE AE =,所以5PG =,…………………………9分 所以1EG =,…………………………10分 过G 作GR ME ⊥,则R 是ME 中点, 所以2222131244NG NM RM RG =++=++=,…………………………11分 在NPG ∆中,2222cos NG NP PG NP PG NPG =+-⨯⨯∠, 所以6cos 4NPG ∠=-,即二面角C BE A --的余弦值为64-.…………………………12分设2CD =,则2NF =,在Rt BNE ∆,3BN =,2NE =,所以65NO =,15tan 3NF NOF ON ∠==, 所以6cos NOF ∠=,…………………………11分 所以二面角C BE A --的余弦值为64-.…………………………12分法三:(Ⅲ)过点D 作DF ⊥平面CDE ,由(Ⅰ)知:平面ADE ⊥平面CDE , 所以DF ⊂平面ADE ,…………………………7分以D 为原点,分别以DC DE DF 、、为x 轴、y 轴、z 轴建立空间直角坐标系, 则(2,0,0)C ,(0,2,0)E ,3)A , 因为//BA CD ,且12BA CD =, 所以3)B ,…………………………8分(2,2,0)CE ∴=-u u u r ,(3)CB =-u u u r ,(0,3)EA =-u u u r ,(1,1,3)BE =-u u u r,考点:空间直线与平面的位置关系和空间向量的数量积公式等有关知识的综合运用.20.(本小题满分12分)已知椭圆2222:1(0)x yC a ba b+=>>过点3(1,)2P,其离心率为12.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的右顶点为A,直线l交C于两点M N、(异于点A),若D在MN上,且AD MN⊥,2||||||AD MD ND=,证明直线l过定点.【答案】(Ⅰ)22143x y+=;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)借助题设条件建立方程组求解;(Ⅱ)借助题设条件运用直线与椭圆的位置关系建立方程求解推证.试题解析:(Ⅰ)由已知得2222212191,4c a a b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩:…………………………3分解之得:2a =,3b =,所以椭圆C 的方程22143x y +=;…………………………4分所以222(8)4(34)(3)0km k m ∆=-+⨯->,即22430k m -+>,(*),且122834kmx x k +=-+,212241234m x x k -=+,…………………………8分设11(,)M x y ,22(,)N x y ,因为90MAN ∠=o,所以0AM AN =u u u u r u u u rg ,即:1212(2)(2)0x x y y --+=,…………………………9分 所以222224128(1)(2)()403434m kmk km m k k-++--++=++,…………………………10分 整理得:2241670k km m ++=,考点:直线与椭圆的位置关系等有关知识的综合运用.【易错点晴】本题是一道考查直线与椭圆的位置关系的综合性问题.解答本题的第一问时,直接依据题设条件建立方程组2222212191,4c a a ba b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,然后求得椭圆的标准方程为22143x y +=.第二问的求解过程中,先将直线m kx y l +=:与椭圆方程22143x y +=联立方程组,消去变量y 求得222(34)84(3)0k x kmx m +++-=,再利用题设条件AD MN ⊥,2||||||AD MD ND =g ,即0AM AN =u u u u r u u u r g ,求出2241670k km m ++=解得72m k =-或2m-,进而推证得直线m kx y l +=:过定点2(,0)7.从而使得问题获解.21.(本小题满分12分)已知函数()ln (1)f x x a x =--,(其中0a >,e 是自然对数的底数). (Ⅰ)若关于x 的方程211()2f x x x a a=-+有唯一实根,求2(1ln )a a +的值; (Ⅱ)若过原点作曲线()y f x =的切线l 与直线1y ex =-+垂直,证明:211e e a e e--<<; (Ⅲ)设()(1)xg x f x e =++,当0x ≥时,()1g x ≥恒成立,求实数a 的取值范围. 【答案】(Ⅰ)12;(Ⅱ)证明见解析;(Ⅲ)(0,2]. 【解析】试题分析:(Ⅰ)借助题设条件运用导数的知识求解;(Ⅱ)借助题设条件运用导数的知识推证;(Ⅲ)依据题设条件运用导数的知识求解.试题解析:(Ⅱ)因为过原点所作曲线()y f x=的切线l与直线1y ex=-+垂直,所以切线l的斜率为1ke=,且方程为1y xe=.设l与曲线()y f x=的切点为11(,)x y,所以'1111111()ln(1)1f xey x a xy xe⎧=⎪⎪=--⎨⎪⎪=⎩,…………………………5分所以111ax e=-,且1111ln10xx e-+-=,…………………………6分令11()ln1m x xx e=-+-,则'211()m xx x=-+,所以()m x在(0,1)上单调递减,在(1,)+∞上单调递增.若1(0,1)x∈,因为11()20m ee e=-+->,1(1)0me=-<,所以11(,1)xe∈,…………………………7分而111ax e=-在11(,1)xe∈上单调递减,所以211e eae e--<<.若1(1,)x ∈+∞,因为()m x 在(1,)+∞上单调递增,且()0m e =,则1x e =,所以1110a x e=-=(舍去).…………………………8分 综上可知,211e e a e e--<<;……………………………9分②当2a >时,因为'()g x 在[0,)+∞上递增,…………………………12分因为'(0)20g a =-<,则存在0(0,)x ∈+∞,使得'0()0g x =. 所以()g x 在0(0,)x 上递减,在0(,)x +∞上递增,又0(0,)x x ∈时,()(0)1g x g <=,所以()1g x ≥不恒成立,不合题意.………………………………13分综合可知,所求实数a 的取值范围是(0,2].………………………………14分考点:导数在研究函数的单调性和最值等方面的有关知识的综合运用.【易错点晴】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以含参数a 的函数解析式为背景,考查的是导数知识在研究函数单调性和极值等方面的综合运用和分析问题解决问题的能力.本题的第一问求解时借助方程有根,将问题转化为函数211()ln ()2h x x x a x a =---有零点的问题,建立了含a 的方程211ln 2a a+=,从而求得211ln 2a a +=;第二问中借助导数,运用导数的几何意义建立方程1111ln 10x x e -+-=,然后构造函数11()ln1m x xx e=-+-,运用导数进行推证;第三问的求解中则借助导数与函数单调性的关系,运用分类整合的数学思想进行分类推证,进而求得实数a的取值范围是]2,0(,从而使得问题简捷巧妙获解.。
四川省泸州市2017年高考一诊试卷(理科数学)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁U(A∪B)=()A.{3} B.{7,8} C.{7,8,9} D.{1,2,3,4,5,6}2.已知i是虚数单位,若z(1+i)=1+3i,则z=()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.若,则=()A. B. C.D.4.已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分有不必要条件5.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且,则λ+μ=()A.3 B.C.2 D.16.如图,是某算法的程序框图,当输出T>29时,正整数n的最小值是()A.2 B.3 C.4 D.57.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是()A.B.C.D.8.已知数列{an }满足an=若对于任意的n∈N*都有an>an+1,则实数a的取值范围是()A.(0,)B.(,)C.(,1)D.(,1)9.已知不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,则实数m的取值范围是()A.(﹣∞,﹣] B.(﹣∞,﹣] C.[,] D.[,+∞)10.如图,在三棱锥A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD=,则直线AD与平面BCD所成角的大小是()A.B.C.D.11.椭圆的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是()A.B.C.D.12.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是()A.(0,2] B.[,+∞)C.[,2] D.[,2]∪[4,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中常数项为.14.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为.16.若直线与圆x2+y2﹣2x﹣4y+a=0和函数的图象相切于同一点,则a的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.(Ⅰ)求角C的大小;(Ⅱ)求sinAcosB的取值范围.18.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:年龄(岁)78910111213身高(cm)121128135141148154160(Ⅰ)求身高y关于年龄x的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=, =﹣.19.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+ax(a∈R),且曲线f(x)在x=处的切线与直线y=﹣x﹣1平行.(Ⅰ)求a的值及函数f(x)的解析式;(Ⅱ)若函数y=f(x)﹣m在区间[﹣3,]上有三个零点,求实数m的取值范围.20.设各项均为正数的数列{an }的前n项和为Sn,且满足2=an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn =(an+1)•2,求数列{bn}的前n项和Tn.21.已知函数f(x)=ae x﹣x(a∈R),其中e为自然对数的底数,e=2.71828…(Ⅰ)判断函数f(x)的单调性,并说明理由(Ⅱ)若x∈[1,2],不等式f(x)≥e﹣x恒成立,求a的取值范围.请考生在第22、23题中任选一题作答,如果多做则按所做第一题计分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).四川省泸州市2017年高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(A∪B)=()1.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁UA.{3} B.{7,8} C.{7,8,9} D.{1,2,3,4,5,6}【考点】交、并、补集的混合运算.【分析】化简全集U,根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={x|x≤9,x∈N+}={1,2,3,4,5,6,7,8,9},集合A={1,2,3},B={3,4,5,6},A∪B={1,2,3,4,5,6};(A∪B)={7,8,9}.∴∁U故选:C.2.已知i是虚数单位,若z(1+i)=1+3i,则z=()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由z(1+i)=1+3i,得,故选:A.3.若,则=()A. B. C.D.【考点】运用诱导公式化简求值.【分析】利用同角三角函数的基本关系求得cosα的值,再利用两角和的正弦公式求得要求式子的值.【解答】解:若,则cosα==,则=sinαcos+cosαsin=+=,故选:B.4.已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分有不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由“¬p是假命题”可得:p是真命题,可得“p∨q是真命题”.反之不成立.【解答】解:由“¬p是假命题”可得:p是真命题,可得“p∨q是真命题”.反之不成立,例如p是假命题,q是真命题.∴“p∨q是真命题”是“¬p是假命题”的必要不充分条件.故选:B.5.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且,则λ+μ=()A.3 B.C.2 D.1【考点】平面向量的基本定理及其意义.【分析】建立如图所示的直角坐标系,设正方形的边长为1,可以得到的坐标表示,进而得到答案.【解答】解:由题意,设正方形的边长为1,建立坐标系如图,则B(1,0),E(﹣1,1),∴=(1,0),=(﹣1,1),∵=(λ﹣μ,μ),又∵P是BC的中点时,∴=(1,),∴,∴λ=,μ=,∴λ+μ=2,故选:C6.如图,是某算法的程序框图,当输出T>29时,正整数n的最小值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据框图的流程模拟程序运行的结果,直到输出T的值大于29,确定最小的n值.【解答】解:由程序框图知:第一次循环k=1,T=2第二次循环k=2,T=6;第三次循环k=3,T=14;第四次循环k=4,T=30;由题意,此时,不满足条件4<n,跳出循环的T值为30,可得:3<n≤4.故正整数n的最小值是4.故选:C.7.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=,再求出组成的五位数是偶数包含的基本事件个数m=,由此能求出组成的五位数是偶数的概率.【解答】解:从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,基本事件总数n=,组成的五位数是偶数包含的基本事件个数m=,∴组成的五位数是偶数的概率是p===.故选:D.8.已知数列{an }满足an=若对于任意的n∈N*都有an>an+1,则实数a的取值范围是()A.(0,)B.(,)C.(,1)D.(,1)【考点】数列递推式.【分析】,若对于任意的n∈N*都有an >an+1,可得<0,a5>a6,0<a<1.解出即可得出.【解答】解:∵满足an =,若对于任意的n∈N*都有an>an+1,∴<0,a5>a6,0<a<1.∴a<0, +1>a,0<a<1,解得.故选:B.9.已知不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,则实数m的取值范围是()A.(﹣∞,﹣] B.(﹣∞,﹣] C.[,] D.[,+∞)【考点】三角函数中的恒等变换应用.【分析】不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,等价于不等式(sin cos+cos2﹣)min≥m对于x∈[﹣,]恒成立,令f(x)=sin cos+cos2﹣,求x∈[﹣,]的最小值即可.【解答】解:由题意,令f(x)=sin cos+cos2﹣,化简可得:f(x)=+(cos)==sin()∵x∈[﹣,]∴∈[,]当=时,函数f(x)取得最小值为.∴实数m的取值范围是(﹣∞,].故选B.10.如图,在三棱锥A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD=,则直线AD与平面BCD所成角的大小是()A.B.C.D.【考点】直线与平面所成的角.【分析】如图所示,过点A在平面ABC内作AO⊥BC,垂足为点O,连接OD.根据三角形ABC 和三角形DBC所在平面互相垂直,可得AO⊥平面BCD,AO⊥OD.因此∠ADO是直线AD与平面BCD所成的角.通过证明△OBA≌△OBD,即可得出.【解答】解:如图所示,过点A在平面ABC内作AO⊥BC,垂足为点O,连接OD.∵三角形ABC和三角形DBC所在平面互相垂直,∴AO⊥平面BCD,∴AO⊥OD.∴∠ADO是直线AD与平面BCD所成的角.∵AB=BD,∠CBA=∠CBD=,∴∠ABO=∠DBO,又OB公用,∴△OBA≌△OBD,∴∠BOD=∠AOB=.OA=OD.∴∠.故选:B.11.椭圆的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是()A.B.C.D.【考点】椭圆的简单性质.【分析】根据题意,作出椭圆的图象,分析可得A的坐标,将A的坐标代入椭圆方程可得+=1,①;结合椭圆的几何性质a2=b2+c2,②;联立两个式子,解可得c=(﹣1)a,由离心率公式计算可得答案.