第四章 对流受热面的传热
- 格式:ppt
- 大小:14.83 MB
- 文档页数:72
内蒙古工业大学《电站锅炉原理》期末考试试题集一、名词解释1、锅炉容量2、煤的发热量单位质量得煤完全燃烧时方取得全部热量。
收到基发热量为29310kj/kg的煤为标准煤。
3、折算成分为了更准确的比较煤中硫分水分灰分的大小,可用折算成分表示硫分水分灰分的含量。
4、标准煤收到基发热量为29310kj/kg的煤为标准煤。
5、理论空气量 1kg燃料完全燃烧时所需的最低限度的空气量成为理论空气量6、过量空气系数实际空气量与理论空气量之比7、漏风系数漏入空气的量与理论空气量之比8、理论烟气量 1kg燃料在理论空气量下完全燃烧产生的烟气量称为理论烟气量9、锅炉效率锅炉的有效利用热与输入锅炉的热量之比10、飞灰系数11、排渣率12、计算燃料消耗量13、煤粉细度14、燃料的可磨性系数15、钢球充满系数16、磨煤出力17、干燥出力18、着火热19、汽温特性20、热偏差21、高温腐蚀22、理论燃烧温度23、炉膛的断面热强度24、运动压头25、循环流速26、质量含汽率27、截面含汽率28、循环倍率29、循环停滞30、蒸汽清洗31、锅炉排污32、虚假水位33、飞升曲线34、机械不完全燃烧热损失35、溶解携带36、烟气露点37、自生通风38、煤粉经济细度39、低温腐蚀40、炉膛黑度41、污染系数ε42、热有效系数ψ43、利用系数ξ44、保热系数45、自然循环锅炉的自补偿特性46、超临界锅炉47、理论燃烧温度48、燃料特性系数49、锅炉的事故率50、锅炉的可用率二、填空题1、燃料的成分分为 C 、 H 、 O 、 N 、 S 、灰分、和水分。
2、烟气焓等于理论烟气焓、过量空气焓、和飞灰焓三部分之和。
3、灰平衡是指入炉煤的含灰量应该等于燃烧后、、、及中灰量之和。
4、煤粉制备系统可分为直吹式、中间储藏式两种。
5、直流煤粉燃烧器大致可以分为均等配风式、和一次风集中布置式两种形式。
6、均等配风方式中,一、二次风口相对较交替间隔布置,中心间距较小,故一、二次风能较快混合,故适用于褐煤、和烟煤。
对流受热面的换热系数与烟气流速的关系【摘要】本文探讨了对流受热面的换热系数与烟气流速的关系。
首先介绍了研究背景,指出了换热系数在工程领域中的重要性。
接着阐述了换热系数的定义及其在换热过程中的作用。
然后分析了流速对换热系数的影响,并介绍了进行实验的方法。
通过实验结果的分析,探讨了烟气流速对换热系数的影响规律。
最后总结了影响换热系数的因素,并给出了结论总结。
未来展望部分提出了进一步深入研究的方向,为相关领域的研究提供了参考。
本研究对于深化对流受热面的换热系数与烟气流速之间关系的认识具有一定的理论和实际意义,为工程实践提供了有益的指导。
【关键词】对流受热面、换热系数、烟气流速、引言、研究背景、流速影响、实验方法、结果分析、影响因素、结论总结、未来展望1. 引言1.1 研究背景对流受热面的换热系数与烟气流速之间的关系是传热学领域中一个重要且具有挑战性的研究课题。
换热系数是描述热交换效率的重要参数,而烟气流速则是影响换热过程的关键因素之一。
深入研究受热面的换热系数与烟气流速之间的关系,不仅有助于优化传热设备的设计与运行,还能为提高能源利用效率、减少对环境的影响提供重要参考。
过去的研究表明,换热系数与烟气流速之间存在着明显的相关性。
随着烟气流速的增加,受热面的换热系数往往会有所提高。
这是因为较高的流速可以加速烟气与受热面的热交换,促进烟气中的热量传递到受热面上。
烟气流速对换热系数的影响并非线性的,不同的情况下可能存在一定的变化规律,因此需要进行更深入的研究与分析。
本文旨在通过实验方法,探讨对流受热面的换热系数与烟气流速之间的关系,为相关领域的研究提供新的实证依据。
2. 正文2.1 换热系数的定义换热系数是指在对流传热过程中,单位面积上的传热功率与温度差之比。
