第四章-对流受热面的传热
- 格式:ppt
- 大小:9.90 MB
- 文档页数:72
传热过程基础知识传热过程是一个物体或系统与其周围环境之间热量交换的过程。
热量是指能量的转移,可以通过辐射、传导和对流三种方式传递。
首先,我们来看辐射传热。
辐射传热是指物体通过电磁波的传播而向周围环境传递热量。
辐射传热不需要介质的存在,它可以在真空中传输热量。
这是因为所有物体都会产生热辐射,用一个术语叫做黑体辐射。
黑体辐射的强度与物体的温度有关,温度越高,辐射的能量越多。
例如,太阳发出的光和热就是一种辐射传热。
传导传热是指物体之间的热量通过分子或原子之间的碰撞传递。
这种传热方式通常发生在固体物体中,因为固体物体的分子或原子之间是紧密排列的。
热传导通常发生在热端和冷端之间存在温度差的物体中。
当物体的一部分受热后,分子或原子的振动能量会传递给相邻的分子或原子,从而传递热量。
对流传热是指液体或气体中的热量通过流体的运动和对流传递给周围环境。
对流传热通常包括自然对流和强制对流两种方式。
自然对流是指流体受热而形成的密度梯度引起的自发流动。
如在锅中烧开水时,底部热水会上升,而冷水会下降,形成对流循环。
强制对流是指通过外力的作用,如风或泵浦,使流体产生对流流动。
例如,空调中的风扇可以通过强制对流将室内的热空气排出室外,从而降低室内温度。
除了以上三种传热方式,还存在相变传热和混相传热。
相变传热是指物体在相变过程中释放或吸收热量。
当物体发生相变时,其温度保持不变,所吸收或释放的热量用于相变过程。
例如,冰块融化时,吸收的热量被用于将冰转化为水。
混相传热是指不同相(如气相和液相)之间的热量转移。
这种传热方式通常发生在液滴蒸发和冷凝过程中。
传热过程的速率可以通过热传导、辐射和对流传热的传热系数来衡量。
传热系数是指单位时间内单位面积上热量的传递速率与温度差的比值。
热传导传热系数取决于物体的导热性质,如热导率。
辐射传热系数取决于物体的辐射性质,例如发射率和吸收率。
对流传热系数取决于流体的流动性质,如流速和流体的粘度。
传热过程在许多实际应用中起着重要作用,如建筑物的供暖和空调、发动机的冷却、工业生产中的加热与冷却等。
化工原理传热
传热是化工过程中重要的物理现象之一,它涉及能量的转移和分布。
传热可以通过三种方式进行:传导、对流和辐射。
传导是指热能在固体或液体中以分子间相互碰撞的方式传递。
在传导过程中,热量会从高温区域传递到低温区域,直到温度达到平衡。
对流是指热能通过流体的运动传递。
当物体表面受热时,周围的流体会被加热并膨胀,然后从热源处上升。
这导致了对流循环,使热量从热源传递到周围环境。
辐射是指热能以电磁波的形式传递,不需要介质来传递热量。
辐射可以通过空气、液体和固体传播,甚至可以在真空中传播。
辐射热传递取决于物体的温度和表面特性。
在化工过程中,传热是必不可少的。
传热的目的可以是控制温度以实现反应的理想条件,或者从一个系统中移除或向其输入热量。
为了实现有效的传热,可以采取以下措施:
1. 提高传热系数:通过增加传热表面积或提高传热介质的流速,可以增加传热系数,从而加快传热速度。
2. 减小传热阻力:通过改变传热介质的性质或减小传热介质的流通路径长度,可以减小传热阻力,提高传热效率。
3. 使用传热表面增强技术:如使用鳍片、流体分散剂或填料等
技术,可以增大传热表面积,从而提高传热效率。
4. 优化换热设备设计:通过合理设计换热设备的结构和组件,可以实现更高效的传热过程,并减少传热介质的能量损失。
化工过程中的传热是一个复杂的过程,需要综合考虑多种因素。
通过合理选择传热方式和采取相应的措施,可以实现高效的能量传递和分布,从而提高化工过程的效率和质量。
对流受热面的换热系数与烟气流速的关系【摘要】本文探讨了对流受热面的换热系数与烟气流速的关系。
首先介绍了研究背景,指出了换热系数在工程领域中的重要性。