【解答】解:根据题意,如图,设F(0,c),又由△OAF是等边三角形,则A(,),A在椭圆上,则有+=1,①;a2=b2+c2,②;联立①②,解可得c=(﹣1)a,则其离心率e==﹣1;故选:A.12.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是()A.(0,2] B.[,+∞)C.[,2] D.[,2]∪[4,+∞)【考点】分段函数的应用.【分析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案.【解答】解:∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中常数项为24 .【考点】二项式系数的性质.【分析】根据二项式展开式的通项公式,令x的指数为0求出r的值,从而求出展开式中常数项.【解答】解:二项式展开式的通项公式为:T=••x r=24﹣r••x2r﹣4,r+1令2r﹣4=0,解得r=2,∴展开式中常数项为T=22•=24.3故答案为:24.14.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 B .【考点】进行简单的合情推理.【分析】根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为48π.【考点】球内接多面体;简单空间图形的三视图.【分析】判断几何体的特征,正方体中的三棱锥,利用正方体的体对角线得出外接球的半径求解即可.【解答】解:三棱锥补成正方体,棱长为4,三棱锥与正方体的外接球是同一球,半径为R==2,∴该球的表面积为4π×12=48π,故答案为:48π.16.若直线与圆x2+y2﹣2x﹣4y+a=0和函数的图象相切于同一点,则a的值为 3 .【考点】直线与圆的位置关系.【分析】设切点为(t,),求出切线方程,利用直线与圆x2+y2﹣2x﹣4y+a=0和函数y=的图象相切于同一点,建立方程,求出t,即可得出结论.【解答】解:设切点为(t,),y′=,x=t时,y′=t,∴切线方程为y﹣=(x﹣t),即y=tx﹣,∵一直线与圆x2+y2﹣2x﹣4y+a=0和函数y=的图象相切于同一点,∴=,∴t=2,∴切点为(2,1),代入圆x2+y2﹣2x﹣4y+a=0,可得a=3,故答案为3.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.(Ⅰ)求角C的大小;(Ⅱ)求sinAcosB的取值范围.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由正弦定理、两角和的正弦公式、诱导公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C的大小;(Ⅱ)由(I)和内角和定理表示出B,并求出A的范围,代入sinAcosB后,由两角差的余弦公式、正弦公式化简后,由A的范围和正弦函数的性质求出答案.【解答】解:(Ⅰ)由题意知,(2a+b)cosC+ccosB=0,∴由正弦定理得,(2sinA+sinB)cosC+sinCcosB=0,则2sinAcosC+sinBcosC+sinCcosB=0,即sin(B+C)=﹣2sinAcosC,∵△ABC中,sin(B+C)=sin(π﹣A)=sinA>0,∴1=﹣2cosC,得cosC=,又0<C<π,∴C=;(Ⅱ)由(I)得C=,则A+B=π﹣C=,即B=﹣A,所以,∴sinAcosB=sinAcos(﹣A)=sinA(cos cosA+sin sinA)=sinA(cosA+sinA)=sin2A+=()=∵,∴,则,即,∴sinAcosB的取值范围是.18.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:年龄(岁)78910111213身高(cm)121128135141148154160(Ⅰ)求身高y关于年龄x的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=, =﹣.【考点】线性回归方程.【分析】(Ⅰ)首先根据表格与公式求得相关数据,然后代入线性回归方程求得,由此求得线性回归方程;(Ⅱ)将先15代入(Ⅰ)中的回归方程即可求得张三同学15岁时的身高.【解答】解:(Ⅰ)由题意得=(7+8+9+10+11+12+13)=10,==141,(=9+4+1+0+1+4+9=28,(xi ﹣)(yi﹣)=(﹣3)×(﹣20)+(﹣2)×(﹣13)+(﹣1)×(﹣6)+0×0+1×7+2×13+3×19=182,所以==, =﹣=141﹣×10=76,所求回归方程为=x+76.(Ⅱ)由(Ⅰ)知, =>0,故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm.将x=15代入(Ⅰ)中的回归方程,得=×15+76=173.5,故预测张三同学15岁的身高为173.5cm.19.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+ax(a∈R),且曲线f(x)在x=处的切线与直线y=﹣x﹣1平行.(Ⅰ)求a的值及函数f(x)的解析式;(Ⅱ)若函数y=f(x)﹣m在区间[﹣3,]上有三个零点,求实数m的取值范围.【考点】利用导数研究曲线上某点切线方程;导数的运算.【分析】(Ⅰ)首先求得导函数,然后利用导数的几何意义结合两直线平行的关系求得a的值,由此求得函数f(x)的解析式;(Ⅱ)将问题转化为函数f(x)的图象与y=m有三个公共点,由此结合图象求得m的取值范围.【解答】解:(Ⅰ)当x>0时,f′(x)=x2+a,因为曲线f(x)在x=处的切线与直线y=﹣x﹣1平行,所以f′()=+a=﹣,解得a=﹣1,所以f(x)=x3﹣x,设x<0则f(x)=﹣f(﹣x)=x3﹣x,又f(0)=0,所以f(x)=x3﹣x.(Ⅱ)由(Ⅰ)知f(﹣3)=﹣6,f(﹣1)=,f(1)=﹣,f()=0,所以函数y=f(x)﹣m在区间[﹣3,]上有三个零点,等价于函数f(x)在[﹣3,]上的图象与y=m有三个公共点.结合函数f(x)在区间[﹣3,]上大致图象可知,实数m的取值范围是(﹣,0).20.设各项均为正数的数列{an }的前n项和为Sn,且满足2=an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn =(an+1)•2,求数列{bn}的前n项和Tn.【考点】数列的求和;数列递推式.【分析】(Ⅰ)首先利用Sn 与an的关系:当n=1时,a1=S1,当n≥2时,an=Sn﹣Sn﹣1;结合已知条件等式推出数列{an }是等差数列,由此求得数列{an}的通项公式;(Ⅱ)首先结合(Ⅰ)求得bn的表达式,然后利用错位相减法,结合等比数列的求和公式求解即可.【解答】解:(Ⅰ)当n=1时,a1=S1,有2=a1+1,解得a1=1;当n≥2时,由2=an +1得4Sn=an2+2an+1,4Sn﹣1=an﹣12+2an﹣1+1,两式相减得4an =an2﹣an﹣12+2(an﹣an﹣1),所以(an +an﹣1)(an﹣an﹣1﹣2)=0,因为数列{an }的各项为正,所以an﹣an﹣1﹣2=0,所以数列{an}是以1为首项,2为公差的等差数列,所以数列{an }的通项公式为an=2n﹣1.(Ⅱ)由(Ⅰ)知bn =(an+1)•2=2n•22n﹣1=n•4n.所以前n项和Tn=1•4+2•42+3•43+…+n•4n,4Tn=1•42+2•43+3•44+…+n•4n+1,两式相减得﹣3Tn=4+42+43+…+4n﹣n•4n+1=﹣n•4n+1,化简可得Tn=+•4n+1.21.已知函数f(x)=ae x﹣x(a∈R),其中e为自然对数的底数,e=2.71828…(Ⅰ)判断函数f(x)的单调性,并说明理由(Ⅱ)若x∈[1,2],不等式f(x)≥e﹣x恒成立,求a的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明.【分析】(Ⅰ)求出原函数的导函数,然后对a分类,当a≤0时,f′(x)<0,f(x)=ae x ﹣x为R上的减函数;当a>0时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(Ⅱ)x∈[1,2],不等式f(x)≥e﹣x恒成立,等价于ae x﹣x≥e﹣x恒成立,分离参数a,可得恒成立.令g(x)=,则问题等价于a不小于函数g(x)在[1,2]上的最大值,然后利用导数求得函数g(x)在[1,2]上的最大值得答案.【解答】解:(Ⅰ)由f(x)=ae x﹣x,得f′(x)=ae x﹣1,当a≤0时,f′(x)<0,f(x)=ae x﹣x为R上的减函数;当a>0时,令ae x﹣1=0,得x=lna,若x∈(﹣∞,﹣lna),则f′(x)<0,此时f(x)为的单调减函数;若x∈(﹣lna,+∞),则f′(x)>0,此时f(x)为的单调增函数.综上所述,当a≤0时,f(x)=ae x﹣x为R上的减函数;当a>0时,若x∈(﹣∞,﹣lna),f(x)为的单调减函数;若x∈(﹣lna,+∞),f(x)为的单调增函数.(Ⅱ)由题意,x∈[1,2],不等式f(x)≥e﹣x恒成立,等价于ae x﹣x≥e﹣x恒成立,即x∈[1,2],恒成立.令g(x)=,则问题等价于a不小于函数g(x)在[1,2]上的最大值.由g(x)==,函数y=在[1,2]上单调递减,令h(x)=,x∈[1,2],h′(x)=.∴h(x)=在x∈[1,2]上也是减函数,∴g(x)在x∈[1,2]上也是减函数,∴g(x)在[1,2]上的最大值为g(1)=.故x∈[1,2],不等式f(x)≥e﹣x恒成立的实数a的取值范围是[,+∞).请考生在第22、23题中任选一题作答,如果多做则按所做第一题计分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.[选修4-4:坐标系与参数方程]:(a为参数)经过伸缩变换后的曲线22.在平面直角坐标系中,曲线C1为C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.2(Ⅰ)求C的极坐标方程;2(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.【考点】参数方程化成普通方程.【分析】(Ⅰ)求出C2的参数方程,即可求C2的极坐标方程;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,求出圆心到直线的距离,即可求|PQ|的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当b=1时,把f(x)用分段函数来表示,分类讨论,求得f(x)≥1的解集.(Ⅱ)当x∈R时,先求得f(x)的最大值为b2+1,再求得g(x)的最小值,根据g(x)的最小值减去f(x)的最大值大于或等于零,可得f(x)≤g(x)成立.【解答】解:(Ⅰ)由题意,当b=1时,f(x)=|x+b2|﹣|﹣x+1|=,当x≤﹣1时,f(x)=﹣2<1,不等式f(x)≥1无解,不等式f(x)≥1的解集为∅;当﹣1<x<1时,f(x)=2x,由不等式f(x)≥1,解得x≥,所以≤x<1;当x≥1时,f(x)=2≥1恒成立,所以不等式f(x)≥1的解集为[,+∞).(Ⅱ)(Ⅱ)当x∈R时,f(x)=|x+b2|﹣|﹣x+1|≤|x+b2 +(﹣x+1)|=|b2+1|=b2+1;g(x)=|x+a2+c2|+|x﹣2b2|=≥|x+a2+c2﹣(x﹣2b2)|=|a2+c2+2b2|=a2+c2+2b2.而 a2+c2+2b2﹣(b2+1)=a2+c2+b2﹣1=( a2+c2+b2+a2+c2+b2)﹣1≥ab+bc+ac﹣1=0,当且仅当a=b=c=时,等号成立,即 a2+c2+2b2≥b2+1,即f(x)≤g(x).。
四川省2017届高三数学三诊试卷理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q2.已知集合A={x||x﹣1|<1},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则()A.B.C.D.7.执行如图的程序框图,则输出x的值是()-2 -A .2016B .1024 C. D .﹣18.已知M (x 0,y 0)是函数C : +y 2=1上的一点,F 1,F 2是C上的两个焦点,若•<0,则x 0的取值范围是( ) A .(﹣,)B .(﹣,) C .(﹣,) D .(﹣,)9.等差数列{a n }中的a 2、a 4032是函数的两个极值点,则log 2(a 2•a 2017•a 4032)=( ) A.B .4C.D.10.函数f (x )=sinx•(4cos 2x ﹣1)的最小正周期是( ) A.B.C .πD .2π11.某医务人员说:“包括我在内,我们社区诊所医生和护士共有17名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:医生不少于护士;女护士多于男医生;男医生比女医生多;至少有两名男护士.”请你推断说话的人的性别与职业是( ) A .男医生 B .男护士 C .女医生 D .女护士 12.设集合,C={(x ,y )|2|x ﹣3|+|y ﹣4|=λ},若(A ∪B )∩C ≠ϕ,则实数λ的取值范围是( ) A. B.C.D.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.14.二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足,则u=m ﹣2n的取值范围是.15.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有种.(用数字作答)16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.18.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A 区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.如图,设抛物线C1:y2=﹣4mx(m>0)的准线l与x轴交于椭圆C2:的右焦点F2,F1为C2的左焦点.椭圆的离心率为e=,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.(1)当取最小值时,求C1和C2的方程;(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.21.已知函数f(x)=x﹣a x(a>0,且a≠1).(1)当a=e,x取一切非负实数时,若,求b的范围;(2)若函数f(x)存在极大值g(a),求g(a)的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.- 4 -23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.2017年四川省成都七中高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q【考点】2E:复合命题的真假.【分析】利用“或”“且”“非”命题的意义即可得出.【解答】解:¬P,表示“甲抛的硬币正面向下”,¬q表示“乙抛的硬币正面向下”.则(¬p)∨(¬q)表示“至少有一人抛的硬币是正面向下”.故选:A.2.已知集合A={x||x﹣1|<1},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)【考点】1D:并集及其运算.【分析】求出A,B中不等式的解集确定出A,B,找出A与B的并集即可.【解答】解:由A中不等式变形得:﹣1<x﹣1<1,解得:0<x<2,即A=(0,2)∵B={x|x2﹣1<0}=(﹣1,1)∴A∪B=(﹣1,2)故选:B.3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.- 6 -【解答】解:∵,∴1+ai=(2+i)(1+2i)=5i,∴a===5+i.故选:D.4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C.6.设D为△ABC中BC边上的中点,且O为AD边上靠近点A的三等分点,则()A.B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】可先画出图形,根据条件及向量加法、减法和数乘的几何意义即可得出【解答】解:∵D为△ABC中BC边上的中点,∴=(+),∵O为AD边上靠近点A的三等分点,∴=,∴=(+),∴=﹣=﹣(+)=(﹣)﹣- 8 -(+)=﹣+.故选:A .7.执行如图的程序框图,则输出x 的值是( )A .2016B .1024C .D .﹣1【考点】EF :程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当y=1024时,不满足条件退出循环,输出x 的值即可得解. 【解答】解:模拟执行程序框图,可得 x=2,y=0满足条件y <1024,执行循环体,x=﹣1,y=1满足条件y <1024,执行循环体,x=,y=2满足条件y<1024,执行循环体,x=2,y=3满足条件y<1024,执行循环体,x=﹣1,y=4…观察规律可知,x的取值周期为3,由于1024=341×3+1,可得:满足条件y<1024,执行循环体,x=﹣1,y=1024不满足条件y<1024,退出循环,输出x的值为﹣1.故选:D.8.