高中圆锥曲线复习,,,超详细
- 格式:doc
- 大小:1.03 MB
- 文档页数:30
第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
圆锥曲线复习(对高中生而言,再做一次就是一切)一.弦长1.已知抛物线y 2=2px(p>0),过焦点的弦AB 倾斜角为θ,求证:|AB|=2p sin 2θ,并求|AF|,|BF|。
2.已知圆M :(x+1)2+y 2=1,圆N :(x-1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C 。
(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|3. 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当O P Q ∆的面积最大时,求l 的方程.4. 设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E.(Ⅰ)证明EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.二:中点弦1.已知椭圆x 24+y 29=1,一组平行直线的斜率是32,求这组直线与椭圆相交时,弦中点的轨迹方程。
2.已知直线l:x-y-2=0,抛物线C:y 2=2px(p>0).(1)若直线l 过抛物线C 的焦点,求抛物线的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P ,Q ,求证:线段PQ 的中点为(2-p,-p)并求p 的取值范围。
三:对称1.已知椭圆: x 24+y 23=1,试确定m 的取值范围,使得椭圆上的两个不同的点关于直线y=4x+m 对称2.已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e=12。
圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。
圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线与方程综合部分一、知识点梳理椭圆、双曲线:二、章节知识点回顾:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1abe -=10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )6.c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a 其中a 与b 的大小关系:可以为b a b a b a ><=,,7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 8.双曲线的几何性质:(1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔 9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 10.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 11.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-112.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: )(221x x e a AB +--= 过右焦点与右支交于两点时:)(221x x e a AB ++-= 当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--= 过右焦点与右支交于两点时:)(221y y e a AB ++-=13.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ab d 22=14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程:(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2px -=(2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -=(3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2px =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2py =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式: 抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 18.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得:联立⎩⎨⎧=+=px y b kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212p y y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =----------------------------------------------------------------------------------------------------------------- 椭圆习题: 选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,04.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 5.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( )A .20B .22C .28D .246.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x 填空题:7.若椭圆221x my +=_______________. 8.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
1.[2011·古田县适应测试] 与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()A.-y2=1B.-y2=1C.-=1 D.x2-=12.若抛物线的焦点与椭圆的右焦点重合,则的值为()A、 B、2 C、 D、43.已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为A. B. C. D.4.经过点P(4,-2)的抛物线的标准方程为A. B. C.或 D.或5.设F1、F2分别为椭圆+=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是A. B. C. D.6.在抛物线y2=4x上有两点A,B,点F是抛物线的焦点,O为坐标原点,若+2+3=0,则直线AB与x轴的交点的横坐标为A. B.1 C.6 D.7.从点向圆f引切线,则一条切线长的最小值为()A. B.5 C. D.8.已知椭圆+=1(a>b>0)与双曲线-=1有相同的焦点,则椭圆的离心率为A. B. C. D.9.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A. 2 B. 3 C. 4 D.610.直线与圆相交于两点,若的取值范围是()A. B. C. D.11.在圆内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为A. B. C. D.12.圆被直线截得的弦长是A. B. 1C. D. 2的外接圆半径和的面积都等于1,则()13.A. B. C. D.14.已知双曲线两条准线间的距离为,则双曲线的离心率是()A. B. C. D.215.若圆C的半径为1,圆心在第一象限,且与直线和轴都相切,则该圆的标准方程是()A. B.C. D.16.经过圆的圆心且倾斜角是的直线方程为()A. B. C. D.17.函数的图象与方程的曲线有着密切的联系,如把抛物线的图象绕原点沿逆时针方向旋转就得到函数的图象.若把双曲线绕原点按逆时针方向旋转一定角度后,能得到某一个函数的图象,则旋转角可以是[来源:]A. B. C. D.18.