第二十章 数据的分析复习教案
- 格式:doc
- 大小:252.00 KB
- 文档页数:4
第二十章数据的分析教学目标【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
教学重点与难点【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
【难点】:方差概念的理解和应用。
教学过程第一步:回顾交流、系统跃进知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
(定义法)且f 1+f 2+……+f k =n (加权法)当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。
设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x nx n -++-+-=第二步:联系实际 主动探索问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图(2)估算这个年段学生的平均身高。
(3)求出这个年段学生的身高的极差。
问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)求出它们的跳高成绩的平均数、众数、中位数。
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
课题:第二十章数据的分析小结复习上课时间:2020年5月20日星期三上课地点:八4班教室主讲教师:聂红霞教学目标:1.理解平均数,中位数和众数等统计量的统计意义;2. 使学生掌握极差和方差的计算方法;3.会用样本平均数方差,估计总体的平均数方差;4.通过解决实际问题,让学生体会数学与生活的密切联系教学重点:加权平均数与方差的计算,以及它们的意义。
教学难点:方差的计算以及意义。
教学方法:讲练结合,合作交流教学过程:一、知识框架图二、典例讲解1.中央电视台2004年5月8日7时30分发布的天气预报,我国内地31个直辖市和省会城市5月9日的最高气温(℃)统计如下表:A、27 ℃ ,30 ℃B、28.5 ℃ ,29 ℃C、29 ℃,28 ℃D、28 ℃ ,28 ℃2.下图是八年级(2)班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数,已知该班有5位同学的心跳每分钟75次,请观察图象,指出下列说法中错误的是( )A 、数据75落在第二小组B 、第四小组的频数为6C 、心跳每分钟75次的人数占全班体检人数的8.3%D 、数据75次一定是中位数3、八年级三班分甲、乙两组各10名学生参加答题比赛,共10道 选择题,答对8题(含8题)以上为优秀,各选手答对题数如下:请你完成上表,再根据所学知识,从不同方面评价甲、乙两组选手的成绩。
三、课堂练习1.某班一次语文测试成绩如下:得100分的3人,得95分的5人,得90分的6人,得80分的12人,得70分的16人,得60分的5人,则该班这次语文测试的众数是( )A.70分B.80分C.16人D.12人2.某工厂对一个生产小组的零件进行抽样检查,在10天中,这个生产小组每天的次品数如下:(单位:个)0,2,0,2,3,0,2,3,1,2在这10天中,该生产小组生产的零件的次品数的( ) A 、平均数是2 B 、众数是3 C 、中位数是1.5 D 、方差是1.253.一组数据的方差是 则这组数据组成的样本的容量是 ;平均数是。
第二十章数据的分析一、教材分析从《标准》看,本章属于“统计与概率”领域。
对于“统计与概率”领域的内容,本套教科书独立于“数与代数”和“空间与图形”领域编写,共有四章。
这四章内容采用统计和概率分开编排的方式,前三章是统计,最后一章是概率。
统计部分的三章内容按照数据处理的基本过程来安排。
我们在7年级上册和8年级上册分别学习了“数据的收集与整理”“数据的描述”,本章是统计部分的最后一章,主要学习分析数据的集中趋势和离散程度的常用方法。
在前两章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来。
为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量。
对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势,三是分析数据分布的偏态和峰度,反映数据分布的形状。
这三个方面分别反映了数据分布特征的不同侧面。
根据《标准》的要求,本章从就前两个方面研究数据的分布特征。
二、重难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
三、教学目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
第二十章数据的分析复习学案学习目标:1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾1、平均数:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,问该班有多少人?2、中位数和众数○1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. ○2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、25○3.3、极差和方差○1.一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是()A. 8B.16C.9D.17○2.如果样本方差[]242322212)2()2()2()2(41-+-+-+-=xxxxS,那么这个样本的平均数为.样本容量为.二、专题练习1、方程思想:例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:某班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。
可列方程:2、分类讨论法:例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。
已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;点拨:做题过程中要注意满足的条件。
