压缩机组培训教材
- 格式:doc
- 大小:7.32 MB
- 文档页数:59
➢目的为了规范保证制冷设备的正常操作,特制定本指导书,使操作人员按操作规程操作螺杆式制冷压缩机组。
➢范围适用于本车间螺杆压缩机组及制冷系统的操作运行。
➢操作规程一、手动操作:1、在确认控制电源正常后,将控制台内的两个断路器闭合,为控制回路上电。
将“操作方式”选到“压缩机”,在红色的“手动”指标灯亮了之后,如果“准备开机”和“能级零点”指示灯亮,那么按下“开机”按键超过1秒,机组就会进入启动程序,同时“准备开机”指标灯熄灭,“启动”指示灯亮。
2、启动过程:油泵首先启动,在油泵预润滑延时之内若油压差建立,则在延时30秒后,控制器发出压缩机启动信号,压缩机自动启动。
在又一个30秒延时后,控制器检查压缩机反馈,如果有反馈信号,则自动增载,直到“能级零点”指示灯熄灭后停止增载,“启动”指示灯熄灭,“运行”指示灯亮,启动过程结束。
(注:在油泵启动后一定不要盘车,以免发生危险!)3、手动增载:机组运行后,将“操作方式”选到“能级”位置,这时按下“增加”键,增载电磁阀打开,机组减载,松手后就停止减载。
4、手动减载:机组运行后,将“操作方式”选到“能级”位置,这时按下“减少”键,减载电磁阀打开,机组减载,松手后就停止减载。
5、手动停机:运行中的机组,如果需要停机,就先手动减载,当“能级零点”指示灯亮了之后,将“操作方式”选到“压缩机”位置,按“停机”按键超过1秒钟,机组进入停机程序,“运行”指示灯熄灭,停压缩机电机,再延时30秒后停油泵,从而完成停机操作。
6、不论在何种控制方式下,只要在机组运行期间按下“停止”按键超过1秒,或者将“操作方式”按键选到“停止”位置超过5秒,机组都会先自动减载至能级零点后停机。
若在30秒钟之内无法减载到能级零点,机组也会停机,但是在下次启动时能级就不在零点位置了,虽然在启动时仍然可以减载,但我们不推荐采用该方法停机。
二、自动操作:1、控制设定点:A、压缩机的控制设定点:自动方式下,控制器对控制的当前值和其控制设定点的设定值进行比较,从而决定下一步的操作。
1压缩机组启动步骤当压缩机处于带压停机状态,软件中有两个不同的阀门控制逻辑:- 控制逻辑“A ”,加载阀CV-202打开- 控制逻辑“B ”,放空阀CV-203受控在控制逻辑图中,工艺阀门方式A 和B 的区别是:软件可以根据下面的条件,自动在阀门控制逻辑“A ”和控制逻辑“B ”之间切换:- 当PDIT-153低于0.6bar 时,阀门控制逻辑从“A ”切换到“B ”。
- 当PDIT-205低于 -1bar 时,阀门控制逻辑从“B ”切换到“A ”。
只要执行的是压缩机正常停机或者是带压紧急停机,那么新的阀门控制逻辑(“A ”)是有效的。
PDIT-205/3的定标量程必须是-2bar 到12bar 。
(但在“Loop Test Check List”表中定标量程是-2bar到9bar;在“FIELD INSTRUMENT LIST”表中定标量程也是-2bar到9bar)。
13.1压缩机正常停机/带压紧急停机之后的启动启动程序会有两个“剧本”:13.1.1阀门控制逻辑(“A”)有效,各工艺阀门的状态如下表:1)控制逻辑会检查所有的启机符合条件;2)如果跳闸电路在非健康状态,利用HMI“STAR-UP”显示页面的“Compressor Reset”(Shutdown Reset XS 134)按钮进行复位。
3)在HMI“STAR-UP”显示页面,XS 162有效表示压缩机组作好启动准备。
4)操作员在HMI“STAR-UP”显示页面按动“Compressor Start”按钮(XS 159)115)检查压缩机进口加载阀CV 202两端差压PDIT 205,当差压值低于1bar,压缩机进、出口截断阀ROV 202、ROV 204打开。
