半导体励磁调节装置结构及原理
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
励磁装置的工作原理
励磁装置的工作原理是通过提供电子、电流或磁场,来使磁性物质获得或减少磁化强度的过程。
具体来说,励磁装置的工作原理可以分为以下几个步骤:
1. 供电电源:励磁装置需要一个供电电源来提供所需的电能。
这个电源可以是直流或交流电源,根据具体的励磁要求而定。
2. 磁场产生:励磁装置通常通过线圈或电磁铁产生磁场。
该线圈或电磁铁由电流驱动,电流通过线圈时会产生磁场。
线圈的设计可以根据需要产生不同形状和强度的磁场。
3. 磁化物体:一旦磁场产生,励磁装置通过将待磁化的物体置于磁场中,使其暴露于磁场之中。
待磁化物体可以是永磁体(如磁铁)或其他磁性材料。
4. 磁场作用:当待磁化物体暴露在磁场中时,磁场会对其内部原子或分子的磁导体进行影响。
这些磁导体会被磁场排列在一定的方向上,从而使物体磁化。
如果磁场的方向与物体的自然磁化方向相反,则可以减少物体的磁化程度。
总的来说,励磁装置通过提供电能来产生磁场,然后利用磁场与待磁化物体的相互作用,实现对物体磁化强度的增加或减少。
这样可以控制和改变物体的磁性质。
励磁调节器工作原理励磁调节器是一种用于调节和控制发电机励磁电流的装置,它在电力系统中起着重要的作用。
它的工作原理是通过改变励磁电流的大小和方向,来调节发电机的输出电压和无功功率,以满足电力系统的需求。
励磁调节器由励磁电源、调节电路和控制回路组成。
励磁电源一般由直流发电机或静止励磁装置提供,它的输出电流经过调节电路进行调节,然后输入到发电机的励磁线圈中。
调节电路是励磁调节器的核心部分,它通过控制调节电阻或可变电阻的阻值,来改变励磁电流的大小和方向。
控制回路负责监测电力系统的电压和频率变化,并根据设定值对调节电路进行控制,以实现对发电机输出电压和无功功率的调节。
励磁调节器的工作原理可以分为两个方面来理解:电磁感应和电磁力平衡。
首先是电磁感应。
当励磁电流通过励磁线圈时,会在发电机的磁极上产生磁场。
根据电磁感应的原理,当发电机的转子旋转时,磁场会切割发电机的定子线圈,从而在定子上产生感应电动势。
这个感应电动势的大小和方向与励磁电流的大小和方向有关。
其次是电磁力平衡。
发电机的励磁线圈周围有一个气隙,当励磁电流通过励磁线圈时,会在气隙中产生一个磁场。
这个磁场会与发电机的磁场相互作用,产生一个力矩,使得发电机的转子旋转。
这个力矩的大小和方向也与励磁电流的大小和方向有关。
基于以上原理,励磁调节器可以通过调节励磁电流的大小和方向,来改变发电机的输出电压和无功功率。
当电力系统需要提高发电机的输出电压时,励磁调节器会增大励磁电流的大小;当电力系统需要降低发电机的输出电压时,励磁调节器会减小励磁电流的大小。
同样地,当电力系统需要提高发电机的无功功率时,励磁调节器会改变励磁电流的方向,以增加无功功率的输出;当电力系统需要降低发电机的无功功率时,励磁调节器会改变励磁电流的方向,以减小无功功率的输出。
总结一下,励磁调节器通过改变励磁电流的大小和方向,来调节发电机的输出电压和无功功率。
它的工作原理基于电磁感应和电磁力平衡的原理,通过调节电路和控制回路的协调工作,实现对发电机的精确控制。
励磁调节器工作原理励磁调节器是一种用于调节电力系统中励磁电流的设备,它的工作原理是通过控制励磁电流的大小和方向,以调节发电机的电磁场强度,从而实现对发电机输出电压和无功功率的调节。
励磁调节器通常由功率放大器、控制电路和传感器组成。