换热系数的大小反映了对流换热效果的好坏,换热系数越大,说明换热效果越好,传热速率越快。
换热系数通常用W/(m^2·K)表示,表示每平方米面积上每温度单位温差下传热功率的大小。
<<锅炉及其工作原理>>复习思考题判断题 (对者划√, 错者划×)●炉膛中火焰的放热量等于布置在炉膛四周的受热面内工质的吸热量之和。
()●锅炉的热力计算分为设计热力计算和校核热力计算. ( )●小容量“D”型锅炉的优点之一是容易实现炉排双侧进风()●烟气仅由三原子气体、炭黑、焦炭粒子和飞灰粒子所组成. ( )●空气的热容量比烟气的热容量大. ( )●炉膛黑度是对应于火焰有效辐射的一个假想黑度. ( )●对锅炉炉膛辐射受热面, ()●锅炉对流受热面的传热系数与计算传热面积有关. ( )●干松灰的积聚量可以无限增长. ( )●酸露点温度就是指硫酸蒸汽凝结时的烟气温度. ( )●省煤器和空气预热器是任何锅炉都必不可少的部件. ( )●整台锅炉的校核计算较整台锅炉的设计计算更容易完成。
●炉膛黑度和系统黑度是一回事. ( )●其它条件相同时, 顺列布置时较错列布置时的对流放热系数大. ( )●烟气侧的汽温调节方式既可降低汽温也可升高汽温. ( )●化学反应能力强的煤种的火焰黑度大于化学反应能力弱的煤种的火焰黑度。
()●其它条件相同时, 含灰气流时较不含灰气流时的辐射放热系数大. ( )●对流受热面的热量传递全部以对流方式完成()●折算水分是指随同单位热量(每kJ)进入锅炉的水分. ( )●理论燃烧温度是指每公斤燃料在绝热条件下完全燃烧后烟气的温度. ( )●热空气温度越高越好()●采用摆动式燃烧器调节过热蒸汽温度的方法既适用与燃煤锅炉也适用燃气锅炉()●水冷壁涂有卫燃带时的污染系数较无卫燃带时的大()●发电厂中的烟囱主要是为了增加锅炉的通风能力()●对于自然通风的锅炉, 夏天时的通风能力大于冬天的通风能力. ( ) ●自生通风能力既可克服流动阻力也可阻滞流体的流动()●煤粉炉的火焰辐射能离大于油气炉的火焰辐射能力。
()●理论上锅炉的容量和它所产生的蒸汽的参数是相互独立的量。
榆林学院题目锅炉课程设计学生姓名学号院 ( 系 ) 能源工程学院专业热能与动力工程指导教师胡广涛报告日期2015年06月 10日目录前言第一章锅炉课程设计任务书 (4)第二章煤的元素分析数据校核和煤种判别 (5)第三章燃料燃烧计算 (6)第四章锅炉热平衡计算 (8)第五章炉膛设计和热力计算 (9)第六章前屏过热器设计和热力计算 (13)第七章后屏过热器设计和热力计算 (17)第八章高温再热器设计和热力计算 (21)第九章第一悬吊管热力计算 (25)第十章高温对流过热器设计和热力计算 (27)第十一章第二悬吊管热力计算 (30)第十二章低温再热器垂直段设计和热力计算 (32)第十三章转向室热力计算 (36)第十四章低温再热器水平段设计和热力计算 (38)第十五章省煤器设计及热力计算 (41)第十六章分离器气温和前屏进口气温的校核 (44)第十七章空气预热器设计和热力计算 (45)第十八章锅炉整体热平衡校核 (52)第十九章热力计算结果的汇总 (53)前言《锅炉原理》是一门涉及基础理论面较广,而专业实践性较强的课程。
该课程的教学必须有相应的实践教学环节相配合,而课程设计就是让学生全面运用所学的锅炉原理知识设计一台锅炉,因此,它是《锅炉原理》课程理论联系实际的重要教学环节。
它对加强学生的能力培养起着重要的作用。
本设计说明书详细的记录了锅炉本体各受热面的结构特征和工作过程,内容包括锅炉受热面,锅炉炉膛的辐射传热及计算。
对流受热面的传热及计算,锅炉受热面的布置原理和热力计算,受热面外部工作过程,锅炉蒸汽参数的变化特性与调节空气动力计算等。
由于知识掌握程度有限以及三周的设计时间对于我们难免有些仓促,此次设计一定存在一些错误和遗漏。
第一章锅炉课程设计任务书1.1 引言锅炉课程设计是巩固我们理论知识和提高实践能力的重要环节。
