等离子体化学及其的应用教材共80页
- 格式:ppt
- 大小:11.55 MB
- 文档页数:80
等离子体及其技术应用生化系化学教育姓名:蒋敏学号:20101420摘要:通过介绍等离子体的概念、分类、特性、原理及其在化学工业、材料工业、电子工业、能源方面和机械工业、国防工业、生物医学及环境保护方面的技术应用。
关键词:等离子体、概念、特性、原理、应用前言:等离子体是宇宙中物质存在的一种状态。
物质除固、液、气三态外,还有第四种状态即等离子态。
所谓等离子体就是气体在外力作用下发生电离,产生电荷相反、数量相等的电子和正离子以及游离基(电子、离子和游离基之间又可复合成原子和分子),由于在宏观上呈中性,故称之为等离子体。
处于等离于态的各种物质微粒具有较强的化学活性,在一定的条件下可获得较完全的化学反应,物质的各态之间是可以相互转化的。
1. 等离子体等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微料等)组成的, 宏观上呈现准中性, 且具有集体效应的混合气体。
所谓准中性是指在等离子体中的正负离子数目基本相等, 系统在宏观上呈现中性, 但在小尺度上则呈现出电磁性, 而集体效应则突出地反映了等离子体与中性气体的区别。
1.1等离子体的含义由电子、离子和中性粒子三种成分组成。
其中电子和离子的电荷总数基本相等,因而作为整体是电中性的。
等离子体是由大量带电粒子组成的有宏观空间尺度和时间尺度的体系。
1.2等离子体的产生对液体加热使之温度升高,可以使它转化为气体。
在通常的气体中,物质的最小单元是分子。
如果对气体再加热使气体温度升高时,分子会分解成单个原子,这种以原子为基本单元而组成的气体叫做原子气体。
使原子气体的温度再升高,原子运动的速度增大。
通过相互碰撞使之电离出自由电子和阳离子,当许多原子被电离之后,会形成一个电离过程、电离成的离子与电子复合成中性微粒过程之间的动态平衡,因此在宏观上存在着大量不变的各种离子和电子,形成等离子状态。
除了高温下微粒通过碰撞发生电离之外,产生等离子体的方法很多,常用的产生等离子体的方法主要有以下几种:1.1.1气体放电法在电场作用下获得加速动能的带电粒子与气体分子碰撞、加之阴极二次电子发射等机制的作用,导致气体击穿放电而形成等离子体。
等离子体的基本原理及其应用等离子体是一种凝聚态物理学研究中非常重要的物质形态,它由气体中的原子或分子失去或获得电子而形成。
等离子体的特殊性质使得它在许多领域都有广泛的应用,如光源、半导体加工、环境治理、医疗等等。
本文将对等离子体的基本原理及其应用进行深入分析。
一、等离子体的基本原理等离子体是一种介于气体与固体之间的凝聚态物质,存在于宇宙空间、雷电中、火焰、太阳等自然界环境中。
等离子体的产生需要提供动能,将气体原子或分子的电子从静止状态下加速到较高的能级,使其达到或超过离散能级,从而成为游离电子并与大量残留的正离子一起形成等离子体。
等离子体的形成常见的方式有电离、放电和热电离等。
其中最常见的方式是放电,即在两个电极间加上外加电压,使气体中的原子或分子获得足够的能量而成为游离电子。
此外,一些高温加工过程,如等离子体喷涂、等离子体切割和等离子体聚变等,也可以产生等离子体。
等离子体的特性主要取决于普通气体电离与放电的过程。
普通气体电离分为热电离、电子撞击电离和光电电离,而等离子体的放电过程主要由阻性放电、电弧放电、辉光放电和微波放电等组成。
等离子体的性质主要与等离子体中的电磁场、游离电子和正离子、光和辐射等相关。
等离子体中的电磁场可以分为D.C.电场、A.C.电场、射频场、微波场等。
在不同场的作用下,等离子体的性质和特性也会发生变化。
二、等离子体的应用等离子体的应用广泛,涵盖了多个领域,下面我们来简单介绍一下。
1. 环境治理等离子体可以清理空气中的有害物质,如二氧化硫、臭氧、挥发性有机物和氮氧化物等。
它通过电化学氧化、紫外线辐射、电化学降解等多种方式进行环境污染物的分解或降解,是一种较为环保、高效的净化技术。
2. 医疗等离子体在医学上的应用主要包括等离子体切割、等离子体凝固、等离子体喷涂和等离子体杀菌等。
例如,等离子体切割可减少创伤面积和出血量,降低手术风险,等离子体凝固可以用于血管切开、肝脏切开和肺部手术等。