接着阐述了换热系数的定义及其在换热过程中的作用。
然后分析了流速对换热系数的影响,并介绍了进行实验的方法。
通过实验结果的分析,探讨了烟气流速对换热系数的影响规律。
最后总结了影响换热系数的因素,并给出了结论总结。
未来展望部分提出了进一步深入研究的方向,为相关领域的研究提供了参考。
本研究对于深化对流受热面的换热系数与烟气流速之间关系的认识具有一定的理论和实际意义,为工程实践提供了有益的指导。
【关键词】对流受热面、换热系数、烟气流速、引言、研究背景、流速影响、实验方法、结果分析、影响因素、结论总结、未来展望1. 引言1.1 研究背景对流受热面的换热系数与烟气流速之间的关系是传热学领域中一个重要且具有挑战性的研究课题。
换热系数是描述热交换效率的重要参数,而烟气流速则是影响换热过程的关键因素之一。
深入研究受热面的换热系数与烟气流速之间的关系,不仅有助于优化传热设备的设计与运行,还能为提高能源利用效率、减少对环境的影响提供重要参考。
过去的研究表明,换热系数与烟气流速之间存在着明显的相关性。
随着烟气流速的增加,受热面的换热系数往往会有所提高。
这是因为较高的流速可以加速烟气与受热面的热交换,促进烟气中的热量传递到受热面上。
烟气流速对换热系数的影响并非线性的,不同的情况下可能存在一定的变化规律,因此需要进行更深入的研究与分析。
本文旨在通过实验方法,探讨对流受热面的换热系数与烟气流速之间的关系,为相关领域的研究提供新的实证依据。
2. 正文2.1 换热系数的定义换热系数是指在对流传热过程中,单位面积上的传热功率与温度差之比。
换热系数的大小反映了对流换热效果的好坏,换热系数越大,说明换热效果越好,传热速率越快。
换热系数通常用W/(m^2·K)表示,表示每平方米面积上每温度单位温差下传热功率的大小。
化工原理传热传热是化工工程中非常重要的一个环节,它涉及到许多工艺过程和设备的设计与操作。
在化工生产中,传热过程不仅影响着产品质量和生产效率,还直接关系到能源的利用效率和环境保护。
因此,对于化工原理传热的深入理解和掌握,对于化工工程师来说至关重要。
传热的基本原理包括传热方式、传热系数、传热表达式等。
传热方式主要包括传导、对流和辐射三种方式。
传导是指热量通过物质内部的传递,对流是指热量通过流体的对流传递,而辐射是指热量通过电磁波的辐射传递。
传热系数是描述传热效果的物理量,它与传热介质的性质、流体状态、流体性质等因素有关。
传热表达式则是用来描述传热过程的数学表达式,可以通过传热方程和传热系数来进行计算和分析。
在化工生产中,传热过程通常涉及到换热器、蒸发器、冷凝器等设备。
换热器是用来实现不同流体之间热量交换的设备,它包括了许多种类,如壳管式换热器、板式换热器等。
蒸发器是将液态物质转化为气态物质的设备,它在化工生产中应用广泛。
而冷凝器则是将气态物质转化为液态物质的设备,也是化工生产不可或缺的一部分。
在传热过程中,热传导、对流传热和辐射传热是相互作用的。
热传导是传热过程中最基本的方式,它在许多设备和工艺中都有重要的应用。
对流传热则是流体在传热过程中的一种重要方式,它受到流体的流动状态、速度、流体性质等因素的影响。
而辐射传热则是在高温条件下的一种重要传热方式,它在许多高温工艺和设备中都有重要的应用。
总的来说,化工原理传热是化工工程师必须要深入了解和掌握的一个重要内容。
通过对传热的基本原理、传热设备和传热过程的深入研究,可以更好地指导化工生产实践,提高生产效率,降低能源消耗,保护环境,实现可持续发展。
希望本文能为化工工程师提供一些有益的参考和帮助。
