(完整版)透射电子显微镜的现状与展望
- 格式:pdf
- 大小:179.17 KB
- 文档页数:5
透射电子显微镜在材料科学中的应用研究透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种非常强大且重要的工具,在材料科学中发挥着重要的作用。
本文将着重探讨TEM的应用研究,以展示其在材料科学领域中的重要意义和潜力。
首先,TEM可以提供高分辨率的图像,由于其采用了电子束替代了传统光学显微镜中的光线束,因此具有比传统光学显微镜更高的分辨率。
这使得TEM能够在原子尺寸的范围内观察和研究材料的微观结构和组成。
通过TEM,可以看到材料中的晶体缺陷、晶界、原子排列以及纳米颗粒的形态和分布等信息,从而为研究者提供更全面的材料性能分析。
其次,TEM还可以用于分析材料的化学成分。
通过透射电子显微镜的能谱分析功能,可以检测材料的元素组成和分布情况。
这对于研究材料中的微量元素、杂质或特定材料结构是非常关键的。
比如,在材料科学中研究合金材料时,通过使用TEM可以准确分析不同元素的分布、堆垛结构以及可能存在的相变现象,从而为合金材料的优化设计和开发提供了有力的支持。
另外,TEM还可以进行纳米材料的研究。
随着纳米科技的快速发展,各种纳米材料的制备和应用也受到了广泛关注。
通过TEM可以实时观察和研究纳米材料的形貌、大小、形态演变等特性。
举个例子,纳米颗粒在不同条件下的自组装过程可以通过TEM实时观察,从而为理解纳米材料的自组装机制和控制纳米结构提供了重要线索。
此外,TEM还可以用于研究材料的力学性能。
通过使用纳米压痕技术,可以将纳米尺度下材料的力学性能直接导入TEM,从而实时观察材料在纳米尺度下的力学行为。
这种研究方法可以为我们提供关于材料变形、断裂、塑性等方面的深入洞察。
综上所述,透射电子显微镜在材料科学中的应用研究具有重要意义。
TEM不仅能够提供高分辨率的图像,观察和研究材料的微观结构和组成,还能对材料的化学成分进行定量分析。
此外,TEM还可以用于纳米材料和力学性能的研究,为我们深入理解材料特性和设计材料性能提供了有力工具。
透射电子显微镜下的生物大分子结构解析一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束穿透样品的高分辨率显微镜技术。
与传统的光学显微镜相比,透射电子显微镜能够提供纳米级别的分辨率,这使得它在生物大分子结构解析领域具有独特的优势。
本文将探讨透射电子显微镜在生物大分子结构解析中的应用,分析其原理、技术特点以及在生物科学领域的重要作用。
1.1 透射电子显微镜的基本原理透射电子显微镜的工作原理基于电子光学原理,电子束通过电磁透镜聚焦,穿透样品后,由检测器接收并转换成图像。
由于电子波长远小于可见光,因此TEM能够达到比光学显微镜更高的分辨率。
1.2 透射电子显微镜的技术特点透射电子显微镜具有以下技术特点:- 高分辨率:能够达到原子级别的分辨率,适合观察生物大分子的精细结构。
- 多模式成像:除了传统的透射成像外,还可以进行扫描透射成像(STEM)和电子衍射等。
- 样品制备要求:需要将生物样品制备成极薄的切片,以确保电子束的有效穿透。
- 环境控制:需要在高真空环境下操作,以避免电子束与空气分子的相互作用。
1.3 透射电子显微镜在生物大分子结构解析中的应用透射电子显微镜在生物大分子结构解析中的应用非常广泛,包括蛋白质、核酸、病毒等生物大分子的形态学研究和结构分析。
二、生物大分子结构解析的技术和方法生物大分子结构解析是一个复杂的过程,涉及多种技术和方法。
透射电子显微镜技术在这一过程中扮演着重要角色,但也需要与其他技术相结合,以获得更全面和准确的结构信息。
2.1 样品制备技术生物大分子的样品制备是结构解析的第一步,也是关键步骤之一。
