高一三角函数考点
- 格式:doc
- 大小:533.50 KB
- 文档页数:7
三角函数的图象与性质考纲解读 1.结合y =sin x ,y =cos x ,y =tan x 的图象,进行简单的变换;2.利用y =sin x ,y =cos x ,y =tan x 在一个周期内的性质,求解简单的三角方程、不等式、周期性等.[基础梳理]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,()π,-1,⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )且x ≠k π+(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫作周期函数,非零常数T 叫作这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.[三基自测]1.函数y =12sin x ,x ∈[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案:B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案:D3.f (x )=cos 2x 在x ∈⎣⎡⎦⎤0,π2上的值域为( ) A .[-1,1] B .[0,1] C .[-1,0] D .[0,π]答案:A4.(必修4·习题1.4B 组改编)函数y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为 __________________. 答案:⎝⎛⎭⎫π8+k 2π,58π+k2π,k ∈Z 5.(2017·高考全国卷Ⅱ改编)函数f (x )=3cos x -34的最小正周期为__________.答案:2π[考点例题]考点一 有关三角函数的定义域、值域、最值|模型突破角度1 单调性法求三角函数的最值(值域)[例1] 已知函数f (x )=(cos x -sin x )·sin 2xcos x .(1)求函数f (x )的定义域及最小正周期; (2)当x ∈⎝⎛⎦⎤-π2,0时,求函数f (x )的最值. [解析] (1)由cos x ≠0,得x ≠k π+π2,k ∈Z ,所以函数f (x )的定义域为{x |x ≠k π+π2,k ∈Z }.因为f (x )=(cos x -sin x )·2sin x ·cos xcos x=2sin x cos x -2sin 2x =sin 2x -(1-cos 2x )=2sin ⎝⎛⎭⎫2x +π4-1, 所以函数f (x )的最小正周期为T =2π2=π.(2)因为-π2<x ≤0,所以-3π4<2x +π4≤π4.令-3π4<2x +π4<-π2,则-π2<x <-3π8;令-π2≤2x +π4≤π4,则-3π8≤x ≤0,所以函数f (x )在⎝⎛⎭⎫-π2,-3π8上单调递减,在⎣⎡⎦⎤-3π8,0上单调递增. 所以当x =-3π8时,函数f (x )取得最小值,所以f (x )min =-2-1.因为f (0)=2sin π4-1=0,f ⎝⎛⎭⎫-π2=2sin ⎝⎛⎭⎫-π+π4-1=-2,所以f (x )max =0. 所以函数f (x )的最大值为0,最小值为-2-1. [模型解法]角度2 换元法求三角函数的最值(值域)[例2] 已知x ∈⎣⎡⎦⎤π6,5π6,则函数f (x )=-cos 2x -sin x sin π6+cos 2x +1716的最小值为__________.[解析] 因为f (x )=-cos 2x -sin x sin π6+cos 2x +1716,所以f (x )=2sin 2x -12sin x +cos 2x +116=sin 2x -sin x 2+1716=⎝⎛⎭⎫sin x -142+1. 设t =sin x ,则y =⎝⎛⎭⎫t -142+1. 因为x ∈⎣⎡⎦⎤π6,5π6, 所以12≤t ≤1.又函数y =⎝⎛⎭⎫t -142+1在⎣⎡⎦⎤12,1上单调递增, 所以当t =12时,y =⎝⎛⎭⎫t -142+1取得最小值y min =⎝⎛⎭⎫12-142+1=1716, 即函数f (x )的最小值为1716.[答案]1716[模型解法][高考类题](2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是__________. 解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:1考点二 三角函数的性质及应用|方法突破命题点1 三角函数的单调性[例3] (1)(2018·佛山模拟)已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的一个单调递减区间是( )A.⎝⎛⎭⎫π6,2π3B.⎝⎛⎭⎫π3,5π6 C.⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫2π3,π(2)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23 B.32 C .2D .3(3)已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,74 C.⎣⎡⎦⎤34,94D.⎣⎡⎦⎤32,74[解析] (1)因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝⎛⎭⎫2×π3+φ=1,所以2×π3+φ=2k π+π2, 解得φ=2k π-π6,k ∈Z ,不妨取φ =-π6,此时f (x )=sin ⎝⎛⎭⎫2x -π6, 令2k π+π2<2x -π6<2k π+3π2可得k π+π3<x <k π+5π6,所以函数f (x )的单调递减区间为⎝⎛⎭⎫k π+π3,k π+5π6,k ∈Z ,结合选项可知当k =0时,函数的一个单调递减区间为⎝⎛⎭⎫π3,5π6. (2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. (3)函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,k ∈Z ,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎡⎦⎤32,74.[答案] (1)B (2)B (3)D [方法提升]1.求三角函数单调区间的方法2.[母题变式]1.若本例(2)的条件改为函数f (x )=m sin ωx (其中ω>0,m >0)在区间⎣⎡⎦⎤-π2,2π3上单调递增,则ω的取值范围是__________.解析:因为ω>0,m >0, 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是⎣⎡⎦⎤2k πω-π2ω,2k πω+π2ω,k ∈Z . 因为f (x )在⎣⎡⎦⎤-π2,2π3上单调递增,所以⎣⎡⎦⎤-π2,2π3⊆⎣⎡⎦⎤-π2ω,π2ω. 所以-π2≥-π2ω且2π3≤π2ω,所以ω∈⎝⎛⎦⎤0,34. 答案:⎝⎛⎦⎤0,34 2.将本例(3)改为:g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2, 则g (x )的单调递增区间为__________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间, 只需求y =cos ⎝⎛⎭⎫2x -π3的单调递减区间. 由2k π≤2x -π3≤2k π+π,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z .故所给函数的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间是⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2命题点2 三角函数的奇偶性、对称性、周期性[例4] (1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3(2)函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2(3)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8(4)(2018·湘西自治州模拟)已知函数f (x )=sin(ωx -ωπ)(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π12等于( )A.12 B .