统计学第二十四讲
- 格式:ppt
- 大小:479.50 KB
- 文档页数:21
一、平均数应用的注意事项1.同质的资料计算平均数才有意义。
2.均数适用于:单峰对称分布的资料3.几何均数适用于:对数变换后单峰对称的资料:等比资料、滴度资料、对数正态分布资料4.中位数:理论上可用于任何分布资料,但当资料适合计算均数或几何均数时,不宜用中位数:偏态分布、分布不明资料、有不确定值的资料二、抽样误差1.由抽样引起的样本统计量与总体参数间的差别。
2.原因:个体变异+抽样3.表现:样本统计量与总体参数间的差别;不同样本统计量间的差别4.抽样误差是不可避免的!5.抽样误差是有规律的!三、中心极限定理(central limit theorem)1.Case 1:从正态分布总体N(,2),中随机抽样(每个样本的含量为n),可得无限多个样本,每个样本计算样本均数,则样本均数也服从正态分布。
2.Case 2:从非正态(nonnormal)分布总体(2)中随机抽样(每个样本的含量为n),可得无限多个样本,每个样本计算样本均数,则只要样本含量足够大(n>50),样本均数也近似服从正态分布。
四、统计推断的内容1.参数估计:由样本统计量估计总体参数 (1)点估计(2)区间估计:按一定的概率或可信度(1- α )用一个区间估计总体参数所在范围,这个范围称作可信度为1- α的可信区间(confidence interval, CI),又称置信区间 。
这种估计方法称为区间估计。
2.假设检验五、正确理解可信区间的涵义1.可信区间一旦形成,它要么包含总体参数,要么不包含总体参数,二者必居其一,无概率可言。
所谓95%的可信度是针对可信区间的构建方法而言的。
2.以均数的可信区间为例,其涵义是:如果重复100次抽样,每次样本含量均为n ,每个样本均按构建可信区间,则在此100个可信区间内,理论上有95个包含总体均数,而有5个不包含总体均数。
3.在区间估计中,总体参数虽未知,但却是固定的值(且只有一个),而不是随机变量值 。
统计学完整(贾俊平)人大课件ppt课件•引言•数据收集与整理•描述性统计分析目录•概率论基础•推断性统计分析•方差分析与回归分析•时间序列分析与预测•统计决策与风险管理目录•总结与展望01引言统计学是一门研究如何收集、整理、分析和解释数据的科学。
统计学的定义统计学的历史统计学的分支统计学的发展经历了古典统计学、近代统计学和现代统计学三个阶段。
统计学可以分为描述统计学和推断统计学两大分支。
030201统计学概述社会科学医学与健康工程与技术商业与经济统计学应用领域01020304在社会科学领域,统计学被广泛应用于调查研究、民意测验、市场分析等方面。
在医学和健康领域,统计学被用于临床试验、流行病学研究、健康风险评估等方面。
在工程和技术领域,统计学被用于质量控制、可靠性分析、信号处理等方面。
在商业和经济领域,统计学被用于市场分析、财务分析、经济预测等方面。
通过学习,学生应掌握统计学的基本概念和方法,包括数据收集、整理、描述和分析等方面的内容。
掌握统计学基本概念和方法具备数据处理和分析能力了解统计学的应用领域培养批判性思维学生应具备独立处理和分析数据的能力,能够运用适当的统计方法进行数据分析和解释。
学生应了解统计学的应用领域,能够运用所学知识解决实际问题。
学生应培养批判性思维,能够对统计结果进行合理的解释和评估。
学习目标与要求02数据收集与整理数据来源及类型数据来源包括原始数据和二手数据,原始数据是通过直接调查、实验或观察获得的数据;二手数据则是已经经过他人收集、整理和处理过的数据。
数据类型包括定性数据和定量数据,定性数据是描述性的、非数值的,如文字、图像等;定量数据则是可以用数值表示的,如年龄、收入等。