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【考点】K4:椭圆的简单性质.【分析】由椭圆方程求得焦点坐标,利用向量的数量积公式,结合椭圆的方程,即可求出x0的取值范围.【解答】解:椭圆C: +y2=1,的焦点坐标F1(﹣,0),F2(,0),=(﹣﹣x0,﹣y0),=(﹣x0,﹣y0)则•=x02﹣3+y02=﹣2,∵•<0,∴﹣2<0,解得:﹣<x0<,故答案选:C.9.等差数列{a n}中的a2、a4032是函数的两个极值点,则log2(a2•a2017•a4032)=()- 10 -A.B.4 C.D.【考点】84:等差数列的通项公式;6D:利用导数研究函数的极值.【分析】先求出f′(x)=x2﹣8x+6,由等差数列{a n}中的a2、a4032是函数的两个极值点,利用韦达定理得a2+a4032=8,a2•a4032=6,从而=4,由此能求出log2(a2•a2017•a4032)的值.【解答】解:∵,∴f′(x)=x2﹣8x+6,∵等差数列{a n}中的a2、a4032是函数的两个极值点,∴a2+a4032=8,a2•a4032=6,∴=4,∴log2(a2•a2017•a4032)=log2(4×6)==3+log23.故选:C.10.函数f(x)=sinx•(4cos2x﹣1)的最小正周期是()A.B. C.πD.2π【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期.【解答】解:函数f(x)=sinx•(4cos2x﹣1)化简可得:f(x)=4sinx•cos2x﹣sinx=4sinx(1﹣sin2x)﹣sinx=3sinx﹣4sin3x=sin3x.∴最小正周期T=.故选:B.11.某医务人员说:“包括我在内,我们社区诊所医生和护士共有17名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:医生不少于护士;女护士多于男医生;男医生比女医生多;至少有两名男护士.”请你推断说话的人的性别与职业是()A.男医生B.男护士C.女医生D.女护士【考点】F4:进行简单的合情推理.【分析】设男医生人数为a,女医生人数为b,女护士人数为c,男护士人数为d,根据已知构造不等式组,推理可得结论.【解答】解:设男医生人数为a,女医生人数为b,女护士人数为c,男护士人数为d,则有:①a+b≥c+d②c>a,③a>b④d≥2得出:c>a>b>d≥2,假设:d=2,仅有:a=5,b=4,c=6,d=2时符合条件,又因为使abcd中一个数减一人符合条件,只有b﹣1符合,即女医生.假设:d>2则没有能满足条件的情况.综上,这位说话的人是女医生,故选:C12.设集合,C={(x,y)|2|x﹣3|+|y﹣4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是()A. B.C.D.【考点】1H:交、并、补集的混合运算.【分析】集合A、B是表示以(3,4)点为圆心,半径为和的同心圆;集合C在λ>0时表示以(3,4)为中心,四条边的斜率为±2的菱形;- 12 -结合题意画出图形,利用图形知(A∪B)∩C≠∅,是菱形与A或B圆有交点,从而求得实数λ的取值范围.【解答】解:集合A={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心,半径为的圆;集合B={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心半径为的圆;集合C={(x,y)|2|x﹣3|+|y﹣4|=λ}在λ>0时,表示以(3,4)为中心,四条边的斜率为±2的菱形,如下图所示:若(A∪B)∩C≠∅,则菱形与A或B圆有交点,当λ<时,菱形在小圆的内部,与两圆均无交点,不满足答案;当菱形与小圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=2;当2<λ<时,菱形在大圆的内部,与两圆均无交点,不满足答案;当菱形与大圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=6,故λ>6时,两圆均在菱形内部,与菱形无交点,不满足答案;综上实数λ的取值范围是[,2]∪[,6],即[,2]∪[,6].故选:A.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.【考点】9R:平面向量数量积的运算.【分析】利用向量的数量积运算法则和夹角公式即可得出.【解答】解:∵•(2+)=1,∴,∵,∴,化为.∴==﹣.故答案为:.14.二项式(x+y)5的展开式中,含x2y3的项的系数是a,若m,n满足,则u=m﹣2n的取值范围是.【考点】7C:简单线性规划;DB:二项式系数的性质.【分析】首先求出a,然后画出可行域,利用目标函数的几何意义求最值.【解答】解:二项式(x+y)5的展开式中,x2y3的项的系数是a==10,所以,对应的可行域如图:由目标函数变形为n=,当此直线经过C()时u最小为,经过B(4,0)时u最大为4,所以u的取值范围为- 14 -;故答案为:.15.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有150 种.(用数字作答)【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、先将5名学生分成3组,②、将分好的3组全排列,对应3 个社团,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、先将5名学生分成3组,若分成2、2、1的三组,有=15种分组方法,若分成3、1、1的三组,有=10种分组方法,则共有15+10=25种分组方法,②、将分好的3组全排列,对应3 个社团,有A33=6种情况,则不同的选择方案有25×6=150种;故答案为:150.16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是(﹣∞,﹣e]∪{0}∪{﹣} .【考点】52:函数零点的判定定理.【分析】画出图象f(x)=转化为函数f(x)与y=mx﹣2有且仅有一个公共点,分类讨论,①当m=0时,y=2与f(x)有一个交点;②当y=mx+2与y=相切,结合导数求解即可,求解相切问题;③y=mx+2过(1,2﹣e)(0,2),动态变化得出此时的m的范围.【解答】解:∵f(x)=∴f(x)=∵函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,∴f(x)与y=mx+2有一个公共点∵直线y=mx+2过(0,2)点- 16 -①当m=0时,y=2与f(x)有一个交点②当y=mx+2与y=相切即y′=切点(x0,),m=﹣=﹣+2,x0>1x0=(舍去),x0=3∴m==③y=mx+2过(1,2﹣e),(0,2)m=﹣e当m≤﹣e时,f(x)与y=mx+2有一个公共点故答案为:(﹣∞,﹣e]∪{0}∪{﹣}三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.【考点】HT:三角形中的几何计算.【分析】(1)根据二倍角公式即可求出A,再根据三角形的内角和定理即可求出C,(2)根据余弦定理和b2+c2=a﹣bc+2,求出a,再根据两角差的正弦公式即可求出sinC,再由正弦公式和三角形的面积公式即可求出【解答】解:(1)因为cosA﹣cos2A=0,所以2cos2A﹣cosA﹣1=0,解得cosA=﹣,cosA=1(舍去).所以,又,所以.(2)在△ABC中,因为,由余弦定理所以a2=b2+c2﹣2bccosA=b2+c2+bc,又b2+c2=a﹣bc+2,所以a2=a+2,所以a=2,又因为,由正弦定理得,所以.18.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A 区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.- 18 -【考点】C5:互斥事件的概率加法公式;CG:离散型随机变量及其分布列.【分析】(Ⅰ)返券金额不低于30元包括指针停在A区域和停在B区域,而指针停在哪个区域的事件是互斥的,先根据几何概型做出停在各个区域的概率,再用互斥事件的概率公式得到结果.(Ⅱ)若某位顾客恰好消费280元,该顾客可转动转盘2次.随机变量X的可能值为0,30,60,90,120.做出各种情况的概率,写出分布列,算出期望.【解答】解:设指针落在A,B,C区域分别记为事件A,B,C.则.(Ⅰ)若返券金额不低于30元,则指针落在A或B区域.∴即消费128元的顾客,返券金额不低于30元的概率是.(Ⅱ)由题意得,该顾客可转动转盘2次.随机变量X的可能值为0,30,60,90,120.;;;;.所以,随机变量X的分布列为:其数学期望-20 -.19.如图,三棱柱ABC ﹣A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (Ⅰ)证明:AC=AB 1;(Ⅱ)若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A ﹣A 1B 1﹣C 1的余弦值.【考点】MR :用空间向量求平面间的夹角;M7:空间向量的夹角与距离求解公式.【分析】(1)连结BC 1,交B 1C 于点O ,连结AO ,可证B 1C ⊥平面ABO ,可得B 1C ⊥AO ,B 10=CO ,进而可得AC=AB 1; (2)以O 为坐标原点,的方向为x 轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC 1,交B 1C 于点O ,连结AO , ∵侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,且O 为BC 1和B 1C 的中点, 又∵AB ⊥B 1C ,∴B 1C ⊥平面ABO , ∵AO ⊂平面ABO ,∴B 1C ⊥AO , 又B 10=CO ,∴AC=AB 1,(2)∵AC ⊥AB 1,且O 为B 1C 的中点,∴AO=CO , 又∵AB=BC ,∴△BOA ≌△BOC ,∴OA ⊥OB , ∴OA ,OB ,OB 1两两垂直, 以O为坐标原点,的方向为x 轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,∵∠CBB 1=60°,∴△CBB 1为正三角形,又AB=BC ,∴A (0,0,),B (1,0,0,),B 1(0,,0),C (0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x ,y ,z )是平面AA 1B 1的法向量,则,可取=(1,,),同理可得平面A 1B 1C 1的一个法向量=(1,﹣,),∴cos <,>==,∴二面角A ﹣A 1B 1﹣C 1的余弦值为20.如图,设抛物线C 1:y 2=﹣4mx (m >0)的准线l 与x 轴交于椭圆C 2:的右焦点F 2,F 1为C 2的左焦点.椭圆的离心率为e=,抛物线C 1与椭圆C 2交于x 轴上方一点P ,连接PF 1并延长其交C 1于点Q ,M 为C 1上一动点,且在P ,Q 之间移动.(1)当取最小值时,求C 1和C 2的方程;(2)若△PF 1F 2的边长恰好是三个连续的自然数,当△MPQ 面积取最大值时,求面积最大值以及此时直线MP 的方程.【考点】KL :直线与椭圆的位置关系.【分析】(1)用m 表示出a ,b ,根据基本不等式得出m 的值,从而得出C 1和C 2的方程; (2)用m 表示出椭圆方程,联立方程组得出P 点坐标,计算出△PF 1F 2的三边关于m 的式子,从而确定m的值,求出PQ的距离和M到直线PQ的距离,利用二次函数性质得出△MPQ面积的最大值.【解答】解:(1)∵,∴,∴=m+≥2,当且仅当m=即m=1时取等号,当m=1时,a=2,b=,∴抛物线C1的方程为:y2=﹣4x,椭圆C2的方程为.(2)因为,则,∴椭圆的标准方程为,设P(x0,y0),Q(x1,y1),由得3x2﹣16mx﹣12m2=0,解得或x0=6m(舍去),代入抛物线方程得,即,于是,又△PF1F2的边长恰好是三个连续的自然数,∴m=3.∴抛物线方程为y2=﹣12x,,∴直线PQ的方程为.联立,得或x1=﹣2(舍去),于是.∴,设到直线PQ的距离- 22 -为d,则,∴当时,,∴△MPQ的面积最大值为.此时M(﹣,﹣),∴直线MP的方程为y=﹣x﹣.21.已知函数f(x)=x﹣a x(a>0,且a≠1).(1)当a=e,x取一切非负实数时,若,求b的范围;(2)若函数f(x)存在极大值g(a),求g(a)的最小值.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)问题转化为恒成立,令g(x)=x2+x﹣e x,根据函数的单调性求出b的范围即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出g(a)的表达式,根据函数的单调性求出g(a)的最小值即可.【解答】解:(1)当a=e时,f(x)=x﹣e x,原题分离参数得恒成立,令g(x)=x2+x﹣e x,g′(x)=x+1﹣e x,g″(x)=1﹣e x<0,故g′(x)在22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】(1)圆O的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O的直角坐标方程;直线l的极坐标方程化为ρsinθ﹣ρcosθ=1,由此能求出直线l的直角坐标方程.(2)圆O与直线l的直角坐标方程联立,求出圆O与直线l的在直角坐标系下的公共点,由此能求出圆O和直线l的公共点的极坐标.【解答】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O的直角坐标方程为:x2+y2﹣x﹣y=0,直线,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:x﹣y+1=0.(2)由(1)知圆O与直线l的直角坐标方程,将两方程联立得,解得.即圆O与直线l的在直角坐标系下的公共点为(0,1),转化为极坐标为.23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)让绝对值内各因式为0,求得x值,再由求得的x值把函数定义域分段化简求解,取并集得答案;(2)由(1)可得函数f(x)的最小值,把不等式f(x)<|m﹣1|的解集非空转化为|m﹣2|大于f(x)的最小值求解.【解答】解:(1)原不等式为:|2x+3|+|2x﹣1|≤5,当时,原不等式可转化为﹣4x﹣2≤5,即;当时,原不等式可转化为4≤5恒成立,∴;当时,原不等式可转化为4x+2≤5,即.∴原不等式的解集为.- 24 -(2)由已知函数,可得函数y=f(x)的最小值为4,∴|m﹣2|>4,解得m>6或m<﹣2.。