-12C.32D .-32[解析] (1)由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.(2)∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.(3)由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.(4)由题意得2πω=π,所以ω=2,所以f (x )=sin(2x -2π)=sin 2x , 所以f ⎝⎛⎭⎫π12=sin π6=12. [答案] (1)C (2)C (3)B (4)A [方法提升][跟踪训练]3.(2018·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6D .-π3解析:由已知得f (x )=2cos ⎣⎡⎦⎤3x +⎝⎛⎭⎫φ+π3为偶函数,由诱导公式可知φ+π3=k π.(k ∈Z ) 当k =0时,φ=-π3.答案:D4.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6-1最小正周期为2π3,则f (x )的图象的一条对称轴的方程是( )A .x =π9B .x =π6C .x =π3D .x =π2解析:已知函数f (x )的最小正周期为T =2πω=2π3,∴ω=3,则其对称轴方程为3x +π6=π2+k π,k ∈Z ,即x =π9+k π3,k ∈Z ,当k =0时,x =π9,故选A.答案:A5.同时具有性质:①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上是增函数的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =cos ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =cos ⎝⎛⎭⎫x 2-π6解析:对于选项A ,y =sin ⎝⎛⎭⎫x 2+π6的最小正周期T =2π12=4π,故不满足①;对于选项B ,y =cos ⎝⎛⎭⎫2x +π3,由2k π≤2x +π3≤2k π+π,k ∈Z 可解得其单调递减区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z ,故不符合③;对于选项C ,令y =f (x )=sin ⎝⎛⎭⎫2x -π6,则f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3-π6=sin π2=1,为最大值,所以f (x )=sin ⎝⎛⎭⎫2x -π6的图象关于直线x =π3对称,且其周期T =2π2=π,具有性质①、②,由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得:x ∈⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z ,从而当k =0时,有函数f (x )=sin ⎝⎛⎭⎫2x -π6在⎝⎛⎭⎫-π6,π3上是增函数,具有性质③,符合题意.对于选项D ,y =cos ⎝⎛⎭⎫x 2-π6的最小正周期T =2π12=4π,故不满足①. 答案:C[真题感悟]1.(2017·高考全国卷Ⅱ)函数f (x )=sin(2x +π3)的最小正周期为( )A .4πB .2πC .πD.π2解析:依题意得,函数f (x )=sin(2x +π3)的最小正周期T =2π2=π,选C.答案:C2.(2017·高考山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( ) A.π2 B.2π3 C .πD .2π解析:y =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6,T =2π2=π. 答案:C3.(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7D .5解析:由题意知:⎩⎨⎧-π4ω+φ=k 1π,π4ω+φ=k 2π+π2,则ω=2k +1,其中k ∈Z .因为f (x )在⎝⎛⎭⎫π18,5π36上单调, 所以5π36-π18=π12≤12×2πω,ω≤12.接下来用排除法.若ω=11,φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4, f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足f (x )在⎝⎛⎭⎫π18,5π36上单调,若ω=9,φ=π4,此时f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调递减.答案:B。
高中数学总复习-三角函数第5课 三角函数的图像和性质(一)【考点导读】1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质;2 22. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像;3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】动的最小正周期T _____L_;初相 —-2.三角方程2sin(_ - x)=1的解集为4. 要得到函数y sinx 的图象,只需将函数 y cos x______ - ____ 个单位. 【范例解析】例 1.已知函数 f (x) 2sin x(sin x cosx).(I)用五点法画出函数在区间 ——上的图象,长度为一个周期;2’ 2(H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而1.已知简谐运动f(x) 2sin (3X )(2)的图象经过点(0,1),则该简谐运3.函数 y Asin( x )( 0,尹R)的部分图象如图所示,则函数表达为y4si n( x ) 8 4的图象向右平移分析:化为Asin( x )形式.得到•列表,取点,描图:x33588888y11逅1 1 V21故函数y f(x)在区间[-,2]上的图象是:(U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x )4 41的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不4 2变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标4 4伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将4y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到4y 1 - 2 sin(2x -)的图像.1解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得2到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到8解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x2(sin 2x cos —4cos2xs in )4 2sin(2x 4).分析:化为Asin( x )形式.x -)的图像上所有点纵坐标伸长到原来 的2倍(横坐标不变),得到y 、2sin(2x)的图像,再将y 二sin(2x) 44的图像上所有点向上平移1个单位,即得到y 1 ,2sin(2x -)的图像. 4例2.已知正弦函数y Asin( x ) (A 0, 0)的图像如右图所示.(1) 求此函数的解析式f 1(x);(2) 求与fdx)图像关于直线x 8对称的曲线的解析式f 2(x); (3) 作出函数y h(x) f 2(x)的图像的简图.£(x) 一 2sin(gx 4).