此外,还可以根据数据的测量尺度将其分为名义型数据、顺序型数据、间隔型数据和比率型数据。
调查法实验法观察法大数据收集数据收集方法通过问卷、访谈、电话调查等方式收集数据,可以获取大量的、详细的信息。
直接观察研究对象的行为、状态等,记录相关数据,适用于无法控制或干预的情况。
课件•引言•统计数据的收集与整理•统计描述目•概率论基础•统计推断录•统计指数与因素分析•相关与回归分析•统计决策目•统计学的应用与发展录引言统计学概述统计学的定义统计学的发展历史统计学的分支领域1 2 3统计学在决策中的应用统计学在科学研究中的应用统计学在社会生活中的应用统计学的重要性统计学的研究对象01020304数据的收集数据的整理数据的分析数据的解释统计数据的收集与整理原始数据二手数据定性数据定量数据时序数据030201数据的收集方法观察法调查法实验法数据的整理与显示数据整理数据显示通过图表、图像等方式将数据呈现出来,以便于直观理解和分析。
常见的数据显示方式包括表格、条形图、折线图、饼图等。
统计描述集中趋势的描述算术平均数适用于数值型数据,反映数据的平均水平。
中位数适用于顺序数据,反映数据的中等水平。
众数适用于分类数据,反映数据的多数水平。
离散程度的描述四分位数间距极差上四分位数与下四分位数之差,反映中间50%数据的离散程度。
方差与标准差分布形态的描述偏态峰态统计图表的应用适用于分类数据,表示各类别的频数或频率。
适用于时间序列数据,表示事物随时间的变化趋势。
适用于分类数据,表示各类别在总体中的占比。
适用于两个数值型变量,表示它们之间的相关关系。
条形图折线图饼图散点图概率论基础随机事件与概率随机试验与样本空间随机试验是具有某些基本特点的试验,其所有可能结果构成的集合称为样本空间。
随机事件随机试验的某个(些)样本点构成的集合称为随机事件。
概率的定义概率是描述随机事件发生的可能性大小的数值,常用P(A)表示。
概率的性质与运算法则概率的性质01概率的加法公式02概率的乘法公式03事件的独立性如果事件A 与事件B 相互独立,则P(A∩B)=P(A)P(B)。
条件概率在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作P(A|B)。
多个事件的独立性如果事件A1,A2,...,An 相互独立,则对于任意k 个事件Ai1,Ai2,...,Aik(1≤i1<i2<...<ik≤n),都有P(Ai1∩Ai2∩...∩Aik)=P(Ai1)P(Ai2)...P(Aik)。
临床试验中的统计学若干问题——《小胖说统计》系列日志节选(一)前言“统计学基本上是寄生的。
靠研究其他领域内的工作而生存。
这不是对统计学的轻视,这是因为对很多寄主来说,如果没有寄生虫就会死。
对有的动物来说,如果没有寄生虫就不能消化它们的食物。
因此,人类奋斗的很多领域,如果没有统计学,虽然不会死亡,但一定会变得很弱”-L.J.Savage“统计思维总有一天会像读与写一样成为一个有效率公民的必备能力。
”-H.G.Wells统计学研究的是来自各领域的数据,由解决其他领域内的问题而存在并发展。
这一点对临床试验生物统计学也不例外,临床试验的大力发展催生并发展了统计在制药行业的应用。
对于每个从事临床试验工作的人来说,我们并不都需要你通晓每种统计方法的由来,我们需要的是你用一种统计的思维方式来看待和判断临床试验中的问题。
基于此小胖结合自己在临床试验生物统计方面微不足道的经历,于2008年6月推出了自己的日志系列《小胖说统计》,初衷在于在不侧重复杂的统计理论和计算的基础上,通过一些浅显易懂的语言,简单介绍一下临床试验中一些生物统计的基本知识,并希望能成为和广大临床试验同行进行交流的平台。
承蒙广大网友的抬爱,《小胖说统计》推出后受到了大家的认可,至今已发表约180篇博文。