2017年四川省成都市高考数学三诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={0,1},B={x|(x+2)(x﹣1)<0,x∈Z},则A∪B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{0}2.(5分)已知复数z1=2+6i,z2=﹣2i,若z1,z2在复平面内对应的点分别为A,B,线段AB的中点C对应的复数为z,则|z|=()A.B.5 C.2 D.23.(5分)在等比数列{a n}中,a1=2,公比q=2,若a m=a1a2a3a4(m∈N*),则m=()A.11 B.10 C.9 D.84.(5分)AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是()A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好5.(5分)已知双曲线C:﹣=1(a>0,b>0),直线l:y=2x﹣2,若直线l平行于双曲线C的一条渐近线且经过C的一个顶点,则双曲线C的焦点到渐近线的距离为()A.1 B.2 C.D.4则输出的结果为()A.6 B.7 C.8 D.97.(5分)已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为()A.B.C.D.8.(5分)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A.B.﹣ C.D.﹣9.(5分)已知抛物线C:y2=mx(m>0)的焦点为F,点A(0,﹣),若射线FA与抛物线C相交于点M,与其准线相交于点D,且|FM|:|MD|=1:2,则点M的纵坐标为()A.﹣ B.﹣C.﹣ D.﹣10.(5分)已知函数f(x)=2cos22x﹣2,给出下列命题:②∃α∈(0,),f(x)=f(x+2α)对x∈R恒成立;③∀x1,x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为;④∀x1,x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有()A.①②B.③④C.②③D.①④11.(5分)如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为()A.27πB.48πC.64πD.81π12.(5分)设等差数列{a n}的前n项和为S n,S m﹣1=13,S m=0,S m+1=﹣15.其中m∈N*且m≥2,则数列{}的前n项和的最大值为()A. B. C.D.二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)(2x﹣)6展开式中常数项为(用数字作答).14.(5分)若变量x,y满足约束条件则z=3x﹣y的最小值为.15.(5分)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天,若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为.(用数字作答)16.(5分)如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为.三、解答题(本大题共5小题,共70分)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2c﹣a=2bcosA.(1)求角B的大小;(2)若b=2,求a+c的最大值.18.(12分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.(1)求BM的长;(2)求二面角A﹣DM﹣B的余弦值的大小.19.(12分)几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;参考数据:参考公式:K2=,其中n=a+b+c+d.20.(12分)已知圆C:(x+1)2+y2=8,点A (1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.(1)求曲线E的方程;(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON 面积的最大值.21.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)若关于x的不等式f(x)≤x﹣1在[1,+∞)上恒成立,求a的取值范围;(2)设函数g(x)=,若g(x)在[1,e2]上存在极值,求a的取值范围,并判断极值的正负.[选修4-4:坐标系与参数方程选讲]22.(10分)已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为(t为参数).(1)写出直线l的普通方程与曲线C的直角坐标方程;(2)在平面直角坐标系中,设曲线C经过伸缩变换φ:得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.[选修4-5:不等式选讲]23.已知f(x)=|x﹣a|,a∈R.(2)若函数g(x)=f(x)﹣|x﹣3|的值域为A,且[﹣1,2]⊆A,求a的取值范围.2017年四川省成都市高考数学三诊试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={0,1},B={x|(x+2)(x﹣1)<0,x∈Z},则A∪B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{0}【解答】解:∵集合A={0,1},B={x|(x+2)(x﹣1)<0,x∈Z}={﹣1,0},∴A∪B={﹣1,0,1}.故选:B.2.(5分)已知复数z1=2+6i,z2=﹣2i,若z1,z2在复平面内对应的点分别为A,B,线段AB的中点C对应的复数为z,则|z|=()A.B.5 C.2 D.2【解答】解:复数z1=2+6i,z2=﹣2i,若z1,z2在复平面内对应的点分别为A(2,6),B(0,﹣2),线段AB的中点C(1,2)对应的复数为z=1+2i,则|z|==.故选:A.3.(5分)在等比数列{a n}中,a1=2,公比q=2,若a m=a1a2a3a4(m∈N*),则m=()A.11 B.10 C.9 D.8【解答】解:a m=a1a2a3a4=a14qq2q3=2426=210=2•2m﹣1,∴m=10,故选:B.4.(5分)AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好【解答】解:这12天中,空气质量为“优良”的有95,85,77,67,72,92,故A正确;这12天中空气质量最好的是4月9日,AQI指数值为67,故正确;这12天的AQI指数值的中位数是=90,故正确;从4日到9日,空气质量越来越好,不正确,4月9日,AQI指数值为67,故选D.5.(5分)已知双曲线C:﹣=1(a>0,b>0),直线l:y=2x﹣2,若直线l平行于双曲线C的一条渐近线且经过C的一个顶点,则双曲线C的焦点到渐近线的距离为()A.1 B.2 C.D.4【解答】解:根据题意,双曲线C的方程为﹣=1(a>0,b>0),其焦点在x轴上,其渐近线方程y=±x,又由直线l平行于双曲线C的一条渐近线,则有=2,直线l:y=2x﹣2与x轴交点坐标为(1,0),即双曲线C的一个顶点坐标为(1,0),即a=1,则b=2a=2,故双曲线C的焦点到渐近线的距离为2;6.(5分)高三某班15名学生一次模拟考试成绩用茎叶图表示如图1,执行图2所示的程序框图,若输入的a i(i=1,2,…,15)分别为这15名学生的考试成绩,则输出的结果为()A.6 B.7 C.8 D.9【解答】解:由算法流程图可知,其统计的是成绩大于等于110的人数,所以由茎叶图知:成绩大于等于110的人数为9,因此输出结果为9.故选:D.7.(5分)已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为()A.B.C.D.【解答】解:构成试验的全部区域为圆内的区域,面积为π3,正弦曲线y=sinx 与x轴围成的区域记为M,根据图形的对称性得:面积为S=2∫0πsinxdx=﹣2cosx|0π=4,由几何概率的计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=,8.(5分)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A.B.﹣ C.D.﹣【解答】解:如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EF∥BD,EG∥AC,FO⊥OG,∴∠FEG为异面直线AC与BD所成角.设AB=2a,则EG=EF=a,FG==a,∴∠FEG=60°,∴异面直线AC与BD所成角的余弦值为,故选:A.9.(5分)已知抛物线C:y2=mx(m>0)的焦点为F,点A(0,﹣),若射线FA与抛物线C相交于点M,与其准线相交于点D,且|FM|:|MD|=1:2,则点M的纵坐标为()A.﹣ B.﹣C.﹣ D.﹣设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∵|FM|:|MD|=1:2:则|KD|:|KM|=:1,k FD=,k FD==∴=,求得m=4∴直线FM的方程为y=(x﹣1),与y2=4x,联立方程组,解得x=3(舍去)或x=,∴y2=,解y=﹣或y=(舍去),故M的坐标为(,﹣),故选:D10.(5分)已知函数f(x)=2cos22x﹣2,给出下列命题:①∃β∈R,f(x+β)为奇函数;②∃α∈(0,),f(x)=f(x+2α)对x∈R恒成立;③∀x1,x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为;④∀x1,x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有()A.①②B.③④C.②③D.①④【解答】解:由题意,f(x)=2cos22x﹣2=cos4x﹣1;对于①,∵f(x)=cos4x﹣1的图象如图所示;函数f(x+β)的图象是f(x)的图象向左或向右平移|β|个单位,它不会是奇函数的,故①错误;对于②,f(x)=f(x+2α),∴cos4x﹣1=cos(4x+8α)﹣1,∴8α=2kπ,∴α=,k∈Z;又α∈(0,),∴取α=或时,∴f(x)=f(x+2α)对x∈R恒成立,②正确;对于③,|f(x1)﹣f(x2)|=|cos4x1﹣cos4x2|=2时,|x1﹣x2|的最小值为==,∴③正确;对于④,当f(x1)=f(x2)=0时,x1﹣x2=kT=k•=(k∈Z),∴④错误;综上,真命题是②③.故选:C.11.(5分)如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为()A.27πB.48πC.64πD.81π【解答】解:由三视图可知该几何体为三棱锥,棱锥的高VA=4,棱锥底面ABC 是边长为6的等边三角形,作出直观图如图所示:∵△ABC是边长为6的等边三角形,∴外接球的球心D在底面ABC的投影为△ABC的中心O,过D作DE⊥VA于E,则E为VA的中点,连结OA,DA,则DE=OA==2,AE=VA=2,DA为外接球的半径r,∴r==4,∴外接球的表面积S=4πr2=64π.故选C.12.(5分)设等差数列{a n}的前n项和为S n,S m﹣1=13,S m=0,S m+1=﹣15.其中m∈N*且m≥2,则数列{}的前n项和的最大值为()A. B. C.D.【解答】解:∵S m=13,S m=0,S m+1=﹣15,﹣1∴a m=S m﹣S m﹣1=0﹣13=﹣13,a m+1=S m+1﹣S m=﹣15﹣0=﹣15,又∵数列{a n}为等差数列,﹣a m=﹣15﹣(﹣13)=﹣2,∴公差d=a m+1∴,解得a1=13∴a n=a1+(n﹣1)d=13﹣2(n﹣1)=15﹣2n,当a n≥0时,即n≤7.5,当a n≤0时,即n≥6.5,+1∴数列的前7项为正数,∴==(﹣)∴数列{}的前n项和的最大值为(﹣+﹣+﹣+…+1﹣)=(1﹣)=.故选:D二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)(2x﹣)6展开式中常数项为60(用数字作答).【解答】解:(2x﹣)6展开式的通项为=令得r=4故展开式中的常数项.故答案为6014.(5分)若变量x,y满足约束条件则z=3x﹣y的最小值为﹣3.【解答】解:由约束条件作出可行域如图,A(0,3),化目标函数z=3x﹣y为y=3x﹣z,由图可知,当直线y=3x﹣z过A时,直线在y轴上的截距最大,z有最小值为﹣3.故答案为:﹣3.15.(5分)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天,若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为5040.(用数字作答)【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C64•A55=3600种情况;若甲乙两人都参加,有C22•A63•A42=1440种情况,则不同的安排种数为3600+1440=5040种,故答案为:5040.16.(5分)如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为3.【解答】解:连接OD,过C,D分别作DE⊥AB于E,CF⊥AB,垂足分别为E,F.设∠AOD=θ.OE=2cosθ,DE=2sinθ.可得CD=2OE=4cosθ,∴梯形ABCD的面积S==4sinθ(1+cosθ),S′=4(cosθ+cos2θ﹣sin2θ)=4(2cos2θ+cosθ﹣1)=4(2cosθ﹣1)(cosθ+1).∵θ∈,∴cosθ∈(0,1).∴当cosθ=即θ=时,S取得最大值,S=3.故最大值为:3.三、解答题(本大题共5小题,共70分)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2c﹣a=2bcosA.(1)求角B的大小;(2)若b=2,求a+c的最大值.【解答】解:(1)∵2c﹣a=2bcosA,∴根据正弦定理,得2sinC﹣sinA=2sinBcosA,∵A+B=π﹣C,可得sinC=sin(A+B)=sinBcosA+cosBsinA,∴代入上式,得2sinBcosA=2sinBcosA+2cosBsinA﹣sinA,化简得(2cosB﹣1)sinA=0∵A是三角形的内角可得sinA>0,∴2cosB﹣1=0,解得cosB=,∵B∈(0,π),∴B=;(2)由余弦定理b2=a2+c2﹣2accosB,得12=a2+c2﹣ac.∴(a+c)2﹣3ac=12,∴12≥(a+c)2﹣ac,(当且仅当a=c=2时)∴a+c≤4,∴a+c的最大值为4.18.(12分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.(1)求BM的长;(2)求二面角A﹣DM﹣B的余弦值的大小.【解答】解:(1)设AC∩BD=O,取EF中点N,连接NO,∵四边形ABCD是菱形,∴AC⊥BD,∵四边形BDEF是矩形,∴ON⊥BD,∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,ON⊂平面BDEF,∴ON⊥平面ABCD,以O为原点,以OC,OB,ON为坐标轴建立空间坐标系如图所示:∵底面ABCD是边长为2的菱形,∠BAD=60°,∴OB=OD=1,OA=OC=,∵四边形BDEF是矩形,DE=2,∴A(﹣,0,0),B(0,1,0),C(,0,0),E(0,﹣1,2),D(0,﹣1,0),设BM=h,则M(0,1,h),∴=(0,2,h),=(,﹣1,2),∵DM⊥平面ACE,∴,∴﹣2+2h=0,解得h=1,∴BM=1.(2)=(,﹣1,0),=(0,2,1),设平面ADM的法向量为=(x,y,z),则,∴,令x=得=(,3,﹣6),又AC⊥平面BDM,∴=(1,0,0)是平面BDM的一个法向量,∴cos<>===,∴二面角A﹣DM﹣B的余弦值为.19.(12分)几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X ,求随机变量X 的分布列及数学期望. 参考数据:参考公式:K 2=,其中n=a +b +c +d .【解答】解:(1)根据表中数据填写2×2列联表如下,计算K 2=≈2.381<2.706,所以不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;(2)根据题意,选出的4人中支持发展共享单车的人数为X ,则X 的可能取值为2,3,4;所以P(X=2)=•=,P(X=3)=•+•=,P(X=4)=•=;∴随机变量X的分布列为:数学期望为EX=2×+3×+4×=.20.(12分)已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.(1)求曲线E的方程;(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON 面积的最大值.【解答】解:(Ⅰ)∵点Q 在线段AP 的垂直平分线上,∴|AQ|=|PQ|.又|CP|=|CQ|+|QP|=2,∴|CQ|+|QA|=2>|CA|=2.∴曲线E是以坐标原点为中心,C(﹣1,0)和A(1,0)为焦点,长轴长为2的椭圆.设曲线E 的方程为=1,(a>b>0).∵c=1,a=,∴b2=2﹣1=1.∴曲线E的方程为.(Ⅱ)设M(x1,y1),N(x2,y2).联立消去y,得(1+2k2)x2+4kmx+2m2﹣2=0.此时有△=16k2﹣8m2+8>0.由一元二次方程根与系数的关系,得x1+x2=,x1x2=,.∴|MN|==∵原点O到直线l的距离d=﹣,∴S==.,由△>0,得2k2﹣m2+1>0.△MON又m≠0,=.≤∴据基本不等式,得S△MON=,当且仅当m2=时,不等式取等号.∴△MON面积的最大值为.21.(12分)已知函数f(x)=lnx+﹣1,a∈R.(1)若关于x的不等式f(x)≤x﹣1在[1,+∞)上恒成立,求a的取值范围;(2)设函数g(x)=,若g(x)在[1,e2]上存在极值,求a的取值范围,并判断极值的正负.【解答】解:(1)f(x)≤x﹣1,即lnx+﹣1≤x﹣1,即a≤﹣xlnx﹣x2在[1,+∞)上恒成立,设函数m(x)=﹣xlnx﹣x2,x≥1,m′(x)=﹣lnx+x﹣1,设n(x)=﹣lnx+x﹣1,n′(x)=﹣+1,由x≥1时,n′(x)≥0,∴n(x)在[1,+∞)单调递增,且n(x)≥n(1)=0,即m′(x)≥m′(1)=0,对x∈[1,+∞)恒成立,∴m(x)在[1,+∞)上单调递增,当x∈[1,+∞)时,m(x)≥m(x)min=m(1)=,∴a≤,∴a的取值范围是(﹣∞,];(2)g(x)==+﹣,x∈[1,e2],求导g′(x)=+﹣=,设h(x)=2x﹣xlnx﹣2a,h′(x)=2﹣(1+lnx)=1﹣lnx,由h′(x)=0,解得:x=e,当1≤x<e时,h′(x)>0,当e<x≤e2,h′(x)<0,且h(1)=2﹣2a,h(e)=e﹣2a,h(e2)=﹣2a,显然h(1)>h(e2),若g(x)在[1,e2]上存在极值,则或,当,即1<a<时,则必定存在x1,x2∈[1,e2],使得h(x1)=h(x2)=0,且1<x1<x1<e2,当x变化时,h(x),g′(x),g(x)的变化如表,当1<a<时,g(x)在[1,e2]上的极值为g(x1),g(x2),且g(x1)<g(x2),由g(x1)=+﹣=,设φ(x)=xlnx﹣x+a,其中1<a<,1≤x<e,则φ′(x)=lnx>0,∴φ(x)在(1,e)上单调递增,φ(x)=φ(1)=a﹣1>0,当且仅当x=1时,取等号;∵1<x1<e,g(x1)>0,当1<a<,g(x)在[1,e2]上的极值g(x2)>g(x1)>0,当,即0<a≤1时,则必定存在x3∈(1,e2),使得h(x3)=0,易知g(x)在(1,x3)上单调递增,在(x3,e2]上单调递减,此时,g(x)在[1,e2]上的极大值时g(x3),即g(x3)>g(e2)=>0,当0<a≤1时,g(x)在[1,e2]上存在极值,且极值都为正数,综上可知:当0<a<时,g(x)在[1,e2]上存在极值,且极值都为正数,[选修4-4:坐标系与参数方程选讲]22.(10分)已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为(t为参数).(1)写出直线l的普通方程与曲线C的直角坐标方程;(2)在平面直角坐标系中,设曲线C经过伸缩变换φ:得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.【解答】解:(1)曲线C的极坐标方程为ρ=2,化为直角坐标方程:x2+y2=4.直线l的参数方程为(t为参数),消去参数t化为普通方程:y=x+3.(2)曲线C经过伸缩变换φ:,即,代入曲线C的方程可得:4(x′)2+(y′)2=4,即得到曲线C′:=1.若M(x,y)为曲线C′上任意一点,设M(cosθ,2sinθ),点M到直线l的距离d==≥=,当且仅当sin(θ﹣φ)=1时取等号.因此最小距离为:.[选修4-5:不等式选讲]23.已知f(x)=|x﹣a|,a∈R.(1)当a=1时,求不等式f(x)+|2x﹣5|≥6的解集;(2)若函数g(x)=f(x)﹣|x﹣3|的值域为A,且[﹣1,2]⊆A,求a的取值范围.【解答】解:(1)a=1时,|x﹣1|+|2x﹣5|≥6,x≤1时:1﹣x﹣2x+5≥6,解得:x≤0,∴x≤0,1<x<2.5时:x﹣1﹣2x+5≥6,解得:x≤﹣1,不成立;x≥2.5时:x﹣1+2x﹣5≥6,解得:x≥4,∴x≥4,故不等式的解集是{x|x≥4或x≤0};(2)g(x)=|x﹣a|﹣|x﹣3|,a≥3时:g(x)=,∴3﹣a≤g(x)≤a﹣3,∵[﹣1,2]⊆A,∴,解得a≥5;a<3时,a﹣3≤g(x)≤3﹣a,∴,解得:a≤1;综上:a≤1或a≥5.。