榆林学院题目锅炉课程设计学生姓名学号院 ( 系 ) 能源工程学院专业热能与动力工程指导教师胡广涛报告日期2015年06月 10日目录前言第一章锅炉课程设计任务书 (4)第二章煤的元素分析数据校核和煤种判别 (5)第三章燃料燃烧计算 (6)第四章锅炉热平衡计算 (8)第五章炉膛设计和热力计算 (9)第六章前屏过热器设计和热力计算 (13)第七章后屏过热器设计和热力计算 (17)第八章高温再热器设计和热力计算 (21)第九章第一悬吊管热力计算 (25)第十章高温对流过热器设计和热力计算 (27)第十一章第二悬吊管热力计算 (30)第十二章低温再热器垂直段设计和热力计算 (32)第十三章转向室热力计算 (36)第十四章低温再热器水平段设计和热力计算 (38)第十五章省煤器设计及热力计算 (41)第十六章分离器气温和前屏进口气温的校核 (44)第十七章空气预热器设计和热力计算 (45)第十八章锅炉整体热平衡校核 (52)第十九章热力计算结果的汇总 (53)前言《锅炉原理》是一门涉及基础理论面较广,而专业实践性较强的课程。
该课程的教学必须有相应的实践教学环节相配合,而课程设计就是让学生全面运用所学的锅炉原理知识设计一台锅炉,因此,它是《锅炉原理》课程理论联系实际的重要教学环节。
它对加强学生的能力培养起着重要的作用。
本设计说明书详细的记录了锅炉本体各受热面的结构特征和工作过程,内容包括锅炉受热面,锅炉炉膛的辐射传热及计算。
对流受热面的传热及计算,锅炉受热面的布置原理和热力计算,受热面外部工作过程,锅炉蒸汽参数的变化特性与调节空气动力计算等。
由于知识掌握程度有限以及三周的设计时间对于我们难免有些仓促,此次设计一定存在一些错误和遗漏。
第一章锅炉课程设计任务书1.1 引言锅炉课程设计是巩固我们理论知识和提高实践能力的重要环节。
它不仅使我们对锅炉原理课程的知识得以巩固、充实和提高掌握了锅炉机组的热力计算方法,学会使用锅炉机组热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力而且培养了我们查阅资料,合理选择和分析数据的能力,培养了我们严肃认真和负责的态度。
物质的热传递与传热方程热传递是指物体之间传递热量的过程。
在自然界中,热量会自动从高温物体传递到低温物体,以达到热平衡。
了解物质的热传递规律对于工程、科学研究以及日常生活都具有重要意义。
本文将探讨物质的热传递原理以及传热方程。
一、热传递方式物质的热传递可以通过三种方式进行:传导、对流和辐射。
1. 传导传导是指物体内部的热量传递。
当物体的一部分受热时,其分子会增加热运动并与周围分子碰撞,从而将热量传递给周围物体的分子。
常见的传导材料有金属、一些固体和液体。
传导热量的大小取决于材料的热导率和温度梯度。
2. 对流对流是指通过流体的运动来传递热量。
当流体受热并膨胀时,其密度减小,从而形成向上的浮力,推动冷流体下沉。
这种上升和下降的流体运动形成了对流传热。
对流传热可以是自然对流或强制对流,取决于流体运动的形式。
3. 辐射辐射是指通过电磁波的传播传递热量。
所有物体都会向外发射热辐射,其强度与物体的温度有关。
热辐射可以在真空中传递,因此,在没有其他传热方式的情况下,辐射是物体热量传递的唯一方式。
二、传热方程传热方程是用来描述热传递过程的数学模型。
根据不同的传热方式,我们有不同的传热方程。
1. 传导传热方程传导传热方程是用来描述物体内部热量传递的方程。
其一维形式可以表示为:q = -kA(dT/dx)其中,q是热流量,单位为瓦特(W);k是材料的热导率,单位为瓦特/(米·开尔文),A是传热截面积,单位为平方米;dT/dx是温度梯度,单位是开尔文/米。
通过该方程,我们可以计算出传热速率和材料的热导率之间的关系,从而预测热传递的行为。
2. 对流传热方程对流传热方程用来描述通过流体的传热过程。
其一维形式可以表示为:q = hA(Ts - T)其中,q是热流量,单位为瓦特(W);h是对流换热系数,单位为瓦特/(平方米·开尔文);A是传热面积,单位为平方米;Ts是表面温度,单位为开尔文;T是流体温度,单位为开尔文。