(2)设函数f 2(x)图像上任一点为M(x,y),与它关于直线x 8对称的对称点为M (x,y),f 2(x)2sin (尹 4)y sin(2x —)的图像,然后把y sin(2 分析:识别图像,抓住关键点. 解:(1)由图知,A 伍,Q 2 将x 2, y 2代入,,即 y 2 sin( x ).88 、、2sin (— ).2,解得一,即(6 2) 16,8得 28,解得y y. 16 x,y.代入 f 1(x) 、2sin( x84-)中,得(3) y f i(x)示.点评:由图像求解析式,A比较容易求解,困难的是待定系数求和,通常利用周期确定,代入最高点或最低点求【反馈演练】1. 为了得到函数y 2sin(°),x R的图像,只需把函数y 2sin x,x R的图3 6像上所有的点①向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);②向右平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);③向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变);④向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变).其中,正确的序号有__③_ .62. 为了得到函数y sin(2x )的图象,可以将函数y cos2x的图象向右平移___ 个单位长度.—3 —65. 下列函数:其中函数图象的一部分如右图所示的序号有y Asin( x ) b(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.n __7.如图,函数y 2cos( x )(x R , >0,0< <-)的图象与y 轴相交于点(0, 3),且该函数的最小正周期为(1)求和的值;(2)已知点A n ,0,点P 是该函数图象上一点,点23.若函数 f(x) 2sin( x ),x R (其中 0, 2)的最小正周期是, 且 f(0)、3,则3_2 ______ 4.在0,2 内,使sin x5 4盲cosx 成立的x 取值范围为 ________① y sin x —6② y sin 2x③ y cos 4x — 3④ y cos 2x6. 如图,某地一天从6时至14时的温度变化曲线近似满足函数解:(1)由图示,这段时间的最大温差是 30 10 20 °C(2)图中从6时到14时的图象是函数yAsin( x )b 的半个周期• •• 1 — 14 6,解得21由图示,A —(30 10)2101 b 2(1030) 2020这时,y 10sin(8x )将x 6,y10代入上式,可取3 4综上,所求的解析式为y 10si n( —x —) 8 420 ( x [6,14])第6题第7题当y 。
第1讲 三角函数的图象与性质[考情分析] 1.高考对此部分的命题主要集中于三角函数的定义、图象与性质,主要考查图象的变换、函数的单调性、奇偶性、周期性、对称性,常与三角恒等变换交汇命题.2.主要以选择题、填空题的形式考查,难度为中等或偏下.考点一 三角函数的运算核心提炼1.同角关系:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.例1 (1)(2022·菏泽检测)已知角α的终边经过点(-1,2),则cos 2α等于( ) A .-45B .-35C .-15D.35答案 B解析 因为角α的终边经过点(-1,2), 所以sin α=2(-1)2+22=25,cos α=-1(-1)2+22=-15, 所以cos 2α=cos 2α-sin 2α=15-45=-35.(2)已知sin ⎝⎛⎭⎫-π2-αcos ⎝⎛⎭⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=______. 答案 35 45解析 sin ⎝⎛⎭⎫-π2-αcos ⎝⎛⎭⎫-7π2+α =-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45.二级结论 (1)若α∈⎝⎛⎭⎫0,π2,则sin α<α<tan α. (2)由(sin α±cos α)2=1±2sin αcos α知,sin α+cos α,sin α-cos α,sin αcos α知一可求二.跟踪演练1 (1)(2022·山西联考)若sin 10°=a sin 100°,则sin 20°等于( ) A.aa 2+1 B .-aa 2+1C.2a a 2+1 D .-2aa 2+1 答案 C解析 由题可知a >0,sin 10°=a sin 100°=a sin(90°+10°)=a cos 10°, 又因为sin 210°+cos 210°=1, 解得sin 10°=a a 2+1,cos 10°=1a 2+1, 所以sin 20°=2sin 10°cos 10° =2·a a 2+1·1a 2+1=2aa 2+1. (2)已知2cos ⎝⎛⎭⎫α+3π2=cos(α-π),则sin 2α+cos 2α=________. 答案 -15解析 ∵2cos ⎝⎛⎭⎫α+3π2=cos(α-π), ∴2sin α=-cos α, ∴tan α=-12,∴sin 2α+cos 2α=2sin αcos α+cos 2α-sin 2αcos 2α+sin 2α=2tan α+1-tan 2α1+tan 2α=-15.考点二 三角函数的图象与解析式核心提炼由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)图象的步骤例2 (1)(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 答案 B解析 依题意,将y =sin ⎝⎛⎭⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝⎛⎭⎫x -π4――――――――――――――→将其图象向左平移π3个单位长度y =sin ⎝⎛⎭⎫x +π12的图象―――――――――――――→所有点的横坐标扩大到原来的2倍 y =sin ⎝⎛⎭⎫x 2+π12的图象.(2)(多选)函数f (x )=A sin(ωx +φ)(A >0)的部分图象如图所示,则f (x )等于( )A .2sin ⎝⎛⎭⎫2x +2π3 B .2sin ⎝⎛⎭⎫2x -5π3C .2cos ⎝⎛⎭⎫2x -π6D .2cos ⎝⎛⎭⎫x -7π6 答案 BC解析 根据图象,可得A =2,设f (x )的最小正周期为T , 则34T =7π12-⎝⎛⎭⎫-π6=3π4, 解得T =π,所以ω=2πT =2.将最低点的坐标⎝⎛⎭⎫7π12,-2代入 f (x )=2sin(2x +φ)中, 得2sin ⎝⎛⎭⎫2×7π12+φ=-2, 则7π6+φ=2k π-π2(k ∈Z ), 解得φ=2k π-5π3(k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫2x +2k π-5π3(k ∈Z ). 令k =0,则f (x )=2sin ⎝⎛⎭⎫2x -5π3 =2sin ⎝⎛⎭⎫2x -7π6-π2=-2cos ⎝⎛⎭⎫2x -7π6 =2cos ⎝⎛⎭⎫2x -π6. 规律方法 由三角函数的图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)中参数的值(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A +B ,m =-A +B ,解得B =M +m 2,A =M -m2.(2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT.(3)特殊点定φ:代入特殊点求φ,一般代最高点或最低点,代入中心点时应注意是上升趋势还是下降趋势.跟踪演练2 (1)(2022·安康模拟)已知函数f (x )=A tan ⎝⎛⎭⎫ωx +π3(A >0,ω>0)的图象向左平移3π4个单位长度后与原图象重合,则实数ω的最小值是( ) A.43 B.83 C.163 D .8 答案 A解析 由题可知,3π4是该函数周期的整数倍,即3π4=πω×k ,k ∈Z ,解得ω=4k3,k ∈Z , 又ω>0,故其最小值为43.(2)(2022·黄山模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<0)的部分图象如图所示,为了得到y =f (x )的图象,需将函数g (x )=A cos ωx 的图象至少向右平移( )A.