四川省泸州市2017届高三第一次诊断考试数 学 试 题(理)本试卷分第一部分(选择题)和第二部分(非选择题)两部分。
共150分。
考试时间120分钟。
第一部分的答案涂在机读卡上,第二部分的答案写在答题卡上。
参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(第一部分(选择题 共60分)注意事项:1.答第一部分前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂、写在机读卡上。
2.每小题选出答案后,用2B 铅笔把机题卡上对应题的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在草稿子、试题卷上。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3,4},{1,2,3},{2,3,4},()U U M N M N === 则C =( ) A .{1,2} B .{2,3} C .{2,4}D .{1,4} 2.23(1)lim 6!x n n n →∞++的值为 ( ) A .0 B .1C .16D .不存在 3.复数52i +的值为( ) A .2i - B .2i + C .12i - D .12i +4.若函数2log (1), 1.()2, 1.x a x x f x x -+>⎧=⎨≤⎩在定义域内连续,则a 的值为( )A .0B .1C .2D .-15.已知函数()x f x e =(e 是自然对数的底数),则函数()f x 的导函数'()f x 的大致图象为( )6.设函数()tan()3f x x π=+,则下列结论中正确的是 ( )A .函数()f x 的图象关于点(,0)3π对称B .函数()f x 的图象关于直线3x π=对称C .把函数()f x 的图象向右平移3π个单位,得到一个奇函数的图象D .函数()f x 的最小正周期为2π7.设p ,q 是两个命题,121:log (||3)0,:112p x q x -><-,则p 是q 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.经全国人大常委会批准,自2011年9月1日起我国实行新的《中华人民共和国所得税法》,新法规定:个人工资、薪金所得,以每月收入额减除费用3500元后的余额,为全月应纳税所得额,且税率也作了调整,调整后的部分税率见《中华人民共和国个人所得税税率表》。
2017年四川省大教育联盟高考数学三诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U,集合M,N满足M⊆N⊆U,则下列结论正确的是()A.M∪N=U B.(∁U M)∪(∁U N)=U C.M∩(∁U N)=∅D.(∁U M)∪(∁U N)=∅2.(5分)已知复数z满足(2+i)z=2﹣i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知α是锐角,若cos(α+)=,则sin(α﹣)=()A.﹣ B.﹣C.D.4.(5分)已知实数x,y满足不等式,则3x+2y的最大值为()A.0 B.2 C.4 D.55.(5分)《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为()A.100πcm3B.C.400πcm3D.6.(5分)运行如图所示的程序,若输出y的值为1,则输入x的值为()A.0 B.0或﹣1 C.±1 D.17.(5分)设直角坐标平面内与两个定点A(﹣2,0),B(2,0)的距离之差的绝对值等于2的点的轨迹是E.过点B作与x轴垂直的直线l与曲线E交于C,D 两点,则=()A.﹣9 B.﹣3 C.3 D.98.(5分)利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是()A.P=lg(1+)B.P=C.P=D.P=×9.(5分)已知ω为正整数,函数f(x)=sinωxcosωx+在区间内单调递增,则函数f(x)()A.最小值为,其图象关于点对称B.最大值为,其图象关于直线对称C.最小正周期为2π,其图象关于点对称D.最小正周期为π,其图象关于直线对称10.(5分)将正方形ABCD沿对角线BD折成直二面角后的图形如图所示,若E 为线段BC的中点,则直线AE与平面ABD所成角的余弦为()A.B.C.D.11.(5分)在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的半圆分别交BA及其延长线于点M,N,点P在上运动(如图).若,其中λ,μ∈R,则2λ﹣5μ的取值范围是()A.[﹣2,2]B.C.D.12.(5分)已知椭圆M:(a>b>0)的一个焦点为F(1,0),离心率为,过点F的动直线交M于A,B两点,若x轴上的点P(t,0)使得∠APO=∠BPO总成立(O为坐标原点),则t=()A.2 B.C.D.﹣2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是.(结果用最简分数表示)14.(5分)曲线y=和直线y=x围成的图形面积是.15.(5分)在△ABC中,∠BAC=120°,AC=2AB=4,点D在BC上,且AD=BD,则AD=.16.(5分)已知函数f(x)=(x﹣1)e x+(其中a∈R)有两个零点,则a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}中,a2=2,其前n项和S n满足:(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和T n.18.(12分)第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x (万人)与餐厅所用原材料数量t (袋),得到如下数据:(Ⅰ)请根据所给五组数据,求出t 关于x 的线性回归方程;(Ⅱ)已知购买原材料的费用C (元)与数量t (袋)的关系为投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入﹣原材料费用).(参考公式:=,)19.(12分)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥底面ABC ,,AB ⊥AC ,D 是棱BB 1的中点. (Ⅰ)证明:平面A 1DC ⊥平面ADC ;(Ⅱ)求平面A 1DC 与平面ABC 所成二面角的余弦值.20.(12分)已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.(Ⅰ)求点P的坐标;(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.21.(12分)已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x﹣y﹣1=0.(Ⅰ)求a,b的值;(Ⅱ)证明:;(Ⅲ)已知满足xlnx=1的常数为k.令函数g(x)=me x+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.[选修4-4:坐标系与参数方程]22.(10分)已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为(t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ﹣α)=2sin(α+).(Ⅰ)求证:l1⊥l2(Ⅱ)设点A的极坐标为(2,),P为直线l1,l2的交点,求|OP|•|AP|的最大值.[选修4-5:不等式选讲]23.已知函数|﹣|,其中﹣3≤a≤1.(Ⅰ)当a=1时,解不等式f(x)≥1;(Ⅱ)对于任意α∈[﹣3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.2017年四川省大教育联盟高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U,集合M,N满足M⊆N⊆U,则下列结论正确的是()A.M∪N=U B.(∁U M)∪(∁U N)=U C.M∩(∁U N)=∅D.(∁U M)∪(∁U N)=∅【解答】解:∵全集U,集合M,N满足M⊆N⊆U,作出文氏图,如下:∴由文氏图得M∩(∁U N)=∅.故选:C.2.(5分)已知复数z满足(2+i)z=2﹣i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由(2+i)z=2﹣i,得,∴z在复平面内对应的点的坐标为(),位于第四象限.故悬案:D.3.(5分)已知α是锐角,若cos(α+)=,则sin(α﹣)=()A.﹣ B.﹣C.D.【解答】解:∵α是锐角,α+∈(,),且cos(α+)=,∴sin(α+)==,∴sin(α﹣)=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=﹣=.故选:C.4.(5分)已知实数x,y满足不等式,则3x+2y的最大值为()A.0 B.2 C.4 D.5【解答】解:由约束条件作出可行域如图,联立,解得A(1,1),令z=3x+2y,化为y=﹣,由图可知,当直线y=﹣过A时,直线在y 轴上的截距最大,z有最大值为5.故选:D.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为()A.100πcm3B.C.400πcm3D.【解答】解:如图所示,该几何体为四棱锥P﹣ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=6,AD=2,PD=6.则该阳马的外接球的直径为PB====10.∴该阳马的外接球的体积==cm3.故选:B.6.(5分)运行如图所示的程序,若输出y的值为1,则输入x的值为()A.0 B.0或﹣1 C.±1 D.1【解答】解:根据如图所示的程序语言知,该程序运行后输出函数y=;当x≥0时,y=2x=1,解得x=0;当x<0时,y=|x|=1,解得x=﹣1;综上,输出y的值为1时,输入x的值为0或﹣1.故选:B.7.(5分)设直角坐标平面内与两个定点A(﹣2,0),B(2,0)的距离之差的绝对值等于2的点的轨迹是E.过点B作与x轴垂直的直线l与曲线E交于C,D 两点,则=()A.﹣9 B.﹣3 C.3 D.9【解答】解:直角坐标平面内与两个定点A(﹣2,0),B(2,0)的距离之差的绝对值等于2,由双曲线的定义可得轨迹E是以A,B为焦点的双曲线,且c=2,a=1,b=,方程为x2﹣=1,x=2代入方程得:y=±3,可设C点的坐标为(2,3),D(2,﹣3),则=(4,3)•(0,﹣3)=4×0+3×(﹣3)=﹣9.故选:A.8.(5分)利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是()A.P=lg(1+)B.P=C.P=D.P=×【解答】解:当d=5时,其概率为P==,对于B,P=,对于C,P=0,对于D,P=,故B,C,D均不符合,故选:A.9.(5分)已知ω为正整数,函数f(x)=sinωxcosωx+在区间内单调递增,则函数f(x)()A.最小值为,其图象关于点对称B.最大值为,其图象关于直线对称C.最小正周期为2π,其图象关于点对称D.最小正周期为π,其图象关于直线对称【解答】解:∵f(x)=sinωxcosωx+=sin2ωx+﹣=sin (2ωx+),又∵f(x)在在区间内单调递增,∴由﹣≤2×(﹣)ω+,2×ω+≤,解得:ω≤,ω≤,∴由ω为正整数,可得ω=1,f(x)=sin(2x+),∴f(x)的最大值为,最小正周期为π,故A,C选项错误;∵令2x+=kπ+,k∈Z,解得:x=+,k∈z,可得当k=﹣1时,f(x)关于直线x=﹣对称.∴B选项错误,D选项正确.故选:D.10.(5分)将正方形ABCD沿对角线BD折成直二面角后的图形如图所示,若E 为线段BC的中点,则直线AE与平面ABD所成角的余弦为()A.B.C.D.【解答】解:如图所示,取DB中点O,连接CO、AO,∵四边形ABCD为正方形,∴CO⊥DB.又∵面DCB⊥面ADB,∴CO⊥面ABD,过E作EH∥CO交DB于H,则有EH⊥面ADB.H为OB中点,连接AH,则∠EAH就是直线AE与平面ABD所成的角.设正方形ABCD的边长为2,则EH=,AH=,∴,cos∠EAH=,∴直线AE与平面ABD所成角的余弦为.故选:C.11.(5分)在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的半圆分别交BA及其延长线于点M,N,点P在上运动(如图).若,其中λ,μ∈R,则2λ﹣5μ的取值范围是()A.[﹣2,2]B.C.D.【解答】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(co sα,sinα)(0≤α≤π),由=λ+μ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ+⇒λ=,∴2λ﹣5μ=2()﹣5()=﹣2(sinα﹣cosα)=﹣2sin()∵∈[﹣,]∴﹣2sin()∈[﹣2,2],即2λ﹣5μ的取值范围是[﹣2,2].12.(5分)已知椭圆M:(a>b>0)的一个焦点为F(1,0),离心率为,过点F的动直线交M于A,B两点,若x轴上的点P(t,0)使得∠APO=∠BPO总成立(O为坐标原点),则t=()A.2 B.C.D.﹣2【解答】解:由题意可知c=1,椭圆的离心率e==,则a=,b2=a2﹣c2=1,∴椭圆的标准方程:,当直线AB斜率不存在时,t可以为任意非零实数,当直线AB的斜率存在时,设AB的方程为y=k(x﹣1),设A(x1,y1),B(x1,y1),则,整理得:(1+2k2)x2﹣4k2x+2k2﹣2=0,则x1+x2=,x1x2=,由∠APO=∠BPO,则直线PA与PB的斜率之和为0,则+=0,整理得:2x1x2﹣(t+1)(x1+x2)+2t=0,∴2×﹣(t+1)×+2t=0,解得:t=2,二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是.(结果用最简分数表示)【解答】解:从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,基本事件总数n=4×4=16,所得两位数为偶数包含的基本事件的个数m=4×1+2×3=10, ∴所得两位数为偶数的概率p=.故答案为:.14.(5分)曲线y=和直线y=x 围成的图形面积是.【解答】解:曲线和直线y=x 交点为:(1,1),所以围成的图形面积为=()|=;故答案为:.15.(5分)在△ABC 中,∠BAC=120°,AC=2AB=4,点D 在BC 上,且AD=BD ,则AD=.【解答】解:∵在△ABC 中,∠BAC=120°,AC=2AB=4,∴由余弦定理得BC==2,由正弦定理,得:,∴sinB===,∴cosB==,∵AD=BD ,∴设AD=BD=x ,由余弦定理得:cosB==,∴AD=x==.故答案为:.16.(5分)已知函数f(x)=(x﹣1)e x+(其中a∈R)有两个零点,则a的取值范围是(﹣∞,﹣1)∪(﹣1,0).