传感器用于检测发电机的输出电压和电流,并将信号传递给控制电路。
控制电路根据传感器的信号,计算出励磁电流的调节量,并将调节信号传递给功率放大器。
功率放大器根据控制信号,将调节后的励磁电流输出到发电机的励磁系统中。
励磁调节器的工作原理可以分为两个方面来解释,分别是电磁感应和反馈控制。
电磁感应是励磁调节器工作的基础。
发电机的励磁系统中通常有两种电磁场,即同步电磁场和励磁电磁场。
当发电机转子旋转时,同步电磁场会产生交变磁通,从而在发电机的定子绕组中感应出交变电压。
这个电压被用作传感器的输入信号,用于检测发电机的输出电压和电流。
反馈控制是励磁调节器工作的关键。
控制电路通过对传感器信号的处理,计算出励磁电流的调节量。
这个调节量是根据发电机输出电压和无功功率的设定值来确定的。
控制电路将调节信号传递给功率放大器,功率放大器将调节后的励磁电流输出到发电机的励磁系统中,从而改变发电机的电磁场强度。
励磁调节器的工作原理可以通过控制电路中的PID控制算法来解释。
PID控制算法是一种常用的反馈控制算法,它通过对比设定值和实际值的差异,计算出控制信号的大小和方向,从而实现对系统的调节。
在励磁调节器中,设定值是发电机输出电压和无功功率的设定值,实际值是传感器检测到的发电机输出电压和电流。
控制电路根据设定值和实际值的差异,计算出励磁电流的调节量,并将调节信号传递给功率放大器。
总结起来,励磁调节器通过控制励磁电流的大小和方向,以调节发电机的电磁场强度,从而实现对发电机输出电压和无功功率的调节。
它的工作原理基于电磁感应和反馈控制,通过传感器、控制电路和功率放大器的配合,实现对励磁电流的精确调节。
励磁调节器在电力系统中起着重要的作用,能够保证发电机的稳定运行和电力系统的正常运行。
励磁装置工作原理励磁装置主回路部分主回路的组成和功能装置主回路完成整流和灭磁两大功能,系统采用三相全控桥可控硅整流电路,向同步电动机转子绕组提供直流励磁电流。
灭磁回路由可控硅7、8KGZ与二极管GZ反并联组成,实际上组成为一个大功率电子开关,完成同步电动机在异步起动过程中串入起动电阻,起动结束后自动切除,保证同步电动机在异步起动期间,转子励磁绕组既不开路也不短路,从而避免励磁绕组承受过电压和过电流。
励磁装置控制部分:系统控制部分包括S7200PLC、Pro-face触摸屏、KGLF-2型微机励磁控制器三部分组成。
PLC主要完成继电回路逻辑控制工作方式切换、运行时PI调节以及对外通讯等工作,Pro-face触摸屏主要完成系统参数设置和运行时故障、工作时间、设定运行参数信息查询,Pro-face触摸屏具有励磁电流和励磁电压录波曲线信息查看。
KGLF-2型励磁控制器里由主机MC87C51和副机AT89C51单片机组成。
励磁控制器主要完成频率测量及投励、脉冲形成、故障检测及处理。
1转子感应电压频率的测量同步电动机起动时, 转子感应电压的频率随着转速的上升逐渐下降,同步电动机一旦起动, 单片机就立即检测转子感应半个周波的时间, 从20ms开始, 数码管记“9”,中间每增加20ms, 数码减1, 到200ms时数码管显示“0”。
同步电动机在异步起动过程中,当转子转速达到同步转速的90%时,转子感应电压的频率5Hz,周期0.2s,半周时间为100ms,计算机一旦检测到该值,立即投全压。
投全压后,电动机的转速将继续上升,当转速增加到同步转速的95%时,转子感应电压的频率为2.5Hz,周期为0.4s,半周时间为200ms ,计算机检测到此值,迅速进入整流程序, 输出脉冲, 装置投入励磁, 同时接通投励工作指示, 关掉低压灭磁并开放失磁保护和失步保护等。