π3个单位长度 B.π4个单位长度 C.π6个单位长度 D.2π3个单位长度 答案 A解析 由图象可知A =2,f (x )的最小正周期 T =2×⎝⎛⎭⎫π3+π6=2πω,解得ω=2, ∴f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+φ=2, ∴2π3+φ=π2+2k π(k ∈Z ), 解得φ=-π6+2k π(k ∈Z ),又-π<φ<0,∴φ=-π6,∴f (x )=2sin ⎝⎛⎭⎫2x -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12. ∵g (x )=2cos 2x =2sin ⎝⎛⎭⎫2x +π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4, ∴将g (x )的图象至少向右平移π4+π12=π3个单位长度可得f (x )的图象.考点三 三角函数的性质核心提炼函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )可得单调递减区间.(2)对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.(3)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx+φ)为偶函数.例3 (1)(2022·赣州模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)相邻两条对称轴之间的距离为2π,若f (x )在(-m ,m )上单调递增,则m 的取值范围是( ) A.⎝⎛⎦⎤0,π4 B.⎝⎛⎦⎤0,π2 C.⎝⎛⎦⎤0,3π4 D.⎝⎛⎦⎤0,3π2 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)相邻两条对称轴之间的距离2π, 则12T =2π,即T =4π,则ω=2π4π=12, 则f (x )=sin ⎝⎛⎭⎫12x +π4, 由2k π-π2≤12x +π4≤2k π+π2,得4k π-3π2≤x ≤4k π+π2(k ∈Z ),所以f (x )在⎣⎡⎦⎤-3π2,π2上单调递增, 由(-m ,m )⊆⎣⎡⎦⎤-3π2,π2得0<m ≤π2, 所以m 的取值范围是⎝⎛⎦⎤0,π2. (2)(2022·新高考全国Ⅰ)记函数f (x )=sin ⎝⎛⎭⎫ωx +π4+b (ω>0)的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称,则f ⎝⎛⎭⎫π2等于( )A .1 B.32 C.52 D .3答案 A解析 因为2π3<T <π,所以2π3<2πω<π,解得2<ω<3.因为y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称, 所以b =2,且sin ⎝⎛⎭⎫3π2ω+π4+b =2, 即sin ⎝⎛⎭⎫3π2ω+π4=0,所以3π2ω+π4=k π(k ∈Z ), 又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f (x )=sin ⎝⎛⎭⎫52x +π4+2,所以f ⎝⎛⎭⎫π2=sin ⎝⎛⎭⎫52×π2+π4+2=sin 3π2+2=1.故选A. 规律方法 研究三角函数的性质,首先化函数为f (x )=A sin(ωx +φ)+h 的形式,然后结合正弦函数y =sin x 的性质求f (x )的性质,此时有两种思路:一种是根据y =sin x 的性质求出f (x )的性质,然后判断各选项;另一种是由x 的值或范围求得t =ωx +φ的范围,然后由y =sin t 的性质判断各选项.跟踪演练3 (1)(多选)(2022·新高考全国Ⅱ)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点⎝⎛⎭⎫2π3,0中心对称,则( ) A .f (x )在区间⎝⎛⎭⎫0,5π12上单调递减 B .f (x )在区间⎝⎛⎭⎫-π12,11π12上有两个极值点 C .直线x =7π6是曲线y =f (x )的对称轴D .直线y =32-x 是曲线y =f (x )的切线 答案 AD解析 因为函数f (x )的图象关于点⎝⎛⎭⎫2π3,0中心对称,所以sin ⎝⎛⎭⎫2×2π3+φ=0,可得4π3+φ=k π(k ∈Z ),φ=-4π3+k π(k ∈Z ),结合0<φ<π,得φ=2π3,所以f (x )=sin ⎝⎛⎭⎫2x +2π3. 对于A ,当x ∈⎝⎛⎭⎫0,5π12时,2x +2π3∈⎝⎛⎭⎫2π3,3π2,所以函数f (x )在区间⎝⎛⎭⎫0,5π12上单调递减,故A 正确;对于B ,当x ∈⎝⎛⎭⎫-π12,11π12时,2x +2π3∈⎝⎛⎭⎫π2,5π2,所以函数f (x )在区间⎝⎛⎭⎫-π12,11π12上只有一个极值点,故B 不正确;对于C ,因为f ⎝⎛⎭⎫7π6=sin ⎝⎛⎭⎫2×7π6+2π3=sin 3π=0,所以x =7π6不是曲线y =f (x )的对称轴,故C 不正确;对于D ,因为f ′(x )=2cos ⎝⎛⎭⎫2x +2π3,若直线y =32-x 为曲线y =f (x )的切线, 则由2cos ⎝⎛⎭⎫2x +2π3=-1,得2x +2π3=2k π+2π3或2x +2π3=2k π+4π3(k ∈Z ), 所以x =k π或x =k π+π3(k ∈Z ).当x =k π(k ∈Z )时,f (x )=32, 则由32=32-k π(k ∈Z ),解得k =0; 当x =k π+π3(k ∈Z )时,f (x )=-32,方程-32=32-k π-π3(k ∈Z )无解. 综上所述,直线y =32-x 为曲线y =f (x )的切线,故D 正确. (2)(2022·广州联考)若函数y =tan ⎝⎛⎭⎫ωx +π4在⎣⎡⎦⎤-π3,π3上单调递减,且在⎣⎡⎦⎤-π3,π3上的最大值为3,则ω=________. 答案 -14解析 因为函数y =tan ⎝⎛⎭⎫ωx +π4在⎣⎡⎦⎤-π3,π3上单调递减, 所以ω<0,π|ω|≥2π3,则-32≤ω<0,又因为函数在⎣⎡⎦⎤-π3,π3上的最大值为3, 所以-π3ω+π4=π3+k π,k ∈Z ,即ω=-14-3k ,k ∈Z ,所以ω=-14.专题强化练一、单项选择题1.(2022·日照模拟)已知角θ的终边经过点P ⎝⎛⎭⎫12,-32,则角θ可以为( )A.5π6B.2π3C.11π6D.5π3 答案 D解析 ∵角θ的终边经过点P ⎝⎛⎭⎫12,-32,∴θ是第四象限角,且cos θ=12,sin θ=-32,则θ=5π3+2k π,k ∈Z ,结合选项知角θ可以为5π3.2.(2022·惠州模拟)已知tan α=2,π<α<3π2,则cos α-sin α等于( )A.55 B .-55 C.355 D .-355答案 A解析 由tan α=sin αcos α=2,且sin 2α+cos 2α=1,π<α<3π2,得sin α=-255,cos α=-55,所以cos α-sin α=-55-⎝⎛⎭⎫-255=55. 3.(2022·济宁模拟)如图,某时钟显示的时刻为9:45,此时时针与分针的夹角为θ,则(sin θ+cos θ)(sin θ-cos θ)等于( )A.22 B .-22 C.32 D .-32答案 B解析 时针指向9时,分针指向12,当分针转到指向9时,旋转了圆周的34,因此时针旋转了1个小时⎝⎛⎭⎫即2π12的34,所以θ=2π12×34=π8, 所以(sin θ+cos θ)(sin θ-cos θ)=sin 2θ-cos 2θ =-cos 2θ=-cos π4=-22.4.(2022·全国甲卷)将函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A.16 B.14 C.13 D.12答案 C解析 记曲线C 的函数解析式为g (x ),则g (x )=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x +π2+π3=sin ⎣⎡⎦⎤ωx +⎝⎛⎭⎫π2ω+π3.因为函数g (x )的图象关于y 轴对称,所以π2ω+π3=k π+π2(k ∈Z ),得ω=2k +13(k ∈Z ).因为ω>0,所以ωmin =13.故选C.5.