为了方便大家的阅读,应广大网友的要求,特对《小胖说统计》中的主要内容加以节选,所有内容均属个人观点,仅供参考,欢迎大家批评指正。
《小胖说统计》系列日志将会继续进行持续更新,详细内容可参见以下链接: /2113/ucenterhome/5612在此对长期关注和支持《小胖说统计》系列日志的公卫论坛和药物临床试验论坛的广大坛友表示感谢。
统计学是一门科学、一种技术和一门艺术,小胖也只是个入门者,最后借用一论坛网友的话,我是一只小蜗牛,笨笨的,不懈的……小胖(Michael Wen,闻增玉)2009年10月目录前言 (2)一、认识α和β (5)二、临床试验生物统计的BIBLE (6)三、如何从统计角度来review研究方案 (8)四、验证性试验和探索性试验 (11)五、临床试验研究人群的选择 (13)六、主要终点和次要终点 (14)七、复合终点 (17)八、盲法 (20)九、随机化 (23)十、研究设计 (33)十一、多中心临床试验 (38)十二、优效性试验 (42)十三、非劣效试验 (47)十四、非劣效试验和优效试验的转换 (55)十五、从临床试验实例来看样本量的计算 (57)十六、中期分析 (78)十七、分析集 (99)十八、缺失值 (114)十九、离群值 (138)二十、参数估计、可信区间和假设检验 (146)二十一、基线数据分析 (152)二十二、协变量 (155)二十三、亚组分析 (162)二十四、临床试验中的多重性问题 (171)一、认识α和β要了解生物统计在临床试验中的应用,首先需从认识α,β开始,就是这两个不起眼的符号几乎贯穿了临床试验生物统计的始终。
第二十四课 总体均值的估计对于样本来自正态总体和方差齐性的基本假设,根据观察结果(结果变量或反映变量)的水平数,一元时基本的分析方法有U 检验、t 检验,多元时用多元检验(2T 或Wilks ’∧检验)。
一. 计量资料的统计指标测定每个观察单位某项指标值的大小,所得的资料称为计量资料(measurement data )又称测量资料,这类资料一般具有计量单位。
计量资料的统计指标分成两大类:● 表达计量资料集中位置的指标,用以描述观察值的平均水平,如算术均值、几何均值、调和均值、中位数、众数、百分位数。
● 表达计量资料变异的指标,又称离散指标,用以描述观察值间参差别不齐的程度,即离散度或称变异度,如全距、标准差、方差、标准误差、变异系数、四分位数间距等。
设原始观察值为n x x x ,,,21 ,第i 组频数记为i f ,组中值记为i x 。
在不发生混淆的场合,有时将下标省略,如∑=ni ix1,有时简记为∑x。
1. 集中位置的指标1) 算术平均值算术平均值(arithmetic mean )简称为均值(mean ),总体均值用希腊字母μ表示,样本均值用x 表示。
算术平均值的具体计算方法分为简单算术平均和加权算术平均两种。
简单算术平均为:n x x ni i /)(1∑==(24.1)加权算术平均为:∑∑===ni i n i i i f f x x 11/)((24.2)算术平均值有两个重要的数学性质:①各个变量值与平均值离差之和等于零,②各个变量值与平均值的离差平方之和为最小值。
2) 几何均值几何均值(geometric mean )用G 表示,为观察值的总乘积开n 次方根。
根据资料是否分组,也分为简单几何平均和加权几何平均两种方法。
简单几何平均为:n ni i x G /11)(∏==(24.3)为避免溢出及方便计算,常用对数计算,也称对数平均值,两边取对数有:)/)lg ((lg 11n x G ni i ∑=-=(24.4)3) 加权几何平均为:)/)lg ((lg 111∑∑==-=ni i n i i i f x f G(24.5)几何均值适用于表达呈对数正态分布资料的平均水平。