等离子体化工导论讲义前言等离子体化工是利用气体放电的方式产生等离子体作为化学性生产手段的一门科学。
因其在原理与应用方面都与传统的化学方法有着完全不同的规律而引起广泛的兴趣,自20世纪70年代以来该学科迅速发展,已经成为人们十分关注的新兴科学领域之一。
特别是,近年来低温等离子体技术以迅猛的势头在化工合成、材料制备、环境保护、集成电路制造等许多领域得到研究和应用,使其成为具有全球影响的重要科学与工程。
例如:先进的等离子体刻蚀设备已成为21世纪目标为0.1μm线宽的集成电路芯片唯一的选择,利用等离子体增强化学气相沉积方法制备无缺陷、附着力大的高品位薄膜将会使微电子学系统设计发生一场技术革命,低温等离子体对废水和废气的处理正在向实际应用阶段过渡,农作物、微生物利用等离子体正在不断培育出新的品种,利用等离子体技术对大分子链实现嫁接和裁剪、利用等离子体实现煤的洁净和生产多种化工原料的煤化工新技术正在发展。
可以说,在不久的将来,低温等离子体技术将在国民经济各个领域产生不可估量的作用。
但是,与应用研究的发展相比,被称为年轻科学的等离子体化学的基础理论研究缓慢而且较薄弱,其理论和方法都未达到成熟的地步。
例如,其中的化学反应是经过何种历程进行,活性基团如何产生等等。
因此,本课程力求介绍这些方面的一些基础理论、研究方法、最新研究成果以及应用工艺。
课程内容安排:1、等离子体的基本概念2、统计物理初步3、等离子体中的能量传递和等离子体的性质4、气体放电原理及其产生方法5、冷等离子体中的化学过程及研究方法6、热等离子体中的化学过程及研究方法7、当前等离子体的研究热点8、等离子体的几种工业应用学习方法:1、加强大学物理和物理化学的知识2、仔细作好课堂笔记,完成规定作业3、大量阅读参考书和科技文献第一章等离子体的概念1.等离子体的定义a.通过气体放电的形式,将电场的能量传递给气体体系,使之发生电离过程,当电离程度达到一定的时候,这种物质的状态就是等离子体状态。
第六章介质阻挡放电等离子体及其应用本章介绍介质阻挡放电等离子体的产生、特点和应用,并根据这些应用介绍冷等离子体中的化学反应动力学问题的一般性研究方法。
6.1介质阻挡放电的产生介质阻挡放电是有绝缘介质插入放电空间的一种气体放电。
介质可以覆盖在电极表面或者悬挂在放电空间里,这样,当在放电电极上施加足够高的交流电压时.电极间的气体,即使在很高的气压下也会被击穿而形成所谓的介质阻挡放电。
这种放电表现为很均匀、散漫和稳定、貌似低气压下的辉光放电,但实际上它是由许多细微的快脉冲放电通道构成的。
通常放电空间的气体压强可达105Pa或更高。
这种放电又称为无声放电,典型的介质阻挡放电和间隙结构如图6-1所示。
这些电极间隙结构可以是平板,也可以是同轴圆柱型。
图6-1 介质阻挡放电位形介质阻挡放电中加入介质在两电极之间的目的避免在大气压,强电场中可能过分发展的电子雪崩过程,防止放电的不稳定性。
介质阻挡放电能够在很大的气压和频率范围内工作,常用的工作条件是气压104-106Pa,频率为50-106Hz。
虽然这种放电被开发和应用得比较广泛,可对它的研究还是近十几年的事。
6.2 介质阻挡放电的主要参量图6-2 空气中介质阻挡放电的照片介质阻挡放电的电流主要是流过微放电通道的。
放电的主要基本过程也是发生在微放电中的。
因此了解微放电是了解介质阻挡放电的关键。
典型的介质阻挡放电中微放电的主要特性如下表6.2、介质阻挡放电参数的估计电子密度和电子温度,电场强度,放电通道半径和寿命。
电子与中性粒子发生非弹性碰撞,使中性粒子发生电离、离解等;而电子与中性粒子发生弹性碰撞,则使中性粒子动能增加,从而使等离子体温度升高。
如果假设中性温度是完全受电子弹性碰撞的影响,()232e g eg e E k T T n σδν=-式中,σ为等离子体的电导率,它等于e e e e 2v m /n e λ;E 为电子的电荷;e λ为电子在气体中的自由程,它取决于等离子体各组分的浓度k n 和碰撞截面ek Q ,1k e ek k Q n -⎪⎪⎭⎫ ⎝⎛=∑λ; e v 为电子的热运动速度;e T 和g T 分别为电子及重粒子的温度;g e m /2m =δ为弹性碰撞中电子传出的那部分能量;e m 和g m 分别为电子及重粒子的质量;e e eg /v λν=为电子和重粒子的碰撞频率;e n 为电子的浓度。