【解答】解:f′(x)=)=(x﹣1)e x+e x+ax=x(e x+a),①当a≥0时,e x+a>0,∴x∈(﹣∞,0)时,f′(x)<0,x∈(0,+∞)时,f′(x)>0,f(x)在(﹣∞,0)递减,在(0,+∞)递增,且f(0)=0,此时f(x)=(x﹣1)e x+(其中a∈R)不存在有两个零点;②当a=﹣1时,f′(x)≥0恒成立,函数f(x)单调,此时f(x)=(x﹣1)e x+(其中a∈R)不存在有两个零点;③当a<0且a≠﹣1时,令f′(x)=0,解得x1=0,x2=ln(﹣a)(a≠﹣1).a∈(﹣1,0)时,x2<0,函数在(﹣∞,ln(﹣a)))递增,在(ln(﹣a),0)递减,在(0,+∞)递增,而f(0)=0,此时函数恰有两个零点;a∈(﹣∞,﹣1),时,x2>0,函数在(﹣∞,0)递增,在(0,ln(﹣a))递减,在(ln(﹣a),+∞)递增,而f(0)=0,此时函数恰有两个零点;综上,则a的取值范围是:(﹣∞,﹣1)∪(﹣1,0)故答案为:(﹣∞,﹣1)∪(﹣1,0)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}中,a2=2,其前n项和S n满足:(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和T n.【解答】解:(Ⅰ)由题意有.所以,则有(n≥2),所以2(S n﹣S n﹣1)=na n﹣(n﹣1)a n﹣1,即(n﹣2)a n=(n﹣1)a n﹣1(n≥2).所以(n﹣1)a n+1=na n,两式相加得2(n﹣1)a n=(n﹣1)(a n+1+a n﹣1),即2a n=a n+1+a n﹣1(n≥2),即a n+1﹣a n=a n﹣a n﹣1(n≥2,n∈N),故数列{a n}是等差数列.又a1=0,a2=2,所以公差d=2,所以数列{a n}的通项公式为a n=2n﹣2.(Ⅱ)由(Ⅰ)知,则…+n•22n﹣2,两边同乘以22得+…+(n﹣1)•22n﹣2+n•22n,两式相减得+22n﹣2﹣n•22n,即=,所以.18.(12分)第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量t(袋),得到如下数据:(Ⅰ)请根据所给五组数据,求出t关于x的线性回归方程;(Ⅱ)已知购买原材料的费用C (元)与数量t (袋)的关系为投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入﹣原材料费用).(参考公式:=,)【解答】解:(Ⅰ)由数据,求得,,10×25+12×29=1273,102+122=510,=,,∴t 关于x 的线性回归方程为.(Ⅱ)由(Ⅰ)中求出的线性回归方程,当x=14时,,即预计需要原材料34.2袋,∵∴,若t<35,利润L=600t﹣(300t+20)=300t﹣20,当t=34时,利润L max=300×34﹣20=10180元;若t≥35,利润L=600×34.2﹣290t=20520﹣290t,当t=35时,利润L max=20520﹣290×35=10370元;综上所述,该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,,AB⊥AC,D是棱BB1的中点.(Ⅰ)证明:平面A1DC⊥平面ADC;(Ⅱ)求平面A1DC与平面ABC所成二面角的余弦值.【解答】(Ⅰ)证明:∵侧棱AA1⊥底面ABC,∴AA1⊥AC,又∵AB⊥AC,AB∩AC=A,∴AC⊥平面ABB1A1,∵A1D⊂平面ABB1A1,∴AC⊥A1D,设AB=a,由,AB⊥AC,D是棱BB1的中点.得,AA 1=2a,则+,∴AD⊥A1D,∵AD∩AC=A,∴A1D⊥平面ADC.又∵A1D⊂平面A1DC,∴平面A1DC⊥平面ADC;(Ⅱ)解:如图所示,分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系,不妨设AB=1,则A(0,0,0),D(1,0,1),C(0,1,0),A1(0,0,2).显然是平面ABC的一个法向量,设平面A 1DC的法向量,由令z=1,得平面A 1DC的一个法向量,∴=,即平面A1DC与平面ABC所成二面角的余弦值为.20.(12分)已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.(Ⅰ)求点P的坐标;(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.【解答】解:(Ⅰ)设点P的坐标为(x0,y0),则,所以,点P到直线l的距离.当且仅当y0=2时等号成立,此时P点坐标为(1,2).…(4分)(Ⅱ)设点A的坐标为,显然y1≠2.当y1=﹣2时,A点坐标为(1,﹣2),直线AP的方程为x=1;可得B(,3),直线AB:y=4x﹣6;当y1≠﹣2时,直线AP的方程为,化简得4x﹣(y1+2)y+2y1=0;综上,直线AP的方程为4x﹣(y1+2)y+2y1=0.与直线l的方程y=x+2联立,可得点Q的纵坐标为.因为,BQ∥x轴,所以B点的纵坐标为.因此,B点的坐标为.当,即时,直线AB的斜率.所以直线AB的方程为,整理得.当x=2,y=2时,上式对任意y1恒成立,此时,直线AB恒过定点(2,2),也在y=4x﹣6上,当时,直线AB的方程为x=2,仍过定点(2,2),故符合题意的直线AB恒过定点(2,2).…(13分)21.(12分)已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x﹣y﹣1=0.(Ⅰ)求a,b的值;(Ⅱ)证明:;(Ⅲ)已知满足xlnx=1的常数为k.令函数g(x)=me x+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.【解答】解:(Ⅰ)f(x)的导函数,由曲线f(x)在x=1处的切线方程为x﹣y﹣1=0,知f'(1)=1,f(1)=0,所以a=1,b=0.(Ⅱ)令=,则=,当0<x<1时,u'(x)<0,u(x)单调递减;当x>1时,u'(x)>0,u(x)单调递增,所以,当x=1时,u(x)取得极小值,也即最小值,该最小值为u(1)=0,所以u(x)≥0,即不等式成立.(Ⅲ)函数g(x)=me x+lnx(x>0),则,当m≥0时,g'(x)>0,函数g(x)在(0,+∞)内单调递增,g(x)无极值,不符合题意;当m<0时,由,得,结合y=e x,在(0,+∞)上的图象可知,关于x的方程一定有解,其解为x0(x0>0),且当0<x<x0时,g'(x)>0,g(x)在(0,x0)内单调递增;当x>x0时,g'(x)<0,g(x)在(x0,+∞)内单调递减.则x=x0是函数g(x)的唯一极值点,也是它的唯一最大值点,x=x0也是g'(x)=0在(0,+∞)上的唯一零点,即,则.所以g(x)max=g(x0)==.由于g(x)≤0恒成立,则g(x)max≤0,即,(*)考察函数,则,所以h(x)为(0,+∞)内的增函数,且,,又常数k满足klnk=1,即,所以,k是方程的唯一根,于是不等式(*)的解为x0≤k,又函数(x>0)为增函数,故,所以m的取值范围是.[选修4-4:坐标系与参数方程]22.(10分)已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为(t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ﹣α)=2sin(α+).(Ⅰ)求证:l1⊥l2(Ⅱ)设点A的极坐标为(2,),P为直线l1,l2的交点,求|OP|•|AP|的最大值.【解答】解:(Ⅰ)证明:直线l1的参数方程为(t为参数);消去参数t可得:直线l1的普通方程为:xsinα﹣ycosα=0.又直线l2的极坐标方程是ρcos(θ﹣α)=2sin(α+).展开为ρcosθcosα+ρsinθsinα=2sin(α+).即直线l 2的直角坐标方程为:xcosα+ysinα﹣2sin(α+)=0.因为sinαcosα+(﹣cosα)sinα=0,根据两直线垂直的条件可知,l1⊥l2.(Ⅱ)当ρ=2,时,ρcos(θ﹣α)=2cos=2sin(α+).所以点A(2,),在直线ρcos(θ﹣α)=2sin(α+)上.设点P到直线OA的距离为d,由l1⊥l2可知,d的最大值为=1.于是|OP|•|AP|=d•|OA|=2d≤2所以|OP|•|AP|的最大值为2.[选修4-5:不等式选讲]23.已知函数|﹣|,其中﹣3≤a≤1.(Ⅰ)当a=1时,解不等式f(x)≥1;(Ⅱ)对于任意α∈[﹣3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.【解答】解:(Ⅰ)当a=1时,f(x)=|x+2|﹣|x|,①当x<﹣2时,不等式即为﹣x﹣2+x≥1,不等式无解;②当﹣2≤x≤0时,不等式即为x+2+x≥1,解得;③当x>0时,不等式即为x+2﹣x≥1,不等式恒成立.综上所述,不等式的解集是.(Ⅱ)由.而=4+4=8,∴,∴.要使不等式f (x )≥m 的解集为空集,则有,所以,实数m 的取值范围是.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
高中数学学习材料鼎尚图文*整理制作2016年四川省泸州市高考数学三诊试卷(理科)一、选择题:本大题共10小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合M={x|x2﹣x﹣6<0},N={x|x﹣1>0},则M∩N=()A.(1,2)B.(1,3)C.(﹣1,2)D.(﹣1,3)2.若命题p:∃x0∈R,x0﹣2>lgx0,则¬p是()A.∃x0∈R,x0﹣2≤lgx0B.∃x0∈R,x0﹣2<lgx0C.∀x∈R,x﹣2<lgx D.∀x∈R,x﹣2≤lgx3.已知cos2θ=,则sin4θ﹣cos4θ的值为()A.B.C.﹣D.﹣4.圆x2+y2﹣4x=0的圆心到双曲线﹣y2=1的渐近线的距离为()A.1 B.2 C.D.25.执行如图所示的程序框图,若输入的x,y∈R,则输出t的最大值为()A.1 B.3 C.2 D.06.从一个棱长为1的正方体中切去一部分,得到一个几何体,某三视图如图,则该几何体的体积为()A.B.C.D.7.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有()A.16 B.15 C.32 D.308.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.3 B.C.D.9.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()A.{t|}B.{t|≤t≤2}C.{t|2}D.{t|2}10.已知函数f(x)=,g(x)=﹣4x+a•2x+1+a2+a﹣1(a∈R),若f(g(x))>e对x∈R恒成立(e是自然对数的底数),则a的取值范围是()A.[﹣1,0] B.(﹣1,0)C.[﹣2,0] D.[﹣,0]二、填空题:本题共5小题,每题5分,共25分。
四川省泸州市2017年高考一模试卷(理科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0 B.1 C.﹣1 D.22.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3} C.{﹣3,﹣1} D.{﹣3,﹣1,1,3}3.“x<2”是“ln(x﹣1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果a<b<0,那么下列不等式成立的是()A.B.ab<b2C.﹣ab<﹣a2D.5.一算法的程序框图如图所示,若输出的,则输入的x可能为()A.﹣1 B.1 C.1或5 D.﹣1或16.已知向量,向量,则△ABC的形状为()A.等腰直角三角形B.等边三角形C.直角非等腰三角形D.等腰非直角三角形7.已知a>0,x,y满足约束条件,z=x+2y的最小值为﹣2,则a=()A.B.C.1 D.28.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A.B.C.D.9.函数的图象与x轴交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位10.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A.B.C.D.12.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1•x 2•x 3•x 4的取值范围是( )A .(7,)B .(21,) C .[27,30) D .(27,)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设函数f (x )=(x+1)(2x+3a )为偶函数,则a= .14.在三角形ABC 中,点E ,F 满足,,若,则x+y= .15.小王同学骑电动自行车以24km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 km .16.已知f (x )=x+alnx (a >0)对于区间[1,3]内的任意两个相异实数x 1,x 2,恒有成立,则实数a 的取值范围是 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知2sin α•tan α=3,且0<α<π. (1)求α的值;(2)求函数f (x )=4sinxsin (x ﹣α)在上的值域.18.如图,在四棱锥S ﹣ABCD 中,底面ABCD 是菱形,SA ⊥平面ABCD ,M ,N 分别为SA ,CD 的中点.(I )证明:直线MN ∥平面SBC ; (Ⅱ)证明:平面SBD ⊥平面SAC .19.某企业拟用10万元投资甲、乙两种商品.已知各投入x 万元,甲、乙两种商品分别可获得y 1,y 2万元的利润,利润曲线,P 2:y 2=bx+c ,如图所示.(1)求函数y 1,y 2的解析式;(2)应怎样分配投资资金,才能使投资获得的利润最大?20.已知数列{a n }的前n 项和s n ,点(n ,s n )(n ∈N *)在函数y=x 2+x 的图象上 (1)求{a n }的通项公式;(2)设数列{}的前n 项和为T n ,不等式T n >log a (1﹣a )对任意的正整数恒成立,求实数a 的取值范围.21.已知f (x )=2ln (x+2)﹣(x+1)2,g (x )=k (x+1). (Ⅰ)求f (x )的单调区间;(Ⅱ)当k=2时,求证:对于∀x >﹣1,f (x )<g (x )恒成立;(Ⅲ)若存在x 0>﹣1,使得当x ∈(﹣1,x 0)时,恒有f (x )>g (x )成立,试求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知直线l 的参数方程是(t 是参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=4cos (θ+).(1)判断直线l 与曲线C 的位置关系;(2)过直线l 上的点作曲线C 的切线,求切线长的最小值. 23.已知函数f (x )=|2x ﹣1|﹣|x+2|. (1)求不等式f (x )>0的解集;(2)若存在x 0∈R ,使得f (x 0)+2a 2<4a ,求实数a 的取值范围.四川省泸州市2017年高考一模试卷(理科数学)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0 B.1 C.﹣1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简,再由复数相等的充要条件列出方程组,求解即可得a,b的值,则答案可求.【解答】解:∵=,∴,解得,则a+b=1.故选:B.2.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3} C.{﹣3,﹣1} D.{﹣3,﹣1,1,3}【考点】交集及其运算.【分析】求出集合A中的一元二次不等式的解集确定出集合A,观察发现集合B为所有的奇数集,所以找出集合A解集中的奇数解即为两集合的交集.【解答】解:由集合A中的不等式x2+3x≤0,因式分解得:x(x+3)<0,解得:﹣3<x<0,所以集合A=(﹣3,0);根据集合B中的关系式n=2k+1,k∈Z,得到集合B为所有的奇数集,则集合A∩B={﹣3,﹣1}.故选:C3.“x<2”是“ln(x﹣1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据对数函数的性质结合集合的包含关系判断即可.【解答】解:由ln(x﹣1)<0,得:0<x﹣1<1,解得:1<x<2,故x<2是1<x<2的必要不充分条件,故选:B.4.如果a<b<0,那么下列不等式成立的是()A.B.ab<b2C.﹣ab<﹣a2D.【考点】不等关系与不等式.【分析】由于a<b<0,不妨令a=﹣2,b=﹣1,代入各个选项检验,只有D正确,从而得出结论.【解答】解:由于a<b<0,不妨令a=﹣2,b=﹣1,可得=﹣1,∴,故A不正确.可得ab=2,b2=1,∴ab>b2,故B不正确.可得﹣ab=﹣2,﹣a2=﹣4,∴﹣ab>﹣a2,故C不正确.故选D.5.一算法的程序框图如图所示,若输出的,则输入的x可能为()A.﹣1 B.1 C.1或5 D.﹣1或1【考点】选择结构;程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是求分段函数的函数值.利用输出的值,求出输入的x的值即可.