6)根据检测到的相关阀门阀位开关ZSH ROV 202和ZSH ROV 204,关闭进口加载阀CV 202。
7)主电机启动程序被激活。
13.1.2阀门控制逻辑(“B ”)有效,各工艺阀门的状态如下表:NOTE 1:CV 203 在受控状态的意思是根据PDIT 153的实际测量值,该阀门处于打开或关闭状态(当PDIT 153实测值<0.6bar 时,CV 203打开,当PDIT 153实测值>0.9bar 时,CV 203关闭)1)控制逻辑检查全部的启动符合条件、关注压缩机密封气系统差压,差压变送器PDIT 153测量值必须大于0.4bar、小于2bar。
冷水机组培训课件•冷水机组基本概念与原理•冷水机组结构与组成部件•制冷循环系统与操作流程•节能技术与维护保养策略目录•安全操作规程与环境保护要求•实际操作演示环节冷水机组基本概念与原理冷水机组定义及作用0102冷水机组通过压缩机将制冷剂压缩成高温高压气体,然后通过冷凝器将其冷却成高压液体。
高压液体通过膨胀阀进入蒸发器,由于压力降低,制冷剂在蒸发器中蒸发吸热,从而将冷冻水冷却。
冷却后的冷冻水通过水泵输送到应用场合,完成冷却循环。
工作原理简介常见类型及其特点结构紧凑、运行平稳、能效比高,适用于中大型空调系统。
制冷量大、效率高、运行可靠,适用于大型中央空调系统。
结构简单、价格较低、维护方便,适用于小型空调和工业冷却系统。
以热能为动力,无需电力驱动,适用于电力紧张或有余热的场合。
螺杆式冷水机组离心式冷水机组活塞式冷水机组吸收式冷水机组空调领域食品加工领域市场现状工业冷却领域应用领域与市场现状冷水机组结构与组成部件压缩机类型及性能参数压缩机类型性能参数冷凝器结构和散热方式冷凝器结构散热方式蒸发器设计要点设计要点种类膨胀阀或毛细管作用膨胀阀作用毛细管作用与膨胀阀类似,起到节流降压作用,但结构更简单,适用于小型冷水机组。
其他辅助设备功能介绍01020304油分离器干燥过滤器视液镜电磁阀制冷循环系统与操作流程制冷剂选择及充注量计算充注量计算方法制冷剂类型与特性掌握根据冷水机组型号、制冷量等参数计算制冷剂充注量的方法。
充注操作注意事项压缩过程冷凝过程膨胀过程蒸发过程制冷循环过程剖析熟悉开机前需要对冷水机组进行的各项检查,如电源、制冷剂压力等。
开机前检查开机操作步骤停机操作步骤调试方法与技巧掌握冷水机组的开机操作流程,包括启动冷却水泵、冷冻水泵和压缩机等。
熟悉冷水机组的停机操作流程,包括关闭压缩机、冷却水泵和冷冻水泵等。
了解冷水机组调试的方法和技巧,包括制冷量、制冷剂压力等参数的调整。
开机、停机和调试流程故障诊断与排除方法常见故障类型故障诊断方法排除故障措施预防措施与维护建议节能技术与维护保养策略高效压缩机技术热回收技术变频调速技术030201节能技术应用案例分享日常维护保养计划制定清洁机组表面定期清洁机组表面灰尘和污垢,保持散热良好。
1.螺杆式制冷压缩机组的组成及工作原理螺杆式制冷压缩机组包括:螺杆式制冷压缩机、气路系统、油路系统和控制系统,这些设备(除启动柜之外)装在同一公共底座上,构成机组。
气路系统包括:吸气截止阀、吸气过滤器、吸气止回阀、排气截止阀等。
油路系统包括:高效油分离器、油冷却器、油粗过滤器、油泵、油精过滤器、恒压阀、回油过滤器等。
控制系统包括:启动柜、控制台。
典型螺杆式制冷压缩机组流程见下图1-过滤器 2-吸气止回阀 3-螺杆式制冷压缩机 4-伸缩管(可以不设)5-二次油分离器 6-排气止回阀 7-油分离器 8-旁通管路 9-油粗过滤器10-油泵 11-油冷却器 12-油精过滤器 13-恒压阀 14-油分配管15-能量调节阀1.1螺杆式制冷压缩机螺杆式制冷压缩机是回转容积型压缩机,依靠气体进入机器后体积的缩小使气体密度急剧增加而使气态制冷剂压力升高。
螺杆式制冷压缩机的机体内装有两只互相啮合的平行转子--阳转子和阴转子。