它不仅使我们对锅炉原理课程的知识得以巩固、充实和提高掌握了锅炉机组的热力计算方法,学会使用锅炉机组热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力而且培养了我们查阅资料,合理选择和分析数据的能力,培养了我们严肃认真和负责的态度。
传热系数计算⽅法第四章循环流化床锅炉炉内传热计算循环流化床锅炉炉膛中的传热是⼀个复杂的过程,传热系数的计算精度直接影响了受热⾯设计时的布置数量,从⽽影响锅炉的实际出⼒、蒸汽参数和燃烧温度。
正确计算燃烧室受热⾯传热系数是循环流化床锅炉设计的关键之⼀,也是区别于煤粉炉的重要⽅⾯。
随着循环流化床燃烧技术的⽇益成熟,有关循环流化床锅炉的炉膛传热计算思想和⽅法的研究也在迅速发展。
许多著名的循环流化床制造公司和研究部门在此⽅⾯也做了⼤量的⼯作,有的已经形成商业化产品使⽤的设计导则。
但由于技术保密的原因,⽬前国内外还没有公开的可以⽤于⼯程使⽤的循环流化床锅炉炉膛传热计算⽅法,因此对它的研究具有重要的学术价值和实践意义。
清华⼤学对CFB锅炉炉膛传热作了深⼊的研究,长江动⼒公司、华中理⼯⼤学、浙江⼤学等单位也对CFB锅炉炉膛中的传热过程进⾏了有益的探索。
根据已公开发表的⽂献报导,考虑⼯程上的⽅便和可⾏,本章根椐清华⼤学提出的⽅法,进⼀步分析整理,作为我们研究的基础。
为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算⽅法,浙江⼤学和华中理⼯⼤学的传热计算与巴苏的相近似。
4.1 清华的传热理论及计算⽅法4.1.1 循环流化床传热分析CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p ⼤⼤⾼于煤粉炉,⽽且炉内各处的浓度也不⼀样,它对炉内传热起着重要作⽤。
为此⾸先需要计算出炉膛出⼝处的物料浓度C p,此处浓度可由外循环倍率求出。
⽽炉膛不同⾼度的物料浓度则由内循环流率决定,它沿炉膛⾼度是逐渐变化的,底部⾼、上部低。
近壁区贴壁下降流的温度⽐中⼼区温度低的趋势,使边壁下降流减少了辐射换热系数;⽔平截⾯⽅向上的横向搅混形成良好的近壁区物料与中⼼区物料的质交换,同时近壁区与中⼼区的对流和辐射的热交换使截⾯⽅向的温度趋于⼀致,综合作⽤的结果近壁区物料向壁⾯的辐射加强,总辐射换热系数明显提⾼。
1.水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么?水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。
(2)保护炉墙。
(3)悬吊敷设炉墙、防止炉壁结渣。
凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。
锅炉管束:是蒸发受热面。
过热器:是过热受热面。
将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。
省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。
(2)充当部分加热受热面或蒸发受热面。
空气预热器:(1)降低排烟温度提高锅炉效率。
(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。
(3)提高理论燃烧温度,强化炉膛的辐射传热。
(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。
2.水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点?水冷壁可分为光管水冷壁和膜式水冷壁。
光管水冷壁优点:制造、安装简单。
缺点:保护炉墙的作用小,炉膛漏风严重。
膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。
炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。
水冷壁的金属耗量增加不多。
气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。
蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。
厂内预先组装好才出厂,可缩短安装周期,保证质量。
缺点:制造工艺复杂。
不允许两相邻管子的金属温度差超过50度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。
省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。
耐内部氧腐蚀、耐外部酸腐蚀。
缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。
不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗水漏水。
名词解释:活化能P86:表示燃料的反应能力。
绝大多数参与反应的分子能量处于平均水平,具有平均能量的分子转化为活化分子所需要的最低能量称为活化能。
活化能使参与化学反应的物质达到开始进行化学反应状态所需要的最低能量,用E1表示。
标准煤P26:安照规定,收到基发热量为29310kJ/kg的煤为标准煤。
可磨性系数P63:煤被磨成一定细度的煤粉的难易程度称为煤的可磨性系数。
将质量相等的标准煤和实验煤由相同的初始粒度磨制成细度相同的煤粉时,消耗的能量的比值。
循环倍率P237:上升管中实际产生一公斤蒸汽需要进入多少公斤水,即K=G/D1、什么是煤的工业分析?化学分析?简述其中各成分对煤燃烧的影响(灰分、挥发份、水分、碳)。
P22-23 DP60元素(化学)分析:全面测定煤中所含全部化学成分。
包括:C H O N S A M工业分析:在一定的实验室条件下的煤样,通过分析得出水分、挥发份、固定碳和灰分这四种成分的质量百分数叫做工业分析。
碳:碳是煤中含量最多的可燃元素,发热量较大,其中包含挥发份和固定碳,固定碳燃点较高,不易着火和燃尽。
水分:水分增加会使锅炉内温度下降,影响燃料的着火,并增大排烟损失,也会加剧尾部受热面的腐蚀和堵灰。
(水分多,燃料燃烧有效放热量便减少;水分多,增加着火热,推迟着火;水分多,降低炉内温度,使着火困难,燃烧也不易完全,增加机械和化学不完全燃烧热损失;水分吸热变成水蒸气排出,增加排气量而使排烟热损失增大,降低锅炉热效率;同时为低温受热面的积灰、腐蚀创造了条件;水分增加,提高过热气温;会给煤粉制备增加困难;但水分多,水分蒸发后,会使煤粉颗粒内部的反应表面积增加,从而提高着火能力和燃烧速度。
)灰分:灰分的存在不仅使单位燃料量的发热量减少,而且影响燃料的着火和燃尽,也是造成锅炉受热面积灰、结渣、磨损的主要因素。
(灰分增加,煤中可燃成分相对减少,降低发热量,且灰分熔融吸收热量,排渣带走大量热量;灰分多,在煤粒表面形成灰分外壳,妨害煤的燃烧,使煤不易燃尽,增加机械不完全热损失;灰分多,使炉膛温度下降,燃烧不稳定;灰分多,磨损受热面,受热面积灰,增加排烟温度,降低锅炉效率;灰分多,产生炉内结渣,腐蚀金属;增加煤粉制备的能量消耗;造成环境污染。
对流受热面热力计算程序求解过程和方法流受热面热力计算程序是用于计算流体在受热面的热力学性质和传热情况的数值模拟程序。
该程序通过数值解法来求解流体在受热面的温度分布、压力分布、速度分布等参数,从而得到流体的传热和流动特性。
流受热面热力计算程序的求解过程如下:1.几何建模:首先,需要根据实际的流体系统情况建立几何模型,并确定受热面的形状和位置。