透射电子显微镜要求样品必须足够薄,通常需要使用超微切割、冷冻断裂或聚焦离子束等技术来制备样品。
2.2 高分辨率成像技术高分辨率成像是获取生物大分子结构信息的基础。
透射电子显微镜通过优化电子束的聚焦、样品的放置和成像条件,可以获得高质量的图像。
透射电子显微镜市场发展现状透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种非常重要的高分辨率显微镜,可以观察物质的原子级结构和纳米级细节。
随着科学技术的不断进步和应用领域的不断拓展,透射电子显微镜市场在过去几年里呈现出快速发展的趋势。
市场概览透射电子显微镜市场按照产品类型分为传统透射电子显微镜和扫描透射电子显微镜两大类。
传统透射电子显微镜主要应用于材料科学、生物学和化学等领域的研究,可以观察和分析材料的晶体结构、原子排列和组成成分;扫描透射电子显微镜则是基于传统透射电子显微镜的技术进步,可以实时观察样品表面的原子级细节,并能用于纳米材料和纳米结构的研究。
全球透射电子显微镜市场在过去几年里保持稳定增长。
市场的增长主要受到科学研究领域对高分辨率显微镜的需求驱动。
此外,透射电子显微镜的应用领域不断扩大,涵盖了材料科学、纳米科技、生物医学和能源等多个领域。
这些因素都促使透射电子显微镜市场保持稳定增长,预计未来几年里这一趋势将继续。
市场驱动因素透射电子显微镜市场的快速发展可以归因于以下几个主要因素:1.科研领域的需求增加:科学研究领域对高分辨率显微镜的需求不断增加,以满足对材料和纳米结构进行精确观察和分析的要求。
2.尖端技术的不断进步:透射电子显微镜的技术不断创新和改进,使得其分辨率和成像能力大幅提升,从而获得更准确的数据和图像结果。
3.应用领域的扩展:透射电子显微镜在材料科学、生物医学、纳米科技和能源等多个领域的应用不断扩大,为市场带来新的增长机遇。
市场挑战尽管透射电子显微镜市场发展迅速,但仍面临一些挑战:1.高昂的价格:透射电子显微镜属于高端科研设备,价格昂贵,导致部分科研机构和实验室无法负担。
2.技术门槛较高:透射电子显微镜的操作和维护需要专业知识和技能,可能需要专门培训和经验,限制了一部分潜在用户的使用。
3.竞争加剧:透射电子显微镜市场竞争激烈,存在多个国内外制造商和品牌,对企业来说,如何在市场中保持竞争优势是一个挑战。
电子显微镜技术改进与高解析度成像方法深入研究电子显微镜(electron microscope)是一种利用电子束来观测样品的高分辨率显微镜。
相较于光学显微镜,电子显微镜具有更高的分辨率和更大的放大倍数,可以观察微观世界中更细小的细节结构。
然而,电子显微镜技术仍然存在一些挑战和局限性,对于某些样品的成像和分析有限制。
因此,对电子显微镜技术进行改进与高解析度成像方法的深入研究具有重要意义。
一、改进电子显微镜技术的方法:1. 仪器优化:通过对电子显微镜的硬件和操作系统的优化,可以提高成像分辨率和稳定性。
例如,可以改进电子源的发射度和亮度,提高电子束的聚焦能力和稳定性,以获得更高的分辨率和更清晰的成像结果。
2. 样品准备技术:样品准备是电子显微镜观察中至关重要的一步。
在样品准备过程中,可以采用新的染色剂、固化剂和切片技术,使样品更适合电子显微镜观察。
此外,还可以借助冷冻技术和冷冻切片技术,对生物样品进行无损处理,以获得更真实和高质量的图像。
3. 检测系统改进:电子显微镜检测系统的改进可以提高图像的信噪比和对比度,从而实现更高的分辨率。
利用现代数字成像技术和傅里叶变换技术,可以对获得的电子图像进行数字处理和增强,清晰显示样品的微观结构。
4. 数据处理和分析方法的发展:通过发展更高级的数据处理和分析方法,可以从电子显微镜获得的图像中提取更多的信息。
如图像重建、局域增强、三维重建等方法可以增强图像的细节和深度信息,从而实现更全面和准确的分析结果。