2脉冲形成同步信号Ta、W3提供正偏移,及励磁调节器的输出信号Uk,三者通过运算放大器综合处理后作为单片机外部中断请求INT0的输入信号,当INT0从1变0时, 单片机接受中断, 立即发出第一组脉冲去触发1# 可控硅,同时给6#可控硅补一个脉冲。
励磁调节器的组成励磁调节器,也称为励磁稳压器,是一种用于稳定交流发电机励磁电流的电力装置。
它的作用是维持发电机的励磁电流不受外界因素的影响,保持发电机的输出电压稳定。
励磁调节器由多个部件组成,下面将详细介绍其组成部分。
1. 励磁电流感应器励磁电流感应器是测量发电机励磁电流的传感器。
它是一个电流变送器,可以将电流信号变换成电压信号输出。
该信号将被送到励磁调节器中的控制器中,用于控制励磁电流。
2. 励磁电源励磁电源是励磁调节器的主要部分之一。
它可以提供必要的电压和电流,控制发电机的励磁电流。
励磁电源的电流通常为直流电流,其电压大小与发电机输出电压正比。
在设计励磁电源时需要考虑到负载的稳定性和成本的平衡。
3. 控制器控制器是励磁调节器中的另一个主要部分。
主要功能是对感应器测量到的励磁电流进行处理,并输出相应的控制信号。
这些信号传输给励磁电源,以供其控制励磁电流的大小及方向。
4. 励磁绕组励磁绕组是励磁调节器中的另一重要组成部分。
它是连接发电机和励磁电源的一个线圈。
当励磁电流通过励磁绕组时,将在发电机中产生一定大小的磁场,从而影响输出电压的大小。
励磁绕组通常是以铜线缠绕在发电机上的。
5. 整流器整流器是将外部交流电源转换为直流电源的电路。
在励磁调节器中,整流器将交流电源转换为直流电源,以供励磁电源使用。
其目的是稳定输出电压,保持励磁电流稳定并避免功率损失。
以上就是励磁调节器的主要组成部分。
它们密切相互配合,控制发电机的励磁电流和输出电压。
励磁调节器在电力系统中的作用非常重要,它的质量和稳定性直接关系到电力系统的运行稳定和生产效益。
因此,在使用励磁调节器前,需要对其进行充分的测试和验证,以保证其正常工作。
励磁调节装置原理励磁调节装置是一种在电力系统中用来控制发电机励磁电流的设备。
它的作用是调整发电机的励磁电流,以维持系统的电压稳定性和频率稳定性。
本文将详细介绍励磁调节装置的原理及其工作过程。
一、励磁调节装置的原理励磁调节装置采用了反馈控制的原理,通过监测发电机的输出电压和电流,根据设定值进行比较,然后自动调整励磁电流的大小,以达到稳定电压和频率的目的。
励磁调节装置的核心是电子晶体管或可控硅等器件。
在励磁系统中,它们被用作功率放大器,用来控制励磁电流的增减。
当检测到输出电压过高时,励磁调节装置会减小励磁电流,以降低发电机的输出电压;反之,当输出电压过低时,励磁调节装置会增大励磁电流,以提高发电机的输出电压。
二、励磁调节装置的工作过程励磁调节装置的工作过程可以分为以下几个步骤:1. 电压检测:励磁调节装置通过传感器监测发电机的输出电压。
传感器将电压信号转换为电流信号,进而被励磁调节装置接收。
2. 反馈控制:励磁调节装置将检测到的电压信号与设定值进行比较。
如果发现输出电压偏离设定值,励磁调节装置会自动调整励磁电流的大小。
3. 励磁电流调节:根据比较结果,励磁调节装置通过控制功率放大器的输出,调整励磁电流的大小。
功率放大器会根据控制信号对器件进行控制,使励磁电流增大或减小。
4. 稳定输出:调节后的励磁电流被送往发电机,使其输出电压回归到设定值。
通过不断的检测和调整,励磁调节装置能够保持发电机输出电压的稳定性。