八年级(下)数学教案《数据的分析》马娟单元教案(一)学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
(三)内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
下面是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18.1数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课 方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
第二十章数学的分析一、教学目标1.知识与能力:了解平均数、众数、中位数、极差、方差有关概念,探索并掌握平均数、方差的计算公式会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题。
2. 过程与方法:会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
会用样本平均数、方差估计总体的平均数、方差。
3.情感态度价值观:进一步感受抽样的必要性,体会用样本估计总体的的思想。
通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
二、教学重、难点重点:平均数、众数、中位数、极差、方差的归纳及其应用。
难点:应用所学的知识解决实际问题。
三、教学过程:(一).知识回顾:(1)数据的处理一般分哪些步骤进行?(2)本章我们学习了哪些统计的量?这些统计的量各有什么特点?怎样用它们做数据分析?(3)在数据分析时,我们是怎样运用样本估计总体的?(二)知识梳理数据收集—数据整理—数据描述—数据分析设计意图:通过简洁的表格整理本章的知识点学习顺序,既能够让学生清晰地回顾本章知识点,又能明确知识点的内在联系。
练一练: 1.数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小 明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为__84.5______.2. 一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的( A )A .1个B .2个C .3个D .0个 3.在某样本方差的计算公式 ])8(...)8()8[(10121022212-++-+-=x x x s 中,数据个数有 10 个,样本平均数为 8 .4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计如下表:分析上表后得出如下结论正确的是( A )①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.A.①②③B.①②C.①③D.②③5.甲、乙两人在相同的条件下各射靶10次, 每次射靶的成绩如下表:(1)请填写下表:(2) 分别从下列角度对测试结果进行分析:①从平均数和中位数相结合看;②从平均数和众数相结合看;③从平均数和方差相结合看;④从平均数和命中9环以上(包括9环)次数相结合看;⑤从10次射击两人命中环数的走势看.6.观察下表,你能从中发现平均数、方差随数据变化的规律吗?请你用发现的结论来解决以下的问题:已知数据a,2a,…,n a的平均数为X,方差为Y, 则1①数据1a+3,2a+ 3,…,n a+3的平均数为,方差为;②数据1a-3,2a-3,…,n a-3的平均数为,方差为;③数据3a,32a,…,3n a的平均数为,方差为;1④数据2a-3,22a-3,…,2n a-3的平均数为,方差为。
第二十章复习课一、内容和内容解析1.内容通过统计量(平均数、中位数、众数及方差)的计算分析数据的集中趋势和波动程度,用样本估计总体.2.内容解析由于本章是本套教科书统计部分的最后一章,因此在复习时要在统计分析的大环境下进行,让学生经历统计的基本过程,但又要侧重于通过统计量分析数据的集中趋势和波动程度.样本估计总体是统计的基本思想,而集中趋势和波动程度是数据的两大基本特征,为了分析数据的特征,选择适当的样本,选择适当的统计量分析数据的特征(集中趋势和波动程度),是本章的核心所在.因此,本节课的重点是:用抽样方法分析数据的集中趋势和波动程度,体会样本估计总体的思想.二、目标和目标解析1.目标(1)会计算平均数、中位数、众数和方差.(2)进一步理解平均数、中位数、众数和方差等统计量的统计意义,能根据问题的实际需要选择合适的统计量表示数据的集中趋势和波动情况.(3)经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生产中的作用.2.目标解析目标(1)要求学生要学会各个统计量的计算方法.目标(2)能结合问题情境和数据特征,理解各个统计量的统计意义,并能选择适当的统计量分析数据.目标(3)是通过对数据收集、整理、描述和分析等各个环节所学的方法和策略的整理和归纳,使学生对统计调查有一个整体的认识.三、教学问题诊断分析通过以前及本章内容的学习,学生已经学会各个统计量的计算,对统计的基本过程、基本思想和方法有了一定的认识,但是要在具体问题情境中灵活运用各个统计量解决问题的能力还需进一步加强,因此在复习中要通过对实际问题的分析和解决,提高学生灵活运用统计知识解决问题的能力.本节课的教学难点是:灵活运用平均数、中位数、众数和方差分析数据特征,解决实际问题.四、教学过程设计1.知识回顾1、举例说明用样本估计总体是统计的基本思想:在生活和生产中,为了解总体的情况,我们经常采用从总体中抽取样本,通过对样本的调查,获得关于样本的数据和结论,再利用样本的结论对总体进行估计。
第20章数据的分析复习教案
【知识与技能】
1.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;
2.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.
【过程与方法】
在用样本的平均数、方差估计总体的平均数、方差过程中,进一步感受抽样的必要性,体会用样本估计总体的思想.
【情感态度】
从事采集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生产和生活中的作用,养成用数据说话的习惯和实事求是的科学态度.