可以使用CAD软件进行建模,并将建模结果导入计算程序中。
2.网格划分:将几何模型划分为多个小区域,形成网格。
这些网格将作为数值计算的基本单元,通过网格划分可以将连续的流体区域离散为离散的网格点,使得问题转化为求解离散点的数值计算问题。
网格划分可以采用结构化网格或非结构化网格,具体选择哪种网格划分方式取决于实际情况。
3.数值求解:根据流体力学和热传导定律的基本方程,结合边界条件和初始条件,建立用于求解流体流动和传热问题的方程组。
常用的方程包括质量守恒方程、动量守恒方程、能量守恒方程等。
4.迭代求解:将建立的方程组通过数值计算方法进行离散化处理,得到一个离散的代数方程组。
然后通过迭代方法,不断求解这个代数方程组,得到流体在受热面的温度、压力、速度等参数的数值解。
常用的迭代方法包括雅可比迭代法、高斯-赛德尔迭代法、追赶法等。
5.计算结果分析:根据数值计算的结果,可以得到流体在受热面的温度分布、压力分布、速度分布等信息。
通过分析这些结果,可以评估受热面的传热效果和流体流动特性,进而指导系统的设计和优化。
流受热面热力计算程序的求解方法主要包括有限差分法、有限元法和有限体积法等。
有限差分法是一种常用的数值解法,通过将导数用差分来近似表示,将连续的微分方程转化为离散的代数方程。
有限元法是一种广泛应用的数值解法,将求解区域分割为多个小区域,建立适当的试验函数空间,将原方程用试验函数表示,并建立离散化形式的代数方程。
有限体积法是一种基于控制体积的数值解法,根据高斯定理和斯托克斯定律,将问题空间离散为一种特殊形式的差分控制体积,将微分方程转化为代数方程。
锅炉对流受热面的换热计算大型电站锅炉的对流受热面是指对流换热为主的对流过热器和再热器、省煤器、空气预 热器、直流锅炉的过渡区等,也包括辐射份额较大的屏式受热面。
尽管这些受热面的结构布 置、工质和烟气的参数都有着很大的不同,辐射传热所占的份额不同,但为了简化计算,均 采用对流传热计算的规律,将辐射传热部分折算到对流传热,各个不同受热面的计算方法有 所不同。
对流受热面的换热计算,不论是设计计算还是校核计算,都是利用对流传热方程和烟气 侧与工质侧的热平衡方程,分别从对流传热和热平衡的角度来表达对流受热面的对流换热 量。
对流受热面换热计算的基本方程1. 受热面的对流传热方程式中Q j ——以对流方式由烟气传递给受热面内工质的热量,以况燃料(固体、液体)或 1m 3 ;燃料(气体)为基准;K ——传热系数,W/(m 2・,C );廿——传热温压,°C; H — 一参与对流换热的受热面面积,m 2; B ——锅炉计算燃料量,kg/s 。
2. 烟气侧热平衡方程对各段受热面,烟气侧热平衡方程是基本相同的Q d =^(h ,— h 〃 + A a h o ),kJ/kg式中中——保热系数,考虑散热损失的影响;h '、 y截面上的平均焓值,Mg ;址一对应于过量空气系数a =1时,漏入该段受热面烟气侧的冷空气焓值,kJ/kg ; A a ——该段受热面的漏风系数。
3.工质侧热平衡方程对于布置在不同位置、不同工质状态的受热面,工质吸热量的计算方法不同。
(1)布置在炉膛出口处的屏式过热器或对流过热器。
这一类受热面的工质总吸热量由两部分组成:屏间(或对流受热面)烟气的对流换热量 和炉膛烟气的辐射换热量,所以,在计算屏(或对流受热面)的对流换热量时,应从工质吸 收的热量中扣除该受热面接受的炉膛辐射热量,即 D (h ”- h ) Q d = ―B— - Q f ,kJ/kg式中 Q f ——受热面吸收来自炉膛的辐射热量,kJ/kg ;D ——工质流量,kg/s ; h ”、h f — 受热面出口及入口的工质焓值,kJ/kg 。
第四章点火器及火焰检测第一节点火器概述目前,大容量锅炉的煤粉燃烧器点火均使用液体燃料或气体燃料,采用多级点火方式。