(2022·福州质检)已知函数f (x )=sin(ωx -φ)⎝⎛⎭⎫-π2<φ<π2的部分图象如图所示,则f (x )的单调递增区间为( )A.⎣⎡⎦⎤k π-16,k π+56,k ∈Z B.⎣⎡⎦⎤2k π-16,2k π+56,k ∈Z C.⎣⎡⎦⎤k -16,k +56,k ∈Z D.⎣⎡⎦⎤2k -16,2k +56,k ∈Z 答案 D解析 由图象可知,函数y =f (x )的最小正周期T 满足T 2=43-13=1,∴T =2,ω=2π2=π, ∴f (x )=sin(πx -φ),由f ⎝⎛⎭⎫13=sin ⎝⎛⎭⎫π3-φ=0, 得π3-φ=k π,得φ=π3-k π,k ∈Z , ∵-π2<φ<π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫πx -π3, 由2k π-π2≤πx -π3≤2k π+π2,k ∈Z , 得2k -16≤x ≤2k +56,k ∈Z , 因此,函数y =f (x )的单调递增区间为⎣⎡⎦⎤2k -16,2k +56,k ∈Z . 6.(2022·云南师大附中模拟)已知函数f (x )=sin x +a cos x (a >0)的最大值为2,若方程f (x )=b在区间⎝⎛⎭⎫0,13π6内有三个实数根x 1,x 2,x 3,且x 1<x 2<x 3,则x 1+2x 2+x 3等于( ) A.8π3 B.10π3 C .4π D.25π6答案 A解析 f (x )=sin x +a cos x =1+a 2sin(x +φ),由题知1+a 2=2,且a >0,解得a =3,于是f (x )=2sin ⎝⎛⎭⎫x +π3. 方程f (x )=b 在区间⎝⎛⎭⎫0,13π6内的实数根,即为在区间⎝⎛⎭⎫0,13π6内y =f (x )的图象与直线y =b 的交点的横坐标,如图所示,由f (x )图象的对称性可知,x 1+x 22=π6,x 2+x 32=7π6, 即x 1+x 2=π3,x 2+x 3=7π3, 所以x 1+2x 2+x 3=(x 1+x 2)+(x 2+x 3)=8π3. 7.(2022·全国甲卷)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB ︵是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB ︵上,CD ⊥AB .“会圆术”给出AB ︵的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB =60°时,s 等于( )A.11-332B.11-432C.9-332D.9-432 答案 B解析 由题意知,△OAB 是等边三角形,所以AB =OA =2.连接OC (图略),因为C 是AB 的中点,所以OC ⊥AB ,OC =OA 2-AC 2= 3.又CD ⊥AB ,所以O ,C ,D 三点共线,所以CD =OD -OC =2-3, 所以s =AB +CD 2OA =2+(2-3)22=11-432. 8.(2022·潍坊模拟)设函数y =sin ⎝⎛⎭⎫2x +π3在区间⎣⎡⎦⎤t ,t +π4上的最大值为g 1(t ),最小值为g 2(t ),则g 1(t )-g 2(t )的最小值为( )A .1B.22C.2-12D.2-22答案 D 解析 因为函数y =sin ⎝⎛⎭⎫2x +π3的最小正周期为T =2π2=π, 所以区间⎣⎡⎦⎤t ,t +π4的区间长度是该函数的最小正周期的14, 因为函数y =sin ⎝⎛⎭⎫2x +π3在区间⎣⎡⎦⎤t ,t +π4上的最大值为g 1(t ),最小值为g 2(t ), 所以当区间⎣⎡⎦⎤t ,t +π4关于它的图象的对称轴对称,即对称轴为t +t +π42=t +π8时,g 1(t )-g 2(t )取得最小值,且此时函数y =sin ⎝⎛⎭⎫2x +π3在⎣⎡⎦⎤t ,t +π4上有最值±1,不妨设y 在⎣⎡⎦⎤t ,t +π4上有最大值g 1(t )=1,则有sin ⎣⎡⎦⎤2⎝⎛⎭⎫t +π8+π3=1,所以sin ⎝⎛⎭⎫2t +7π12=1,即2t +7π12=π2+2k π,k ∈Z ,得t =k π-π24,k ∈Z ,所以g 2(t )=sin ⎝⎛⎭⎫2t +π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫k π-π24+π3=sin ⎝⎛⎭⎫2k π+π4=22,所以g 1(t )-g 2(t )的最小值为2-22.二、多项选择题9.(2022·武汉质检)函数f (x )=sin ⎝⎛⎭⎫π6-2x 在下列区间上单调递增的是( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π3,π2C.⎝⎛⎭⎫-2π3,-π6 D.⎝⎛⎭⎫π3,π答案 BC解析 f (x )=-sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z .当k =0时,有x ∈⎣⎡⎦⎤π3,5π6;当k =-1时,有x ∈⎣⎡⎦⎤-2π3,-π6,只有B ,C 符合.10.(2022·山东联考)已知曲线C 1:y =cos 2x ,C 2:y =-sin ⎝⎛⎭⎫x +2π3,则下面结论正确的是()A .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移5π6个单位长度,得到曲线C 2B .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C .把曲线C 1向左平移7π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,得到曲线C 2D .把曲线C 1向左平移π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,最后把得到的曲线向右平移π个单位长度,得到曲线C 2答案 ACD解析 对于选项A ,把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移5π6个单位长度,所得曲线对应的函数解析式为 y =cos ⎝⎛⎭⎫x -5π6=cos ⎝⎛⎭⎫x +2π3-3π2 =-sin ⎝⎛⎭⎫x +2π3,故A 正确; 对于选项B ,把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,所得曲线对应的函数解析式为 y =cos ⎝⎛⎭⎫x -π6=cos ⎝⎛⎭⎫x +2π3-5π6≠-sin ⎝⎛⎭⎫x +2π3, 故B 错误;对于选项C ,把曲线C 1向左平移7π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,所得曲线对应的函数解析式为y =cos ⎝⎛⎭⎫x +7π6=cos ⎝⎛⎭⎫x +2π3+π2 =-sin ⎝⎛⎭⎫x +2π3,故C 正确; 对于选项D ,把曲线C 1向左平移π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,最后把得到的曲线向右平移π个单位长度,所得曲线对应的函数解析式为y =cos ⎝⎛⎭⎫x -5π6=cos ⎝⎛⎭⎫x +2π3-3π2 =-sin ⎝⎛⎭⎫x +2π3,故D 正确.11.(2022·衡水模拟)已知函数f (x )=cos(ωx +φ)⎝⎛⎭⎫0<ω<4,|φ|<π2满足f ⎝⎛⎭⎫13π12-x =f ⎝⎛⎭⎫x +13π12,且f ⎝⎛⎭⎫4π3=0,则下列说法正确的有( )A .ω=2B .φ=π6C .直线x =13π12是f (x )图象的一条对称轴 D .点⎝⎛⎭⎫7π3,0是f (x )图象的一个对称中心答案 ACD解析 由f ⎝⎛⎭⎫13π12-x =f ⎝⎛⎭⎫x +13π12 可知直线x =13π12是函数f (x )的图象的一条对称轴,故C 选项正确; 又f ⎝⎛⎭⎫4π3=0,所以⎝⎛⎭⎫4π3,0是函数f (x )的图象的一个对称中心, 所以4π3-13π12=T 4+kT 2(k ∈Z ), 即T =π2k +1(k ∈Z ), 又因为T =2πω, 所以ω=4k +2(k ∈Z ),因为0<ω<4,所以当k =0时,ω=2符合,故A 选项正确;所以13π12×2+φ=k π(k ∈Z ), 所以φ=k π-13π6(k ∈Z ), 因为|φ|<π2,所以当k =2时,φ=-π6符合条件,故B 选项错误; 从而f (x )=cos ⎝⎛⎭⎫2x -π6, f ⎝⎛⎭⎫7π3=cos ⎝⎛⎭⎫14π3-π6=cos 9π2=0,故点⎝⎛⎭⎫7π3,0是f (x )图象的一个对称中心,故D 选项正确. 12.