三、励磁调节装置的应用励磁调节装置广泛应用于发电厂、变电站和电力系统中。
它不仅对电力系统的电压和频率稳定性至关重要,还能提供一定的防护措施。
在变电站中,励磁调节装置能够控制变压器的输出电压,保证电力输送的稳定性。
在发电厂中,励磁调节装置能够提高发电机的运行效率,减少能源的浪费。
在电力系统中,励磁调节装置能够应对复杂多变的负荷变化,保持电网的稳定运行。
总结:励磁调节装置是电力系统中一种非常重要的设备,它通过反馈控制的原理,自动调整发电机的励磁电流,以维持系统的电压和频率的稳定性。
2.2节半导体励磁调节装置结构及原理
半导体励磁调节装置结构及原理
励磁调节器是励磁控制系统中的智能设备,它检测和综合励磁控制系统运行状态及调度指令,并产生相应的控制信号作用于励磁单元,用于调节励磁电流大小,满足同步发电机各中运行工况的需要。
半导体自动调节励磁装置的型号很多,但其基本构成却相似,由基本控制和辅助控制两大部分作成。
如图5—15虚线框内所示基本控制由调差单元,测量比较单元,综合放大单元,移相触发单元和可控整流桥等构成,实现励磁电流的自动调节,以便维持系统电压水平和合理分配机组间的无功功率;辅助控制是为了满足电机不同工况要求,改善电流系统稳定性和励磁系统动态性能而设置的,包括励磁系统稳定器,电力系统稳定器和励磁限制器等,视具体要求设置。
半导体励磁调节系统结构框图
励磁调节器的几个基本环节:
1.测量,给定与比较单元
测量比较环节框图
该单元的任务:测量发电机机端电压,并于给定电压相比较,输出机端电压的偏差信号到综合放大单元。
给定电压要求在规定范围内可调。
2.综合放大单元
综合放大电源对电压偏差型号,稳定控制信号,励磁限制信号和各种补偿信号等起综合
和放大的作用(线性迭加),经综合放大后的控制信号输出到移相出发单元作为触发脉冲角度的移相控制信号。
其中,电压偏差信号来自上述测量给定比较单元,稳定控制信号来自励磁系统稳定器(ESS)和电力系统稳定器(PSS),励磁限制信号来自各种励磁限制器,补偿信号来自励磁绕组时间补偿器等。
3.移相触发单元
移相触发单元根据综合放大单元从来的控制信号的变化,改变输出到晶闸管的触发脉冲的相应,即改变控制角?,从而控制晶闸管整流电流的输出电压,达到调节发电机的励磁电流的目的。
移相触发器的基本原理:利用主回路电源电压信号产生一个频率与主回路电源同步的,副值随时间单调变化的信号(称为同步信号),将其与来自综合放大单元的控制信号比较,在两者相等的时刻形成触发脉冲;移相触发器一般由三个功能环节组成:脉冲形成和脉冲放大。
根据信号的形成划分,常见的移相触发器有锯齿波移相(或线性移相)和余玄波移相两种。
锯齿波移相原理:将主回路电源的正弦电压信号整形为方波信号作为门信号,用来控制一个恒流元积分器的充方电,积分器充电时输出一个线性上升的电压波形,该电压波形就是具有与主回路同步且随时间单调变化特点的同步信号,将调节器输出的控制信号与该线性变化的同步信号相比较两者相等时发出触发脉冲。
锯齿波移相原理如图3-11所示。
锯齿波移相的特点:(1)控制角与控制电压成正比(或反比)关系(锯齿波移相又称线性移相);(2)控制角不受主回路电源电压副值得影响;(3)(全空桥输出电压与控制电压成余弦关系。
余弦波移相原理:(1)控制角与控制电压成反余弦关系(2)控制角受主回路电源电压副值的影响;(3)全空桥输出电压与控制电压成正比关系。
4.调差单元
调差单元是并列运行各同步发电机之间合理分配无功功率的关键环节。
所谓合理分配无功功率,就是指负荷总无功功率按机组容量百分比(即标玄值)相等的原则分配给各并列机组。