二、高解析度成像方法的深入研究:1. 高分辨率成像技术:高分辨率成像技术是电子显微镜技术的核心之一。
传统的高分辨率成像方法包括透射电子显微镜(Transmission Electron Microscopy,TEM)和扫描电子显微镜(Scanning ElectronMicroscopy,SEM)。
目前,还有一些新兴的高分辨率成像方法得到了广泛的研究,如剖面成像电子显微镜(Scanning Transmission Electron Microscopy,STEM)等。
电子显微镜技术发展综述12中医五1班姚子昂20120121043摘要:本文论述了电子显微镜的发展现状及历史,介绍了目前较为先进的数种电子显微镜的结构、原理以及其在生物学领域的应用情况,并对其在组织学研究中的应用进行探讨。
关键词:电子显微镜;组织学研究引言:显微技术是一门对于物质微小区域进行化学成分分析、显微形貌观察、微观结构测定的一门专门的显微分析技术。
20世纪30年代,透射电子显微镜(TEM)的发明标志着电子显微技术的诞生,人们可以进一步地研究物质的超微结构。
电子显微技术在普通光学显微技术基础上进一步拓宽了人们的观测视野,在各个领域发挥了重要的作用,被广泛应用于科学领域。
在生物学研究领域,电子显微技术推进了组织学,细胞生物学,分子生物学等学科的发展,因而具有不可替代的崇高地位。
一、电子显微镜技术1.1电子显微镜的定义与组成电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]电子显微镜由镜筒、真空装置和电源柜三部分组成。
镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。
①电子透镜:用来聚焦电子,是电子显微镜镜筒中最重要的部件。
一般使用的是磁透镜,有时也有使用静电透镜的。
它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。
光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。
现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。
②电子源:是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。
阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。
它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。
5 冷冻电镜目前的技术难点及未来发展趋势与其他的结构生物学和生物物理学研究方法类似,冷冻电子显微学在硬件设备上的长足进展解决了很多关键性的技术难点,使该方法的应用普及成为趋势。
同时,一些其他的技术难点凸显出来,成为结构解析中的瓶颈,需要更多的关注与投入。
5.1 样品制备技术样品制备一直是冷冻电子显微学研究的关键步骤。
对于生物大分子结构研究来说,需要保证单颗粒分子以合适的密度均匀分布于厚度合适的无序冰中,才有可能获得良好的电子显微数据进行结构解析。
由于不同的生物大分子与样品支持膜的相互作用及在水溶液中的性质各不相同,分子在样品中的分布状态各异。
目前普遍采用的冷冻制样技术在基本原理上仍然采用30 年前发明的方法,实验可重复性、操作可移植性、通用性等都很差。
样品制备已经成为冷冻电子显微学结构解析的限速步骤。
冷冻电子显微学要想成为结构生物学研究的主要应用手段,必须在样品制备这一步骤取得重要的突破。
类似的,对于细胞结构研究来说,将本身很厚的细胞样品进行减薄处理,才适合冷冻电镜观察。