(2022·德州联考)声音是由物体振动产生的声波,纯音的数学模型是函数y =A sin ωt ,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数f (x )=|cos x |+3|sin x |,则下列结论不正确的是( )A .f (x )是偶函数B .f (x )的最小正周期为2πC .f (x )在区间⎣⎡⎦⎤0,π2上单调递增 D .f (x )的最小值为1答案 BC解析 因为x ∈R ,f (-x )=f (x ),所以f (x )是偶函数,A 正确;f (x )显然是周期函数,因为f (x +π)=|cos(x +π)|+3|sin(x +π)|=|cos x |+3|sin x |=f (x ),B 错误;因为当x ∈⎣⎡⎦⎤0,π2时, f (x )=|cos x |+3|sin x |=cos x +3sin x =2sin ⎝⎛⎭⎫x +π6, 所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增, 在区间⎝⎛⎦⎤π3,π2上单调递减,C 错误;因为当x ∈⎣⎡⎦⎤π2,π时,f (x )=|cos x |+3|sin x |=-cos x +3sin x =2sin ⎝⎛⎭⎫x -π6, 所以f (x )=⎩⎨⎧ 2sin ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,2sin ⎝⎛⎭⎫x -π6,x ∈⎝⎛⎦⎤π2,π,当x ∈⎣⎡⎦⎤0,π2时,设t =x +π6, 则t ∈⎣⎡⎦⎤π6,2π3,所以sin t ∈⎣⎡⎦⎤12,1,所以f (x )∈[1,2],同理,当x ∈⎝⎛⎦⎤π2,π时,f (x )∈[1,2],由B 中解答知,π是f (x )的周期,所以f (x )的最小值为1,D 正确.三、填空题13.(2022·黄山模拟)已知tan ⎝⎛⎭⎫3π2-x =1cos x ,则sin x =________.答案 5-12解析 由tan ⎝⎛⎭⎫3π2-x =1cos x ,得sin ⎝⎛⎭⎫3π2-x cos ⎝⎛⎭⎫3π2-x =1cos x , 即-cos x -sin x =1cos x ,即cos 2x =sin x , 整理得sin 2x +sin x -1=0,而-1≤sin x ≤1,解得sin x =5-12. 14.(2022·石家庄模拟)已知角α的终边经过点P (8,3cos α).则sin α=________.答案 13解析 ∵|OP |=82+(3cos α)2=64+9cos 2α,∴sin α=3cos α64+9cos 2α, cos α=864+9cos 2α, ∴sin α·64+9cos 2α=3cos α,即sin 2α(64+9cos 2α)=9cos 2α,∴sin 2α[64+9(1-sin 2α)]=9(1-sin 2α),即9sin 4α-82sin 2α+9=0,解得sin 2α=9(舍去)或sin 2α=19, ∵cos α>0 ∴sin α>0,∴sin α=13. 15.(2022·全国乙卷)记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T .若f (T )=32,x =π9为f (x )的零点,则ω的最小值为________. 答案 3解析 因为T =2πω,f ⎝⎛⎭⎫2πω=32, 所以cos ()2π+φ=32,即cos φ=32.又0<φ<π,所以φ=π6. 所以f (x )=cos ⎝⎛⎭⎫ωx +π6. 因为x =π9为f (x )的零点, 所以π9ω+π6=π2+k π(k ∈Z ), 解得ω=9k +3(k ∈Z ). 又ω>0,所以当k =0时,ω取得最小值,且最小值为3.16.(2021·全国甲卷)已知函数f (x )=2cos(ωx +φ)的部分图象如图所示,则满足条件⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫-7π4⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫4π3>0的最小正整数x 为________.答案 2解析 由题图可知,34T =13π12-π3=3π4(T 为f (x )的最小正周期),得T =π,所以ω=2,所以f (x )=2cos(2x +φ).点⎝⎛⎭⎫π3,0可看作“五点作图法”中的第二个点,则2×π3+φ=π2,得φ=-π6, 所以f (x )=2cos ⎝⎛⎭⎫2x -π6, 所以f ⎝⎛⎭⎫-7π4=2cos ⎣⎡⎦⎤2×⎝⎛⎭⎫-7π4-π6 =2cos ⎝⎛⎭⎫-11π3=2cos π3=1, f ⎝⎛⎭⎫4π3=2cos ⎝⎛⎭⎫2×4π3-π6=2cos 5π2=0, 所以⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫-7π4⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫4π3>0, 即[f (x )-1]·f (x )>0,可得f (x )>1或f (x )<0,所以cos ⎝⎛⎭⎫2x -π6>12或cos ⎝⎛⎭⎫2x -π6<0.当x =1时,2x -π6=2-π6∈⎝⎛⎭⎫π3,π2, cos ⎝⎛⎭⎫2x -π6∈⎝⎛⎭⎫0,12,不符合题意; 当x =2时,2x -π6=4-π6∈⎝⎛⎭⎫π,7π6, cos ⎝⎛⎭⎫2x -π6<0,符合题意. 所以满足题意的最小正整数x 为2.。
三角函数【考点讲解】1..终边相同的角的公式: 终边相同的角相差()0360k k Z ∈练习1. 写出终边在y 轴上的角的集合.练习2.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: ⑴ 405°; ⑵ -165°; ⑶ 1563°. 2.角度与弧度的换算 :0180π= L rα=练习1: 把下列各角从角度化为弧度:15°= ;30°= ;45°= ; 60°= ;90°= ;120°= ;180°= ;270°=练习2: 把下列各角从弧度化为角度:.π= ;π2= ;π4= ; π8= ; 2π3= ; π3= ; π6= ; π12= .练习3.填空:⑴ 若扇形的半径为10cm ,圆心角为60°,则该扇形的弧长l = ,扇形面积S = .练习4. 已知1°的圆心角所对的弧长为1m ,那么这个圆的半径是 m . 3.三角函数的概念 :例题1、已知角α的终边经过点(2,3)P -,求角α的正弦、余弦、正切值.练习1、已知角α的终边上的点P 的座标如下,分别求出角α的正弦、余弦、正切值:⑴ ()3,4P -; ⑵ ()1,2P -;⑶ 1,2P ⎛ ⎝⎭. 4.各象限角的三角函数值的正负号口诀:一全正二正弦三正切四余弦练习1. 判定下列角的各三角函数正负号:(1)4327º ;(2)-235 º; (3)275π.(4)3π-4{|360,}S k k Z ββα==+⋅∈{|2,}k k Z ββαπ==+∈练习2.根据条件sin 0θ<且tan 0θ<,确定θ是第几象限的角.. 练习3、已知α为第三象限角,则所在的象限是A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限 5.界限角的三角函数值练习1. 求值:5cos1803sin902tan 06sin 270-+-; 练习2.计算:213cos tan tan sin cos 24332ππππ-+-+π. 练习3.求下列三角函数的值:(1)sin 1485°(2)cos9π4 (3)tan (- 11π6) (09 湖南)4.的值为( )A.B. C.D. (12 湖南)14.已知角α的终边与单位圆的交点坐标为(23,21),则αcos = .6.sin120的值为 B.1-(14 湖南)6.sin120的值为() A.2 B.1- C. 2 D. 2-6. 同角三角函数的基本关系式 商数关系 sin tan cos y x ααα== 平方关系 222sin cos 1r αα+==. 例题1. 已知4sin 5α=,且α是第二象限的角, 求cos α和tan α.