【解答】解:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函数y=的函数值,输出的结果为,当x≤2时,sin=,解得x=1+12k,或x=5+12k,k∈Z,即x=1,﹣7,﹣11,…当x>2时,2x=,解得x=﹣1(不合,舍去),则输入的x可能为1.故选B.6.已知向量,向量,则△ABC的形状为()A.等腰直角三角形B.等边三角形C.直角非等腰三角形D.等腰非直角三角形【考点】平面向量的坐标运算.【分析】由已知向量的坐标求得的坐标,可得,结合得答案.【解答】解:∵,,∴=(3,1),∴.又.∴△ABC的形状为等腰直角三角形.故选A.7.已知a>0,x,y满足约束条件,z=x+2y的最小值为﹣2,则a=()A.B.C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入ax﹣y﹣2a=0得答案.【解答】解:由约束条件,作出可行域如图,联立,解得A(1,﹣),z=x+2y的最小值为﹣2,由图形可知A是目标函数的最优解,A在ax﹣y﹣2a=0上,可得:a+﹣2a=0解得a=.故选:B.8.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A.B.C.D.【考点】数列的应用.【分析】利用等差数列的求和公式即可得出.}的公差为d,【解答】解:设此等差数列{an则30×5+d=390,解得d=,故选:D.9.函数的图象与x轴交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数的图象与x轴交点的横坐标构成一个公差为的等差数列,可知周期T=,可得ω的值,根据三角函数的平移变换规律可得结论.【解答】解:由题意,函数的图象与x轴交点的横坐标构成一个公差为的等差数列,可知周期T=,那么:ω=.则f(x)=Asin(3x+)=Asin3(x+)要得到g(x)=Acos3x,即Acos3x=Asin(3x+)=Asin3(x+)由题意:可得:f(x)向左平移可得g(x)故选A10.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象.【分析】利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.【解答】解:令g(x)=x﹣lnx﹣1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,=g(0)=0,所以当x=1时,函数g(x)有最小值,g(x)min于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选A.11.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A.B.C.D.【考点】球的体积和表面积.【分析】由条件利用球的截面的性质求得球心到截面圆的距离,再求出垂直折起的4个小直角三角形的高,再与球的半径相加即得答案.【解答】解:由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,由于鸡蛋的体积为π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为=,而垂直折起的4个小直角三角形的高为,故鸡蛋最低点与蛋巢底面的距离为,故选:D.12.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是()A.(7,)B.(21,)C.[27,30)D.(27,)【考点】函数的值.【分析】画出分段函数的图象,求得(3,1),(9,1),令f(xl )=f(x2)=f(x3)=f(x4)=a,作出直线y=a,通过图象观察,可得a的范围,运用对数的运算性质和余弦函数的对称性,可得x1x2=1,x3+x4=12,再由二次函数在(3,4.5)递增,即可得到所求范围.【解答】解:画出函数f(x)的图象,令f(xl )=f(x2)=f(x3)=f(x4)=a,作出直线y=a,由x=3时,f(3)=﹣cosπ=1;x=9时,f(9)=﹣cos3π=1.由图象可得,当0<a<1时,直线和曲线y=f(x)有四个交点.由图象可得0<x1<1<x2<3<x3<4.5,7.5<x4<9,则|log3x1|=|log3x2|,即为﹣log3x1=log3x2,可得x1x2=1,由y=﹣cos(x)的图象关于直线x=6对称,可得x3+x4=12,则x1•x2•x3•x4=x3(12﹣x3)=﹣(x3﹣6)2+36在(3,4.5)递增,即有x1•x2•x3•x4∈(27,).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数f(x)=(x+1)(2x+3a)为偶函数,则a= ﹣.【考点】函数奇偶性的性质.【分析】根据偶函数的定义,可得一次项系数为0,从而可得结论.【解答】解:函数f(x)=(x+1)(2x+3a)=2x2+(3a+2)x+3a∵函数f(x)=(x+1)(2x+3a)为偶函数,∴2x2﹣(3a+2)x+3a=2x2+(3a+2)x+3a∴3a+2=0∴a=﹣,故答案为:14.在三角形ABC中,点E,F满足,,若,则x+y= .【考点】平面向量的基本定理及其意义.【分析】首先利用平面向量的三角形法则得到,然后用表示,结合平面向量基本定理得到x,y.【解答】解:在三角形ABC中,点E,F满足,,若==,所以x=﹣,y=,则x+y=;故答案为:15.小王同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 km .【考点】解三角形的实际应用.【分析】在△ABS 中,可得∠BAS=30°,AB=8,∠ABS=180°﹣75°=105°则∠ASB=45°,由正弦定理可得BS=.【解答】解:如图,由已知可得,AB=24×=8. 在△ABS 中,∠BAS=30°,AB=8,∠ABS=180°﹣75°=105° ∠ASB=45°由正弦定理可得BS==4,故答案为16.已知f (x )=x+alnx (a >0)对于区间[1,3]内的任意两个相异实数x 1,x 2,恒有成立,则实数a 的取值范围是 (0,) .【考点】利用导数求闭区间上函数的最值.【分析】问题等价于|1+|<,(1),由x 1,x 2→时(1)变为|1+3a|<9,由x 1,x 2→1时(1)变为|1+a|<1,得到关于a 的不等式,解出即可. 【解答】解:已知a >0,f (x )=x+alnx ,对区间[1,3]内的任意两个相异的实数x 1,x 2,恒有|f (x 1)﹣f (x 2)|<|﹣|,∴|x 1﹣x 2+a (lnx 1﹣lnx 2)|<||,两边都除以|x 1﹣x 2|,∵|1+|<,(1)(lnx )′=∈[,1],∴∈[,1],x 1,x 2→时(1)变为|1+3a|<9,解得:﹣<a <,x 1,x 2→1时(1)变为|1+a|<1, 解得:﹣2<a <0, 又∵a >0,∴0<a <,故答案为(0,).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知2sin α•tan α=3,且0<α<π. (1)求α的值;(2)求函数f (x )=4sinxsin (x ﹣α)在上的值域.【考点】同角三角函数基本关系的运用;三角函数中的恒等变换应用. 【分析】(1)利用同角三角函数的基本关系,求得sin α的值,可得α的值.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得函数f (x )=4sinxsin (x ﹣α)在上的值域.【解答】解:(1)∵2sin α•tan α=3,且0<α<π.∴2sin 2α=3cos α,∴2﹣2cos 2α=3cos α,∴2cos 2α+3cos α﹣2=0,解得cos α=,或cos α=﹣2(舍),∴α=.(2)∵α=,∴函数f(x)=4sinxsin(x﹣)=4sinx(sinxcos﹣cosxsin)==,∵,∴,∴,则,∴f(x)∈[﹣1,0].18.如图,在四棱锥S﹣ABCD中,底面ABCD是菱形,SA⊥平面ABCD,M,N分别为SA,CD的中点.(I)证明:直线MN∥平面SBC;(Ⅱ)证明:平面SBD⊥平面SAC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)取SB中点E,连接ME、CE,由三角形中位线定理、菱形性质得四边形MECN是平行四边形,由此能证明直线MN∥平面SBC.(Ⅱ)连接AC、BD,交于点O,由线面垂直得SA⊥BD,由菱形性质得AC⊥BD,由此能证明平面SBD⊥平面SAC.【解答】(Ⅰ)证明:如图,取SB中点E,连接ME、CE,因为M为SA的中点,所以ME∥AB,且ME=,…因为N为菱形ABCD边CD的中点,所以CN∥AB,且CN=,…所以ME∥CN,ME=CN,所以四边形MECN是平行四边形,所以MN∥EC,…又因为EC⊂平面SBC,MN⊄平面SBC,所以直线MN ∥平面SBC .…(Ⅱ)证明:如图,连接AC 、BD ,交于点O , 因为SA ⊥底面ABCD ,所以SA ⊥BD .… 因为四边形ABCD 是菱形,所以AC ⊥BD .… 又SA ∩AC=A ,所以BD ⊥平面SAC .…又BD ⊂平面SBD ,所以平面SBD ⊥平面SAC .…19.某企业拟用10万元投资甲、乙两种商品.已知各投入x 万元,甲、乙两种商品分别可获得y 1,y 2万元的利润,利润曲线,P 2:y 2=bx+c ,如图所示.(1)求函数y 1,y 2的解析式;(2)应怎样分配投资资金,才能使投资获得的利润最大?【考点】函数的最值及其几何意义;函数解析式的求解及常用方法.【分析】(1)将(1,1.25),(4,2.5)代入曲线,解方程可得;由P 2:y 2=bx+c过原点,可得c=0,将(4,1)代入,可得b ,即可得到P 2的方程;(2)设甲投资x 万元,则乙投资为(10﹣x )万元,投资获得的利润为y 万元,则=,令,转化为二次函数的最值求法,即可得到所求最大值.【解答】解:(1)由题知(1,1.25),(4,2.5)在曲线P 1上,则,解得,即.又(4,1)在曲线P 2上,且c=0,则1=4b ,则,所以.(2)设甲投资x 万元,则乙投资为(10﹣x )万元,投资获得的利润为y 万元,则=,令,则.当,即(万元)时,利润最大为万元,此时10﹣x=3.75(万元),答:当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.20.已知数列{a n }的前n 项和s n ,点(n ,s n )(n ∈N *)在函数y=x 2+x 的图象上 (1)求{a n }的通项公式;(2)设数列{}的前n 项和为T n ,不等式T n >log a (1﹣a )对任意的正整数恒成立,求实数a 的取值范围.【考点】等差数列与等比数列的综合.【分析】(1),再写一式,即可求{a n }的通项公式;(2)由(1)知a n =n ,利用裂项法可求=(﹣),从而可求得T n ═ [(1﹣)+(﹣)+(﹣)+…+(﹣)],由T n+1﹣T n =>0,可判断数列{T n }单调递增,从而可求得a 的取值范围.【解答】解:(1)∵,∴①当②①﹣②得a n =n当,∴a n =n ;(2)由(1)知a n =n ,则=(﹣).∴T n ═ [(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1+﹣﹣)=﹣(+).∵T n+1﹣T n =>0,∴数列{T n }单调递增,∴(T n )min =T 1=.要使不等式T n >log a (1﹣a )对任意正整数n 恒成立,只要>log a (1﹣a ). ∵1﹣a >0, ∴0<a <1.∴1﹣a >a ,即0<a <.21.已知f (x )=2ln (x+2)﹣(x+1)2,g (x )=k (x+1). (Ⅰ)求f (x )的单调区间;(Ⅱ)当k=2时,求证:对于∀x >﹣1,f (x )<g (x )恒成立;(Ⅲ)若存在x 0>﹣1,使得当x ∈(﹣1,x 0)时,恒有f (x )>g (x )成立,试求k 的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】(Ⅰ)求出定义域和导数f′(x ),令f′(x )>0,解出增区间,令f′(x )<0,解出减区间;(Ⅱ)令H (x )=f (x )﹣g (x ),利用导数判断出H (x )的单调性和单调区间,得出H (x )的最大值,证明H max (x )<0即可.【解答】解:(Ⅰ),当f′(x )>0 时,所以 x 2+3x+1<0,解得﹣2<x ,当f′(x)<0时,解得,所以 f(x)单调增区间为,递减区间是(,+∞);(Ⅱ)当k=2时,g(x)=2(x+1).令H(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣2(x+1).H′(x)=,令H′(x)=0,即﹣2x2﹣8x﹣6=0,解得x=﹣1或x=﹣3(舍).∴当x>﹣1时,H′(x)<0,H(x)在(﹣1,+∞)上单调递减.(x)=H(﹣1)=0,∴Hmax∴对于∀x>﹣1,H(x)<0,即f(x)<g(x).(Ⅲ)由(II)知,当k=2时,f (x)<g (x)恒成立,即对于“x>﹣1,2 ln (x+2)﹣(x+1)2<2 (x+1),不存在满足条件的x;当k>2时,对于“x>﹣1,x+1>0,此时2 (x+1)<k (x+1).∴2 ln (x+2)﹣(x+1)2<2 (x+1)<k (x+1),即f (x)<g (x)恒成立,不存在满足条件的x;令h(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣k(x+1),h′(x)=,当k<2时,令t (x)=﹣2x2﹣(k+6)x﹣(2k+2),可知t (x)与h′(x)符号相同,,+∞)时,t (x)<0,h′(x)<0,h (x)单调递减,当x∈(x当x∈(﹣1,x)时,h (x)>h (﹣1)=0,即f (x)﹣g (x)>0恒成立,综上,k的取值范围为(﹣∞,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知直线l的参数方程是(t是参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ=4cos(θ+).(1)判断直线l与曲线C的位置关系;(2)过直线l上的点作曲线C的切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)分别求出直线和曲线的普通方程,根据点到直线的距离,求出直线l与曲线C 的位置关系;(2)根据点到直线的距离求出直线l上的点向圆C引的切线长的最小值即可.【解答】解:(1)直线l方程:y=x+4,ρ=4cos(θ+)=2cosθ﹣2sinθ,∴ρ2=2ρcosθ﹣2sinθ,∴圆C的直角坐标方程为x2+y2﹣2x+2y=0,即+=4,∴圆心(,﹣)到直线l的距离为d=6>2,故直线与圆相离.(2)直线l的参数方程化为普通方程为x﹣y+4=0,则圆心C到直线l的距离为=6,∴直线l上的点向圆C引的切线长的最小值为=4.23.已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x)+2a2<4a,求实数a的取值范围.【考点】绝对值三角不等式.【分析】(1)把f(x)用分段函数来表示,令f(x)=0,求得x的值,可得不等式f(x)>0的解集.(2)由(1)可得f(x)的最小值为f(),再根据f()<4a﹣2a2 ,求得a的范围.【解答】解:(1)函数f(x)=|2x﹣1|﹣|x+2|=,令f(x)=0,求得x=﹣,或 x=3,故不等式f(x)>0的解集为{x|x<﹣,或x>3}.(2)若存在x0∈R,使得f(x)+2a2<4a,即f(x)<4a﹣2a2 有解,由(1)可得f (x )的最小值为f ()=﹣3•﹣1=﹣,故﹣<4a ﹣2a 2 ,求得﹣<a <.。