设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为()A. B.C. D.19.方程表示圆的充要条件是()A. B. C. D.20.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.(,-1) B.(,1)C.(1,2) D.(1,-2)21.(本小题满分15分)已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(Ⅰ)求动点的轨迹的方程;(Ⅱ)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.22.(本小题满分14分)已知两定点,满足条件的点的轨迹是曲线,直线与曲线交于两点,(Ⅰ)求的取值范围;(Ⅱ)如果,且曲线上存在点,使,求的值和的面积S.23.(本小题满分14分)如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.(Ⅰ)求椭圆C的方程;(Ⅱ)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.24.(本题15分)已知直线l的方程为,且直线l与x轴交于点,圆与x轴交于两点.(1)过M点的直线交圆于两点,且圆孤恰为圆周的,求直线的方程;(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;(3)过M点作直线与圆相切于点,设(2)中椭圆的两个焦点分别为,求三角形面积.25.(本小题满分10分)选修4-4:极坐标与参数方程已知曲线的极坐标方程为,曲线的极坐标方程为,曲线,相交于,两点.(1)把曲线,的极坐标方程转化为直角坐标方程;(2)求弦的长度.(26.2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于、两点,.(Ⅰ)求该椭圆的标准方程;zhangwlx(Ⅱ)取平行于轴的直线与椭圆相较于不同的两点、,过、作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值,并写出对应的圆的标准方程.27.(本小题满分14分)已知椭圆的离心率. 直线()与曲线交于不同的两点,以线段为直径作圆,圆心为.(1)求椭圆的方程;(2)若圆与轴相交于不同的两点,求的面积的最大值.28.(12分)自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。
解:29.(本小题满分12分)求经过、两点,并且在轴上截得的弦长为的圆的方程。
(30.2012年高考(天津文))已知椭圆,点在椭圆上.(I)求椭圆的离心率.(II)设为椭圆的右顶点,为坐标原点,若在椭圆上且满足,求直线的斜率的值.[来源:][来源:](31.2013年高考课标Ⅰ卷(文))已知双曲线的离心率为,则的渐近线方程为()A. B. C. D.32.已知.则函数的最大值为33.已知双曲线的左焦点为,,当时,则该双曲线的离心率等于 ( )A. B. C. D .34.已知直线与圆相切,则以为边长的三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不存在35.直线与圆的位置关系为()A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离36.方程表示的曲线是()一条直线两条直线一个圆两个半圆37.动圆M的圆心M在抛物线y2=4x上移动,且动圆恒与直线l:x=-1相切,则动圆M 恒过点()A.(-1,0) B.(-2,0)C.(1,0) D.(2,0)38. 从(其中)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在轴上的双曲线方程的概率为A. B. C. D.39.我们把离心率为黄金比的椭圆称为“优美椭圆”.设(a>b>0)为“优美椭圆”,F、A分别是它的左焦点和右顶点,B是它短轴的一个端点,则∠ABF等于A.60° B.75° C.90° D.120°40.已知椭圆短轴上的两个顶点分别为、,焦点为、,若四边形是正方形,则这个椭圆的离心率A. B. C. D.以上都不是无41.内容42.斜率为1的直线被椭圆+y2=1截得的弦长的最大值为()A. B. C. D.43.若直线到直线的角为,则实数的值等于()A.0 B. C.0或 D.44. (2012年高考(大纲文))已知为双曲线的左,右焦点,点在上,,则()A. B. C. D.45.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则A.2B.3C.6D.846.已知抛物线的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则的面积为()A.4 B.8 C.16 D.3247.已知直线及与函数图像的交点分别为,与函数图像的交点分别为,则直线与( )A、相交,且交点在第I象限B、相交,且交点在第II象限C、相交,且交点在第IV象限D、相交,且交点在坐标原点48.已知过点P( , 0)的直线l交圆O:x2 + y2 = 1于A、B两点,且 = 2,则△AOB的面积为()49.已知双曲线的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5 :1,则双曲线离心率的取值范围是A.(1,] B.(1,) C.(2, ] D.(,2]50.两个正数的等差中项是一个等比中项是则双曲线的离心率等于A. B. C. D.51.(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为(Ⅰ)求直线l与曲线C的普通方程;(Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.52.(本题满分12分)已知圆过点,,.(1)求圆的方程;(2)若直线与圆相交于、两点,且,求的值.53.(本题满分12分)椭圆的左、右焦点分别为,过的直线与椭圆交于两点。
(Ⅰ)若点在圆(为椭圆的半焦距)上,且,求椭圆的离心率;(Ⅱ)若函数且的图象,无论为何值时恒过定点,求的取值范围。
(本题满分15分) 已知抛物线C的顶点在原点, 焦点为F(0, 1).(Ⅰ) 求抛物线C的方程;(Ⅱ) 在抛物线C上是否存在点P, 使得过点P的直线交C于另一点Q, 满足PF⊥QF, 且PQ与C在点P处的切线垂直?若存在, 求出点P的坐标; 若不存在,请说明理由.55.(本小题满分12分)如图,已知圆心坐标为的圆与轴及直线分别相切于两点,另一圆与圆外切,且与轴及直线分别相切于两点.(1)求圆和圆的方程;(2)过点作直线的平行线,求直线被圆截得的弦的长度.56.(本小题满分13分)设直线(I)证明与相交;(II)证明与的交点在椭圆57.已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且.(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值(58.2012年高考(山东文))如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.59.(本小题满分10分)选修4—4:坐标系与参数方程以直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度。
已知直线l的极坐标方程为,曲线C的参数方程为(α为参数).(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;(Ⅱ)若直线l与曲线C交于A、B两点,求线段AB的长.60.(海南宁夏卷文20)已知m∈R,直线l:和圆C:。
(1)求直线l斜率的取值范围;(2)直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?1.B[解析] 椭圆的焦点坐标为(±,0),四个选项中,只有-y2=1的焦点为(±,0),且经过点P(2,1).故选B.2.D3.A4.C5.D6.D 【解析】本题是关于直线与抛物线结合问题,设点A(x1,y1),B(x2,y2),由向量关系得:与点A,B都在抛物线上,且由2y1+3y2=0知A、B分别在x轴上下方,无妨设y1>0,可解得A(,),B(,),易求得AB的方程为:y-=(x-),令y=0x=,故选项D正确.本题考查向量、直线、抛物线等多个知识点的结合问题,对于这种多个知识点的结合要分清各条块知识的处理与整个系统知识的综合处理问题,否则容易造成思维混乱,一般来讲在选择题中出现多个知识的渗透与整合是各个知识的基本概念与基本性质的有机结合,此时应该巧做、小做而不要变成大做。