当两转子转动时,两转子的齿部相互插入到对方的齿槽内,随着转子的旋转,插入的长度越来越大,容纳气体槽的容积越来越小,从而达到压缩气体制冷剂的目的。
为使压缩机正常工作,需要向压缩机内喷油。
向压缩机工作腔,可以起到密封和冷却的作用;轴承、轴封、平衡活塞的工作也需要提供润滑油。
1.1.1螺杆式制冷压缩机的工作过程螺杆式制冷压缩机的工作过程由吸气、压缩、排气三个过程组成,转子的具体工作过程见图单级螺杆式制冷压缩机内装有一对转子,主动转子4个齿,从动转子6个齿。
两个转子装入机体中,由主动转子带动从动转子相互啮合而转动。
当转子转动时,一对相互啮合的齿槽相通。
图(a)表明转子进入吸气状态,当转子继续转动时,如图(b)所示,一对相互啮合的齿槽容积逐渐减少,使压力升高,形成了压缩过程。
当压缩的齿槽与排气口相通时,见图(c),压缩机开始进入排气状态,直到排气完了为止。
阳转子每旋转一圈,压缩机完成4个吸气、压缩、排气过程。
压缩机组培训教材第一节压缩机概述一、压缩机定义和分类压缩机是一种根据气体的压力取决于单位时间气体分子撞击单位面积的次数和强烈程度的原理,把其它形式的能量转化成压力能并提高气体压力和输送气体的机器。
在国民经济各部门得到广泛的应用,特别是在石油、化工、动力和冶金等各个行业中占有重要地位。
在化工生产中,工艺气体经压缩机压缩提压后,可满足各种工况的需要,使工艺过程得以实现。
压缩机种类很多,按工作原理分为:容积式压缩机和透平式压缩机。
1.容积式压缩机种类、特点:用增加单位容积气体分子数,从而缩小分子间距来提高气体压力。
典型代表活塞式压缩机,具有压力围广、效率高、排气量基本不随压力变化的特点。
另外还有滑片式、罗茨式、螺杆式压缩机。
2.透平式压缩机种类、特点:利用旋转叶片对气流的作功、通过气流的不断加速、减速因惯性彼此挤压而缩短分子间距来提压。
具有体积小、重量轻、结构紧凑、流量大、维修工作量小、气体不受润滑油污染、适于汽轮机或燃气轮机驱动有利于能源的综合利用等特点,在石化行业得到广泛应用,并实现单机配制,适用于低、中压,大流量的场合。
按气体运动方向分类:1.离心式:被压缩气体在压缩机大致沿垂直于压缩机轴的径向流动。
2.轴流式:气体在压缩机大致沿平行于轴线方向流动;3.轴流离心组合式:在轴流式的高压段配以离心式段。
按排气压力Pd分类:通风机,Pd<0.0142MP(g);鼓风机,0.0142 MP(g)≤Pd≤0.245MP(g),压缩机,Pd>0.245MP(g)。
按用途分类:制冷压缩机、高炉压缩机、空气压缩机、天然气压缩机、合成气压缩机、二氧化碳压缩机等。
二、汽轮机的定义和分类:汽轮机,又叫蒸汽透平,用蒸汽来做功的旋转式原动机。
来自锅炉或其它汽源的蒸汽通过调速阀进入汽轮机,一次高速流过一系列环形配置的喷嘴(静叶栅)和动叶栅而膨胀做功,推动汽轮机转子旋转(将蒸汽的能转换成机械能),汽轮机带动发电机、压缩机或泵等负荷机旋转。
汽轮机按照热力过程分为:1.凝汽式汽轮机蒸汽在汽轮机中作功后全部排入凝汽器冷凝,凝汽器部压力比大气压低。
2.抽汽凝汽式汽轮机蒸汽在汽轮机膨胀至某级时,将其中一部分蒸汽从汽轮机中抽出来,供给其它的蒸汽用户;其余蒸汽在后面级中作功后排入凝汽器。
3.背压式汽轮机蒸汽进入汽轮机膨胀作功后,在大于一个大气压的压力下排出气缸,其排汽供其它低压用户。
4.多压式(注入式)汽轮机若工艺过程中有某一压力的蒸汽用不完时,就把这些多余的蒸汽通过管道注入汽轮机中的某个中间级并同原来的蒸汽一起在透平膨胀作功,从而回收能量。
汽轮机按蒸汽压力分为低压(2.0MPa以下)、中压(2.0—5.0MPa)、高压(5.0—10.0 MPa)、超高压(12.0—14.0 MPa)及超临界(22.5 MPa以上)的汽轮机。
按工作原理分为:冲动式、反动式、冲动式与反动式的组合式汽轮机等。