练习1.已知1cos 2α=,且α是第四象限的角, 求sin α和tan α.练习2.已知3sin 5α=-,且α是第三象限的角, 求cos α和tan α.练习3 已知tan 5α=,求sin 4cos 2sin 3cos αααα--的值.4cos4sinππ2122422(10 湖南)7.化简:()2sin cos a a +=( ).A. 1sin 2a +B. 1sin a -C. 1sin 2a -D. 1sin a + 7.三角函数的诱导公式练习1.求下列各三角函数值:(1) 9cos4π; (2) sin 780; (3) 11tan()6π-.练习2 求下列三角函数值:(1) sin(60)-; (2) 19cos()3π-; (3) tan(30)-. 练习3 求下列各三角函数值:(1) 9cos 4π; (2) 8tan 3π; (3) cos870; (4) sin 690. 8.三角函数的图像与性质 ①三角函数的图像sin y x =图像cos y x =图像②.定义域(R)、值域、单调性与最值sin y x =当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.sin y x = 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. cos y x =当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =- cos y x = 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.练习1、利用三角函数的单调性,比较下列各组数的大小: (1))18sin(π-与)10sin(π-; (2))523cos(π-与)417cos(π-; (3)85sin π与9cos π2、函数sin 1y a x =+的最大值是3,则它的最小值______________________ 1. 函数x x y sin cos 2-=的值域是 ( ) A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,11. 函数x x y sin cos 2-=的值域是 ( )A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,1公式1 απαsin )2sin(=+k απαcos )2cos(=+k απαt an )2t an(=+k 公式2:ααπ-sin sin(=+)ααπ-cos cos(=+)ααπt an t an(=+)公ααπsin sin(=-)ααπ-cos cos(=-)ααπt an t an(-=-)公αα-sin sin(=-)ααcos cos(=-)ααt an t an(-=-)③.周期性与奇偶性 周期:奇偶性:sin y x =是奇函数;cos y x =是偶函数1、下列函数中,周期是,又是偶函数的是A .y=sinxB .y=cosxC .y=sin2xD .y=cos2x 2、函数的最小正周期为2,则实数3、函数的最小正周期是____________________.4、函数在其定义域上是A.奇函数B. 偶函数C. 增函数D. 减函数10、函数的图象①、由函数的图象通过变换得到的图象。
高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。
解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。
解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。
解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。
解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。
解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。
解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。
三角函数超全考点与题型分析第一部分三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。
【答案】180135,k k Z⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈,角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是。
A.2k π与()2k k Z ππ+∈B.3±k ππ与()3k k Z π∈C.()21+k π与()()41k k Z π±∈D.6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈ ,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍,所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则3±k ππ与()3k k Z π∈的终边不一定相同;对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=- ,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与()()41k k Z π±∈的终边相同;对于D 选项,显然,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是。
正弦函数、余弦函数的图象知识点正弦函数、余弦函数的图象五点法五点法思考为什么把正弦、余弦曲线向左、右平移2π的整数倍个单位长度后图象形状不变?答案由诱导公式一知sin(x+2kπ)=sin x,cos(x+2kπ)=cos x,k∈Z可得.【基础演练】【基础演练】1.函数y=sin(-x),x∈[0,2π]的简图是()解析y=sin(-x)=-sin x,y=-sin x与y=sin x的图象关于x轴对称,故选B.2.用“五点法”画函数y=1+12sin x的图象时,首先应描出五点的横坐标是() A.0,π4,π2,3π4,π B.0,π2,π,3π2,2πC.0,π,2π,3π,4π D.0,π6,π3,π2,2π3解析 所描出的五点的横坐标与函数y =sin x 的五点的横坐标相同,即0,π2,π,3π2,2π,故选B.3.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合 B .形状相同,位置不同 C .关于y 轴对称 D .形状不同,位置不同答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同. 4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3 D.⎝⎛⎭⎫5π3,2π 解析 画出y =sin x ,x ∈[0,2π]的草图如下.当sin x =-32时,x =4π3或x =5π3, 可知不等式sin x <-32在[0,2π]上的解集是⎝⎛⎭⎫4π3,5π3.故选C. 5.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.解析 由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0,当x ∈[0,2π]时,x =π2或3π2,∴交点坐标为⎝⎛⎭⎫π2,4,⎝⎛⎭⎫3π2,4.【典型例题】考点一:正弦函数、余弦函数图象的初步认识 例1 (1)下列叙述正确的个数为( )①y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; ②y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称;③正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围. A .0 B .1 C .2 D .3解析 分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象(略)观察可知①②③均正确.