由电引燃器发火,逐级点燃气体燃料、液体燃料和煤粉;或者由电引燃器直接点燃液体燃料(轻油或重油),再点燃煤粉。
点火过程可在主燃烧器上进行,也可先点燃启动(辅助)燃烧器,再由它们来点燃主燃烧器。
常规点火器的引燃器,有电火花、电弧、电阻丝等各种类型。
电阻丝点火器设备简单,结构紧凑,但电阻易氧化烧损,在直接点燃重油时烧损极为严重,目前仅在一些燃油锅炉上使用。
电弧点火器可获得较大功率,但因电压低不易击穿污染层起弧,且烧蚀严重,设备体积大而笨重,逐渐为电火花装置所取代。
电火花引燃装置中以高压电火花(由5000—8000V的电压通过两极间的间隙放电)的使用为最广。
进而还有高频高压电火花和高能电火花引燃装置,其性能更为优异。
除了专供点火的点火(燃烧)器之外,尚有兼点火和稳燃或带低负荷功能的辅助燃烧器。
在常规的点火燃烧器中,专供点火的点火燃烧器和辅助燃烧器有时并不能区分得很清楚。
但一般前者只用于启动时点燃燃料,容量很小,在点燃主火焰并稳定燃烧后很快就停掉,而不用它来维持整个点火和启动过程。
但对于现代的大容量锅炉而言,为了保证运行的安全,有的点火燃烧器除了在点火时投入外,在不利工况或事故工况下(如煤质差、负荷低或给煤不正常等等)也需要利用它来维持着火稳定;在有的锅炉上,主燃烧器熄火前也先要投入点火器以保证安全。
这后一种点火器则属于点火和辅助燃烧器之列,或按有的习惯称之为维持点火的点火燃烧器。
另一种辅助燃烧器则是启动燃烧器,其用途是在锅炉启动过程中用来升压带负荷。
点火燃烧器的功用不同,其容量或点火能量也不相同。
点火能量系指单只点火器点燃与之相邻的主燃料所需的能量与该主燃料喷口设计热功率之比。
它与主燃料特性、燃料空气混合物浓度和流速、燃烧器和点火器型式和布置以及火焰结构等有关。
一般而言,点火器的最小容量(能量)约为所点燃的主燃料喷口设计输入热功率的1%一2%。
锅炉对流受热面计算首先,我们需要了解对流受热面的概念。
对流受热面是指锅炉内部与工作介质(如水、汽、烟气等)直接接触的部分,通过对流传递热量。
对流受热面通常是由管壳式加热面组成,包括锅炉壳体、水冷壁、空气预热器等。
对流受热面的计算主要涉及到三个方面:传热系数的估算、换热面积的计算和热效率的评估。
1.传热系数的估算传热系数是指单位面积上单位时间内通过对流传递的热量。
传热系数的估算是锅炉对流受热面计算中的重要环节。
传热系数的大小与介质的物性、流动状态、受热面的形状等因素密切相关。
一般情况下,传热系数可通过实验或经验公式进行估算。
例如,针对空气在不同速度下对流传热,可以采用Nu=0.66Re^0.66Pr^0.33的经验公式,其中Nu为Nusselt数,Re为雷诺数,Pr为普朗特数。
将估算得到的传热系数应用于对流受热面的计算中。
2.换热面积的计算换热面积是指对流受热面上的有效热交换面积。
换热面积的计算是锅炉对流受热面计算的核心。
换热面积的计算主要考虑两个方面:一是考虑传热介质(如水、汽、烟气等)流动的特点,将受热面积与流量、流速等因素相结合进行计算;二是考虑传热过程的热阻情况,将传热系数与热阻相结合计算。
对于不同的换热面,可以采用不同的计算方法,如管内对流受热面积的计算采用管内光面积进行计算、管外对流受热面积的计算采用外表面积进行计算。
通过换热面积的计算,可以确定锅炉对流受热面的大小,为锅炉的设计和运行提供依据。
3.热效率的评估热效率是锅炉对流受热面计算中一个重要的评价指标。
热效率是指锅炉单位燃料消耗所产生的热量与输入燃料的热量之比。
热效率的评估包括热损失的计算和进一步改进的方法。
热损失通常分为两个部分:烟气中的热损失和未充分燃烧或燃烧副产物中的热损失。
通过对锅炉热效率的评估,可以进行锅炉设计参数的优化和改进,提高锅炉的热效率和能源利用率。
综上所述,锅炉对流受热面计算是锅炉设计和运行中的重要环节。
通过对传热系数的估算、换热面积的计算和热效率的评估,可以保证锅炉的正常运行和高效热能利用。