第二节离心式压缩机及汽轮机的基本原理和结构一、离心式压缩机工作原理及结构1.结构从外观上首先看到的是机壳(气缸),通常用铸铁或铸钢浇铸而成。
一台压缩机常常有两个或两个以上的气缸,按压力高低称低压缸、中压缸和高压缸。
压缩机本体结构可分两大部分:(1)、转动部分,有主轴、叶轮、平衡盘、推力盘及联轴器等零部件组成,又称转子。
(2)、定子部分,由气缸、隔板、径向轴承、推力轴承、轴端密封等零部件组成,常称转子。
在压缩机理论中常常沿气体流动线路,将压缩机分成若干个级,级是由一个叶轮和与之相配合的固定元件扩压器、弯道和回流器的基本单元组成。
如图所示压缩机每段进口处的级成为首级,除了上述元件还包括进气室;压缩机排气口的级成为末级它没有弯道和回流器,取而代之的是排气室。
在离心式压缩机中,气体流过一级之后,压力的提高是有限的,要想压缩到较高压力时,就需要通过若干个级来完成,几个级可以装在一个缸。
一个缸最多能装10级左右,更多的级需要采用多缸。
气体经压缩后温度就要升高,当要求压力比较高时,常将气体压缩到一定压力时就从缸引出,在冷却器降温,然后再进入下级继续压缩。
根据冷却次数的多少,可将压缩分为几个段。
一个段可以是一个级也可以是几个级。
一缸可分为一个段或多段。
在多级离心压缩机中,由于每级叶轮两侧气体作用在其上的力大小不同,因此,使转子受到一个指向低压端的合力,这个合力称为轴向力。
平衡盘是用自身两侧的压力差来平衡轴向力的零件。
它位于压缩机的高压侧,用来平衡大部分轴向力的,剩下的轴向力作用于止推轴承上。
有的压缩机叶轮采用背靠背的方法排列来平衡轴向力。
联轴节又叫背靠轮,它是汽轮机(或驱动电机)和压缩机以及压缩机高低压缸间的连接件,现在通常采用挠性联轴节。
它允许较大的平行不对中、角度不对中和综合不对中。
定子包括机壳和壳的固定元件,机壳有水平分和垂直剖分两种型式。
水平剖分便于拆装机制造,但密封面大,且强度差;对于压力较高的情况,采用垂直剖分形式,壳体实际上是两缸,缸仍是水平剖分,转子及固定元件都装在缸中,然后再装入外缸,外缸为整个圆筒,在一端或两端有端盖,打开后即可把缸拉出。
机壳有各种隔板,在机壳和隔板之间,隔板与隔板子之间构成了吸气室、扩压室、弯道和回流器等固定元件。
2、通流部分各主要部件的作用气体在压缩机中流经的主要通道部件是进气室、叶轮、扩压器、弯道、回流器和蜗壳。
这些部件我们称之为通流部件。
下面分述这些部件的作用。
(1)进气室:这是将进气室或中间冷却器的气体均匀地吸入叶轮去进行增压的通道,因此在压缩机中每一段进口都设置进气室。
(2)叶轮:叶轮也称为工作轮,它是压缩机的心脏部件,气体在叶轮叶片的作用下,跟着叶轮作高速旋转,气体由于受到旋转离心力的作用以及在叶轮里的扩压流动,使气体压力得到提高,速度也得到提高。
所以叶轮是气体提高能量的关键部件。
(3)扩压器:气体被从叶轮甩出后,就有较高的流动速度,在叶轮出口后设置流道截面逐渐扩大的部件称为扩压器。
其目的是进一步将气体的流动速度转化为压力。
(4)弯道:为了把扩压器后的气体引入到下一级叶轮的进口,就必须改变气体流动的方向,使其由离心方向的流动改为向心方向的流动,所以在扩压器的后面设置了弯道与其相连接。
(5)回流器:其作用是将弯道来的气体均匀的分布到下一级叶轮的进口。
(6)蜗壳:蜗壳的主要目的是把扩压器或叶轮后面的气体汇集起来,引到压缩机外面去,流向气体输送管道或气体冷却器,此外在汇集气体的过程中,一般由于蜗壳外径的逐渐增大通流截面也逐渐扩大,因此也祈祷一定的降速增压作用。
3、工作原理离心式压缩机的工作原理与输送液体的离心泵相似。
当驱动机(如汽轮机、电动机等)带动压缩机转子旋转时,叶轮流道中的气体受叶轮作用随叶轮一起旋转,在离心力的作用下,气体被甩到叶轮外的扩压器中去。
因而在叶轮中形成了稀薄地带,入口气体从而进入叶轮填补这一地带。