答案 D(2)函数y =sin |x |的图象是( )答案 B解析 y =sin |x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,结合选项可知选B.反思感悟 解决正弦、余弦函数图象的注意点对于正弦、余弦函数的图象问题,要画出正确的正弦曲线、余弦曲线,掌握两者的形状相同,只是在坐标系中的位置不同,可以通过相互平移得到.跟踪训练1 下列关于正弦函数、余弦函数的图象的描述,不正确的是( ) A .都可由[0,2π]内的图象向上、向下无限延展得到 B .都是对称图形 C .都与x 轴有无数个交点D .y =sin(-x )的图象与y =sin x 的图象关于x 轴对称 答案 A解析 由正弦、余弦函数图象知,B ,C ,D 正确.考点二:用“五点法”作三角函数的图象 例2 用“五点法”作出下列函数的简图: (1)y =sin x -1,x ∈[0,2π]; (2)y =-2cos x +3,x ∈[0,2π]. 解 (1)列表:描点并将它们用光滑的曲线连接起来,如图.(2)列表:描点、连线得出函数y=-2cos x+3,x∈[0,2π]的图象.反思感悟作形如y=a sin x+b(或y=a cos x+b),x∈[0,2π]的图象的三个步骤跟踪训练2利用“五点法”作出函数y=2+cos x(0≤x≤2π)的简图.解列表:描点并将它们用光滑的曲线连接起来,如图.考点三:正弦函数、余弦函数图象的应用 例3 不等式2sin x -1≥0,x ∈[0,2π]解集为( ) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤0,π4 C.⎣⎡⎦⎤π6,π D.⎣⎡⎦⎤π6,5π6答案 D解析 因为2sin x -1≥0,所以sin x ≥12.在同一直角坐标系下,作函数y =sin x ,x ∈[0,2π]以及直线y =12的图象.由函数的图象知,sin π6=sin 5π6=12.所以根据图象可知,sin x ≥12的解集为⎣⎡⎦⎤π6,5π6. 延伸探究1.在本例中把“x ∈[0,2π]”改为“x ∈R ”,求不等式2sin x -1≥0的解集. 解 在x ∈[0,2π]上的解集为⎣⎡⎦⎤π6,5π6.所以x ∈R 时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z . 2.试求关于x 的不等式12<sin x ≤32.解 作出正弦函数y =sin x 在[0,2π]上的图象,作出直线y =12和y =32,如图所示.由图可知,在[0,2π]上当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z . 反思感悟 利用三角函数图象解三角不等式sin x >a (cos x >a )的步骤 (1)作出相应的正弦函数或余弦函数在[0,2π]上的图象. (2)确定在[0,2π]上sin x =a (cos x =a )的x 值. (3)写出不等式在区间[0,2π]上的解集. (4)根据公式一写出定义域内的解集.跟踪训练3 求函数y =1-2cos x 的定义域. 解 依题意有1-2cos x ≥0,即cos x ≤12.作出余弦函数y =cos x ,x ∈[0,2π]以及直线y =12的图象,如图所示,由图象可以得到满足条件的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪π3+2k π≤x ≤5π3+2k π,k ∈Z .根据函数图象求范围典例 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________. 答案 (1,3)解析 f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π.图象如图所示.结合图象可知1<k <3.[素养提升] 关于方程根的个数问题,往往运用数形结合的方法构造函数,转化为函数图象交点的个数问题来解决,体现了直观想象的核心素养.1.(多选)用五点法画y =3sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,32 B.⎝⎛⎭⎫π2,3 C .(π,0) D .(2π,3) 答案 AD解析 五个关键点的横坐标依次是0,π2,π,3π2,2π.代入计算得B ,C 是关键点.2.已知函数f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则f (x )的图象( ) A .与g (x )的图象相同 B .与g (x )的图象关于y 轴对称C .向左平移π2个单位长度,得g (x )的图象D .向右平移π2个单位长度,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , f (x )的图象向右平移π2个单位长度得到g (x )的图象.3.在[0,2π]上,函数y =2sin x -2的定义域是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,3π4 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤3π4,π解析 依题意得2sin x -2≥0,即sin x ≥22.作出y =sin x 在[0,2π]上的图象及直线y =22,如图所示.由图象可知,满足sin x ≥22的x 的取值范围是⎣⎡⎦⎤π4,3π4,故选B. 4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =12交点的个数是( )A .0B .1C .2D .3 答案 C解析 由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =12有2个交点.5.函数f (x )=sin x -1,x ∈[0,2π]的零点为________. 答案 π2解析 令f (x )=0,∴sin x =1,∴又x ∈[0,2π],∴x =π2.6.已知函数f (x )=2cos x +1,若f (x )的图象过点⎝⎛⎭⎫π2,m ,则m =________;若f (x )<0,则x 的取值集合为________.答案 1 ⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z 解析 当x =π2时,f (x )=2cos π2+1=1,∴m =1.f (x )<0,即cos x <-12,作出y =cos x 在x ∈[0,2π]上的图象,如图所示.由图知x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z . 7.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3.8.(多选)函数y =sin x -1,x ∈[0,2π]与y =a 有一个交点,则a 的值为( ) A .-1 B .0 C .1 D .-2 答案 BD解析 画出y =sin x -1的图象.如图.依题意a =0或a =-2.9.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.10.函数f (x )=lg cos x +25-x 2的定义域为________________. 答案 ⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧ cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.11.函数y =2cos x ,x ∈[0,2π]的图象和直线y =2围成的一个封闭的平面图形的面积是________. 答案 4π解析 如图所示,将余弦函数的图象在x 轴下方的部分补到x 轴的上方,可得一个矩形,其面积为2π×2=4π.12.若方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根,求a 的取值范围. 解 在同一直角坐标系中作出y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象,y =1-a2的图象,由图象可知,当32≤1-a2<1,即当-1<a ≤1-3时,y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根.。