泸州市2017届高三第一次教学教学质量诊断性考试数学(理工类)一、选择题:本大题共有10个小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合要求的. 1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则()U M N ð=A .{5,7}B .{2,4}C .{1,3,5,6,7}D .{2,4,8}2. 下列命题中的假命题是A .x ∀∈R ,120x -> B .x *∀∈N ,2(1)0x -> C .x ∃∈R ,lg 1x < D .x ∃∈R ,tan 2x =3. 12lg 2lg25-的值为 A .1 B .2 C .3 D .44.函数()211sin f x x x ⎛⎫=- ⎪⎝⎭的图象大致为A .B .C .D .5.△ABC 中,若 2AD DB = ,13CD CA CB λ=+,则λ=A .13B .23C .23-D .13-6.将函数()()sin 2f x x θ=+(其中22ππθ-<<)的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若函数()(),f x g x 的图象都经过点P ⎛ ⎝⎭,则的值可以是A .53πB .6πC .2πD .56π7.设数列{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8. 若曲线()12f x x =在点()(),a f a 处的切线与两条坐标轴围成的三角形的面积为18,则a =A. 64B. 32C. 16D. 89.一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是 A .1025 B .1035 C .1045 D .105510.定义在R 上的函数()f x 满足()221,11(4)(),()log 22,1 3.x x f x f x f x x x ⎧-+-⎪+==⎨--+<⎪⎩≤≤≤,若关于x 的方程()0f x ax -=有5个不同实根,则正实数a 的取值范围是A .11(,)43B .11(,)64C.1(16)6-D.1(,86-二、填空题:本大题共5小题,每小题5分,共25分.11.复数22(56)(215)i m m m m +++--(i 是虚数单位)是纯虚数,则实数m 的值为 .12.等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a = . 13.函数()log a f x x=(其中01a <<),则使314f ⎛⎫< ⎪⎝⎭成立的a 的取值范围是 .14. 设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意[],2x a a ∈+,不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是 . 15.已知集合()()()()(){}22|,A f x fx f y f x y f x y x y R =-=+-∈,有下列命题;①若()1,01x f x x ≥⎧=⎨-<⎩,则()f x A ∈;②若()f x kx =,则()f x A ∈;③若()f x A ∈,则()y f x =可为奇函数;④若()f x A ∈,则对任意不等实数12,x x ,总有()()1212f x f x x x-<-成立。
泸州市高2014级第三次教学质量诊断性考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1}U x x =>,集合2{430}A x x x =-+<,则U C A =( ) A .[3,)+∞ B .(3,)+∞ C .(,1)-∞- D .(1,3)2.复数112i z i i=-+(其中i 是虚数单位)的虚部为( ) A .12B .iC .1D .-1 3.已知等比数列{}n a 的公比12q =,28a =,则其前3项和3S 的值为( )A .24B .28C .32D .164.已知平面向量(2,1)a =-,(1,2)b =,则2a b -的值是( )A .1B .5C D5.如图,一环形花坛分成,,,A B C D 四块,现有3种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为( )A .12B .24C .18D .6 6.已知抛物线2:4C y x =的焦点为F ,过点F 且倾斜角为3π的直线与抛物线C 的准线交于点B ,则线段FB 的长为( )A .10B .6C .8D .47.设,l m 是两条不同的直线,α是一个平面,则下列命题中正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l m D .若//l α,//m α,则//l m 8.已知函数()sin(2)()2f x x πϕϕ=+<的图象沿x 轴向左平移6π个单位后关于y 轴对称,则函数()f x 的一个单调递增区间是( ) A .5[,]612ππ-B .[,]36ππ-C .[,]63ππ-D .2[,]63ππ 9.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有堩(音g èng ,意为道路)厚十尺,两鼠对穿,初日各一尺,大鼠目自倍,小鼠日自半,问几何日相逢?”现有程序框图描述,如图所示,则输出结果n 的值为( )A .4B .5C .2D .310.已知Rt ABC ∆中,2A π∠=,以,B C 为焦点的双曲线22221x y a b -=(0,0a b >>)经过点A ,且与AB 边交于点D ,若2AD BD =,则该双曲线的离心率为( )A B C . D11.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为23π的等腰三角形,则该三棱锥外接球的表面积为( )A .20πB .16πC .8πD .17π 12.已知函数()ln f x x x =+与21()12g x ax ax =+-(0a >)的图象有且只有一个公共点,则a 所在的区间为( )A .12(,)23B .2(,1)3C .3(,2)2D .3(1,)2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 5(12)x -展开式中,3x 项的系数为 .14.设不等式组4000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .15.若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩,(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值范围是 .16.已知数列{}n a 的前n 项和11()22n n n S a -=--+(*n N ∈),则数列{}n a 的通项公式n a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆的三个内角,,A B C 的对边分别为,,a b c ,若2cos b c b A =-.(1)求证:2A B =;(2)若53b c =,a =BC 边上的高.18. 甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:(1)试分别估计甲机床、乙机床生产的零件为正品的概率;(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?19. 如图,在梯形ABCD 中,//AB DC ,1AD AB BC ===,3ADC π∠=,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,1AE =,点M 在线段EF 上.(1)当FMEM为何值时,//AM 平面BDF ?证明你的结论; (2)求二面角B EF D --的平面角的余弦值.20. 已知点C 是圆22:(1)16F x y ++=上的任意一点,点F 为圆F 的圆心,点'F 与点F关于平面直角系的坐标原点对称,线段'CF 的垂直平分线与线段CF 交于点P . (1)求动点P 的轨迹E 的方程;(2)若轨迹E 与y 轴正半轴交于点M ,直线:l y kx =+E 于,A B 两点,求ABM ∆面积的取值范围.21. 已知函数()(1)xf x e a x =++(其中e 为自然对数的底数)(1)设过点(0,0)的直线l 与曲线()f x 相切于点00(,())x f x ,求0x 的值;(2)若函数2()1g x ax ex =++的图象与函数()f x 的图象在(0,1)内有交点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线122cos :sin x C y αα=+⎧⎨=⎩(α为参数)经伸缩变换''2xx y y⎧=⎪⎨⎪=⎩后的曲线为2C ,以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2),A B 是曲线2C 上两点,且3AOB π∠=,求OA OB +的取值范围.23.选修4-5:不等式选讲已知函数()12f x x x a =+++,若()f x 的最小值为2. (1)求实数a 的值;(2)若0a >,且,m n 均为正实数,且满足m n a +=,求22m n +的最小值.试卷答案一、选择题1-5:ACBBC 6-10:DBBAD 11、12:AD二、填空题13. 80- 14. 8π-15. (1,2] 16. 2n n n a = 三、解答题17.解:(1)因为2cos b c b A =-, 所以sin sin 2sin cos B C B A =-, 因为()C B A π=-+,所以sin sin(())2sin sin B B A B A π=-+- 所以sin sin cos cos sin 2sin cos B B A B A B A =+- 即sin cos sin sin cos B B A B A =-, 即sin sin()B A B =-,因为0B π<<,0A π<<,所以A B ππ-<-<, 所以B A B =-或()B A B π=--, 故2A B =;(2)由53b c =及2cos b c b A =-得,1cos 3A =,由余弦定理:2222cos a b c bc A =+-得222551()2333b b b b =+-⨯⨯, 解得:6,10b c ==,由1cos 3A =得,sin A = 设BC 边上的高为h ,则11sin 22bc A ah ⨯=⨯,即610⨯=,所以h =18.解:(1)因为甲机床为正品的频率为4032841005++=,乙机床为正品的频率约为4029631004++=,所以估计甲、乙两机床为正品的概率分别为43,54;(2)若用甲机床生产这2件零件,设可能获得的利润1X 为320元、140元、-40元,它们的概率分别为14416(320)5525P X ==⨯=,1418(140)25525P X ==⨯⨯=, 1111(40)5525P X =-=⨯=, 所以获得的利润的期望11681()320140(40)248252525E X =⨯+⨯+-⨯=,若用乙机床生产这2件零件,设可能获得的利润为2X 为400元、160元、-80元,它们的概率分别为2339(400)4416P X ==⨯=,2316(160)24416P X ==⨯⨯=,2111(80)4416P X =-=⨯=,让你以获得的利润的期望2961()400160(80)280161616E X =⨯+⨯+-⨯=;若用甲、乙机床各生产1件零件,设可能获得的利润3X 为360元、180元、120元、-60元,它们的概率分别为34312(360)5420P X ==⨯=,3133(180)5420P X ==⨯=, 3414(120)5420P X ==⨯=,3111(60)5420P X =-=⨯= 所以获得的利润的期望312341()360180120(60)26420202020E X =⨯+⨯+⨯+-⨯=, ∵231()()()E X E X E X >>, 所以安排乙机床生产最佳. 19. 解: (1)当12FM EM =时,//AM 平面BDF ,证明如下:在梯形ABCD 中,设AC BD O =,连接FO ,因为1AD BC ==,060ADC ∠=, 所以2DC =,又1AB =, 因为AOB ∆∽CDO ∆, 因此:2:1CO AO =, 所以12FM AO EM CO ==,因为ACFE 是矩形, 所以四边形AOFM 是平行四边形, 所以//AM OF ,又OF ⊂平面BDF ,AM ⊄平面BDF , 所以//AM 平面BDF ;(2)在平面ABCD 内过点C 作GC CD ⊥, 因为平面ACFE ⊥平面ABCD ,且交线为AC , 则CF ⊥平面ABCD ,即CF GC ⊥,CF DC ⊥,以点C 为原点,分别以,,CD CG CF 所在直线为,,x y z 轴,建立空间直角坐标系,则1(,,0)22B ,(2,0,0)D,3(,22E ,(0,0,1)F , 所以(1,0,1)BE =,1(,2BF =-,1(,2DE =-,(2,0,1)DF =-, 设平面BEF 的法向量为(,,)m x y z =,则0m BE m BF ⎧∙=⎪⎨∙=⎪⎩,∴0102x z x y z +=⎧⎪⎨-+=⎪⎩,取(1,1)m =-, 同理可得平面DEF 的法向量(1,3,2)n =-,所以cos ,105m n m n m n∙===∙, 因为二面角B EF D --20.解:(1)由题意知圆F 的圆心为(1,0)F -,半径为4, 所以''42PF PF CF FF +==>=,由椭圆的定义知,动点P 的轨迹是以',F F 为焦点,4为长轴长的椭圆,设椭圆E 的方程为22221x y a b+=(0a b >>),且焦距为2c (0)c >,则:222241a c a b c ⎧=⎪=⎨⎪=+⎩,即21a c c ⎧=⎪=⎨⎪=⎩, 故椭圆E 的方程为22143x y +=; (2)把直线:l y kx =+代入椭圆方程消去y得:22(34)360k x +++=,由0∆>得:32k <-或32k >, 因为直线与椭圆相交于两点11(,)A x y ,22(,)B x y ,则12x x +=,1223634x x k =+,因为点M ,直线l 与y轴交于点(0,DABM ∆的面积121212ABM S MD x x x ∆=∙-=-==243k ==+612=≤=,=,即2k =±时取等号,2k =±满足0∆> 所心ABM ∆面积的取值范围是(0,]2. 21.解:(1)因为函数()(1)x f x e a x =++,所以'()(1)xf x e a =++,故直线l 的斜率为0'0()(1)xf x e a =++,点00(,())x f x 的切线l 的方程为000()((1))()xy f x e a x x -=++-, 因直线过(0,0),所以000()((1))()xx e a x -=++-, 即0000(1)((1))xxe a x e a x ++=++ 解之得,01x =(2)令2()()()(1)1xh x f x g x e axa e x =-=-+-+-,所以'()21x h x e ax a e =-+-+,设()21xk x e ax a e =-+-+,则'()2xk x e a =-,因函数2()1g x ax ex =++的图象与函数()f x 的图象在(0,1)内有交点, 设0x 为()h x 在(0,1)内的一个零点, 由()0,(1)0h x h ==,所以()h x 在0(0,)x 和0(,1)x 上不可能单增,也不可能单减,所以()k x 在0(0,)x 和0(,1)x 上均存在零点,即()k x 在(0,1)上至少有两个零点, 当12a ≤时,'()0k x >,()k x 在(0,1)上递增,()k x 不可能有两个及以上零点; 当2e a ≥时,'()0h x <,()k x 在(0,1)上递减,()k x 不可能有两个及以上零点; 当122e a <<时,令'()0k x =,得ln(2)(0,1)x a =∈, ∴()k x 在(0,ln(2))a 上递减,在(ln(2),1)a 上递增, 所以1(ln(2))22ln(2)(1)32ln(2)1()22e k a a a a e a a a a e a =----=-+-<< 设3()ln 1(1)2x x x x e x e ϕ=-+-<<,则'1()ln 2x x ϕ=-,令'()0x ϕ=,得x =当1x <<'()0x ϕ>,()x ϕ递增,x e <<时,'()0x ϕ<,()x ϕ递减,所以max ()10x e ϕ=-<,∴(ln(2))0k a <恒成立,若()k x 有两个零点,则有(ln(2))0k a <,(0)0k >,(1)0k >,由(0)20k a e =+->,(1)10k a =->,得21e a -<<,当21e a -<<,设()k x 的两个零点为12,x x ,则()h x 在1(0,)x 递增,在12(,)x x 递减,在2(,1)x 递增,∴1()()0h x h x >=,2()(1)0h x h <=,所以()h x 在12(,)x x 内有零点,即函数2()1g x ax ex =++的图象与函数()f x 的图象在(0,1)内有交点, 综上,实数a 的取值范围是(2,1)e -.22.解:(1)曲线122cos :sin x C y αα=+⎧⎨=⎩化为普通方程为:22(2)14x y -+=, 又''2x x y y ⎧=⎪⎨⎪=⎩即''2x x y y ⎧=⎪⎨=⎪⎩代入上式可知: 曲线2C 的方程为22(1)1x y -+=,即222x y x +=, ∴曲线2C 的极坐标方程为2cos ρθ=.(2)设1(,)A ρθ,2(,)3B πρθ+((,)26ππθ∈-), ∴122cos 2cos()3OA OB πρρθθ+=+=++)6πθ=+, 因为()(,)633πππθ+∈-, 所以OA OB +的取值范围是23.解:(1)①当12a ->-时,即2a >时,3(1),2()1,123(1),1a x a x a f x x a x x a x ⎧--+≤-⎪⎪⎪=+--<<-⎨⎪++≥-⎪⎪⎩则当2a x =-时,min ()()1222a a f x f a a =-=-++-+=, 解得6a =或2a =-(舍); ②当12a -<-时,即2a <时,3(1),1()1,123(1),2x a x a f x x a x a x a x ⎧⎪--+≤⎪⎪=-+--<<-⎨⎪⎪++≥-⎪⎩则当2a x =-时,min ()()1222a a f x f a a =-=-++-+=, 解得6a =(舍)或2a =- ③当12a -=-时,即2a =,()31f x x =+, 此时min ()0f x =,不满足条件,综上所述,6a =或2a =-;(2)由题意知,6m n +=,∵222()2m n m n mn +=++ 2222()()m n m n ≤+++222()m n =+当且仅当3m n ==时取“=”, ∴2218m n +≥,所以22m n +的最小值为18。