由于叶轮不断旋转,气体就被不断地甩出,入口气体就不断地进入叶轮,沿径向流动离开叶轮的气体不但压力有所增加,还提高了速度,这部分速度就在后接元件扩压器中转变为压力,然后通过弯道导入下级叶轮继续压缩。
4、离心式压缩机的功耗及效率(1)概述:压缩机气体需要消耗的能,大型离心压缩机由原动机(如汽轮机、燃动机等)驱动,原动机轴端所传递的功率包括压缩机轴承、齿轮箱及联轴节等传动部分的机械损失以及压缩机功率。
功率指的是压缩机转子对气体所消耗的功率。
压缩机转子是通过叶轮向气体传递能量的。
叶轮除对气体作功外,叶轮的轮盘、轮盖的外侧面及轮缘与周围气体的摩擦所产生的轮阻损失、叶轮出口高压气体漏回到叶轮低压端的漏气损失也都要消耗功。
对整个压缩机来说,叶轮对气体作功转换成下列三个部分:A提高气体的静压能(压缩功),使气体从进口压力提高到出口压力。
B提高气体的动能。
在一般情况下,动能的提高不大,常常可以忽略不计。
C克服气流在级中的流动损失。
这部分流动损失,是指气流在叶轮和级的固定元件(如吸气室、扩压器、弯道、回流器、蜗壳等)的流动损失。
总之,压缩机级中的功耗有五部分组成,即静压能提高、动能的变化、流动的损失、轮阻损失和漏气损失组成的,只有静压能的提高对气体的升压是有用的。
(2)气体的压缩过程静压能的提高与气体的压缩过程有关。
热力学把气体的压缩过程分为:等温压缩过程、绝热压缩过程、多变压缩过程。
压缩机中气体的实际压缩过程是多变压缩过程,但可以忽略与外界的热交换。
现分析各压缩过程中的静压能提高(压缩功)。
设压缩机进出口参数分别为P1、V1、T1和P2、V2、T2,压缩气体的所需能量的单位Kg.m/Kg,它表示压缩1Kg气体所需要的能量。
A等温压缩 T=Const(恒定)等温压缩功为 His=RT1Ln(P2/P1) (Kg.m/Kg)B绝热压缩气体在压缩过程中与外界无热交换且无气体流动损失和摩擦损失。
绝热压缩后气体温度:T2/T1=( P2/P1)(K-1)/K绝热压缩功为:Had=K/(K-1)R T1(( P2/P1)(K-1)/K-1) (Kg.m/Kg)C多变压缩过程:过程存在流动损失和摩擦损失,外界可以有热交换或者无热交换。
多变过程气体温度计算式为:T2/T1=( P2/P1)(M-1)/M多变压缩功为:Hpol=(m/(m-1)) R T1(( P2/P1)(M-1)/M-1) (Kg.m/Kg)以上式中R为气体常数,被压缩气体组分越轻则R越大。
多变过程和理论绝热过程的公式具有同样形式,只是绝热指数K代以多变指数m。
多变指数和绝热指数不同,它不仅随气体的种类而变化,而且与设备结构有关系。
对于离心式压缩机来说,多变指数m大于绝热指数K。
机器设计和控制的越合理,则m越接近K值。
(3)压缩机过程分析讨论A三种典型压缩过程,如气体温度和压比相同,则等温压缩过程需要的压缩功最小,排气温度最低,等于进气温度。
这是一种理想情况,实际上只能接近而不能达到。
多级压缩过程需要的能量头最大,所以多级压缩机常做成多段,增加段间冷却器从而使压缩过程向等温压缩过程靠近,对于具有中间冷却器的压缩机常用等温效率来衡量机器完善程度。
B同质量流量的同种气体来说,如初温度相同,当压缩比相同,其功耗也相同。
例如把气体从10个大气压压缩到100个大气压,与从1个大气压压缩到10个大气压所需要的功耗相同。
C气体所需要的压缩功与气体的性质有关,对轻气体,因为气体R大,所以在相同压力下需要的压缩功就比压缩重气体大从压缩表达式可以看出),但由于同一压缩机及压缩同一体积流量的不同气体,所提供的叶片功是相同的,也即H叶片与气体性质武官,所以在同一压力比要求下,压缩轻气体需要的级数比重气体多。
D多变过程是具有损失的过程,多变指数m反映多变压缩过程所需功的大小。
损失使气体得到附加热量,采用中间冷却器,目的是为了向等温压缩过程靠近。