【教学重点】
用样本的集中趋势和波动情况估计总体的集中趋势和波动情况.
【教学难点】
选择合适的统计量来反映具体问题中的数据特征.
一、知识框图,整体把握
二、释疑解惑,加深理解
1请归纳出平均数、中位数和众数这三种刻画数据集中趋势的统计量的意义和特征.
2算术平均数和加权平均数有什么区别和联系?举例说明加权平均数中“权”的意义.
3举例说明极差和方差是怎样刻画数据的波动情况的?
【教学说明】教师提出问题,让学生相互交流,并以小组为单位发言,师生共同分析,达到系统地回顾本章知识的目的.在相互交流中,锻炼合作交流的意义,提高分析问题解决问题的能力.
三、典例精析,复习新知
例1 如图所示,公园里有两条石阶路,哪条石阶路走起来更舒服?为什么?(图中数字表示每一级的高度,单位:cm )
【分析】这是一道生活中的实际问题,要判断哪条石阶路走起来舒服,就要联想到极差和方差,它们是衡量数据波动大小的依据.
解:图(1)的石阶路走起来较舒适.
∵图(1)的极差是16-14=2,图(2)的极差是19-10=9.
()()()()2
2
2
2
1212235.33
s s s s ==∴< 又,, 所以图(1)的石阶路走起来较舒适.
【教学说明】本例的解答过程由学生自己完成,教师给予点评.
例2 在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表:
(1)求这50个样本的平均数、众数和中位数;
(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数. 【分析】通过表格数据可得到平均数30113216317412313161)1
(7x ⨯+⨯+⨯+⨯+⨯=
=++++册,众数为3册,中位数为2册;由样本中读书多于2册的人数占总数的17150+=36%,可估计该校八年级300名学生在本次活动中读书多于2册的人数约为108人.
【教学说明】解答过程由学生自主完成,教师适时予以点拨.
例3 某校要选举一名学生会主席,先对甲、乙、丙三名候选人进行了笔试和面试,成绩如下表,又进行了学生投票,每个学生都投了一张票,且选票上只写了三名候选人中的一名,每张选票记0.5分.对选票进行统计后,绘有如图1,图2尚不完整的统计图.
(1)乙的得票率是_________,选票的总数为_________;
(2)补全图2的条形统计图;
(3)求三名候选人笔试成绩的极差; (4)根据实际情况,学校将笔试、面试、学生投票三项得分按2∶4∶4的比例确定每人最终成绩,高者当选,请通过计算说明,哪位候选人当选.
解:(1)由图1的得票扇形统计图知,乙的得票率为36%.由图2的得票数条形统计图知,乙得票数为144张,故选票总数为:144÷36%=400(张);
(2)由(1)易知丙得票数为400×30%=120(张),可补全条形图(图略);
(3)三名候选人笔试成绩的极差为90-72=18(分);
(4)由题意知,甲、乙、丙三名候选人的学生投票得分分别为68分,72分,60分,按要求可求出甲、乙、丙三名候选人的综合得分分别为:
72282468474.444
()2x ⨯+⨯+⨯=
=++甲分 8628547248024()4
x ⨯+⨯+⨯==++乙分 90287460476.844()2x ⨯+⨯+⨯==++丙分 由x x x 乙丙甲>>,知乙当选为学生会主席.
【教学说明】本例是一道综合性较强的统计问题,它需要同学们熟悉从统计图中的信息找出解决问题的突破口,还需要同学们熟悉极差、加权平均数的意义,能结合题意计算加权平均数.因而,在教学过程中,教师可先作必要分析,回顾有关条形图、扇形图的特征,帮助学生获得解题思路,然后让学生自主探究,独立完成,巩固相关统计知识.
教师巡视,对有困难学生给予点拨.
四、师生互动,课堂小结
通过复习你有哪些收获?有何心得体会?还有哪些需注意的问题?与同伴交流.
1.布置作业:从教材“复习题20”中选取.
2.完成练习册中本课时练习.
《数据的分析》这一章是整个初中阶段统计版块最后一个内容.所以本章的复习除了对本章知识回顾外,还应对以前学过的知识进行总结,并尽可能让学生理解和掌握从数据采集、整理、描述到分析数据这样一个完整的过程,进一步体会统计与生活的联系,感受统计在生产和生活中的作用.
由于这一部分比较简单,教师要尽可能地让学生自主交流、自主复习,教师巡视,对有困难的学生给予个别指导.。