在过去的十多年里,冷冻切片技术一直在稳步发展,至今已经成为相对成熟的技术,但是对该技术的熟练掌握仍然需要长期的培训与实践经验。
最近发展起来的聚焦离子束减薄技术在未来可能会对冷冻细胞样品的结构研究带来新的契机。
5.2 高分辨率结构的分析与建模应用冷冻电子显微学技术在过去的两年里所获得的近原子分辨率(4Å以上)三维结构的数目几乎超过了前面几十年所获得的高分辨率结构数目之和。
更多的在4~8Å分辨率范围内的结构在很短时间内被解析出来,不同的分辨率结构可以揭示出的结构细节亦不同。
而与晶体学手段不同,冷冻电子显微学单颗粒重构无法通过对晶格衍射点的信号强弱来判断分辨率。
因此,如何客观地对三维重构的结果进行检验、明确结构解析的分辨率是目前高分辨率冷冻电镜研究中的一个重要问题。
在此基础上,需要对不同分辨率水平的三维重构进行原子模型的构建,从而实现在原子水平上对分子功能的解释。
2023年扫描探针显微镜行业市场发展现状扫描探针显微镜是一种新型的高分辨率显微镜技术,可以对固体表面进行原子尺度的成像和分析。
随着科学技术的不断发展,扫描探针显微镜在材料科学、纳米技术、生物科学等领域的应用越来越广泛,成为了一个新兴的市场。
本文将分析扫描探针显微镜行业的市场发展现状。
一、市场概述扫描探针显微镜是一种用于研究物质表面形貌及其物理性质的超高分辨率仪器。
目前市场上主要有STM(扫描隧道显微镜)、AFM(扫描探针显微镜)、TEM(透射电子显微镜)和SEM(扫描电子显微镜)等几种类型的扫描探针显微镜。
市场需求方面,扫描探针显微镜可以广泛应用于材料科学、纳米技术、生物科学、电子工程、化学等领域。
自20世纪80年代中期以来,扫描探针显微镜技术发展迅速,市场需求不断增加。
二、市场现状扫描探针显微镜行业市场规模较大,且增长较快。
2020年,全球扫描探针显微镜市场规模约为37亿元人民币,预计到2025年将达到50亿元人民币,年复合增长率约为6%。
在市场竞争方面,国际上大型企业主要集中在欧美地区,如美国的Bruker、维修和日本的俄罗斯等。
国内的主要企业有天津科研仪器厂、上海纳分仪器等。
在应用领域方面,扫描探针显微镜的应用范围越来越广泛。
材料科学、纳米技术和生物科学领域的需求是最主要的,占据市场的主导地位。
三、市场前景扫描探针显微镜作为一项关键技术,其前景非常广阔。
未来随着科技的发展,要求成像分辨率越来越高,同时也要求成像速度越来越快。
扫描探针显微镜技术将会不断地改进和升级,使其在更广泛的领域得到应用。
未来市场需求将从传统的材料科学、纳米技术、生物科学等领域向新兴领域拓展,如能源领域、电子信息领域、医疗健康领域等。
同时,随着科技水平的不断提高,新型扫描探针显微镜设备的研发和生产成本也将不断降低,为技术的进一步普及提供了更大的空间。
总之,扫描探针显微镜技术在未来将有着广泛的市场前景和应用前景。
对于相关企业来说,要把握技术发展趋势,不断改进和优化技术,以满足市场需求,实现长期的发展。
电子显微镜技术发展现状与趋势电子显微镜(EM)是一种极为重要的物理学和生物学工具,它通过对样本进行高分辨率扫描,能够获得有关材料性质和结构的详细信息。
由于其卓越的分辨率和探测能力,EM在材料科学、纳米科技、生物医学、地球科学及其他科学领域的研究中发挥着至关重要的作用。
随着技术的不断更新,EM正在进入一个新的发展阶段,新兴技术将使得我们更加深入地了解微观世界。
1、传统电子显微镜技术传统的透射电子显微镜是最早出现的EM类型,它在20世纪50年代开始应用于材料科学领域。
该技术使用电子束将样品透过一个薄层(通常是超薄金属层)进行成像。
透射电子显微镜分辨率在不断提高,从1970年代的0.5nm提高到了现在的0.05nm左右。
透射电子显微镜技术的最大缺点是需要研究的样品必须足够薄,这一点使得样品制备成了透射电子显微镜中最大的困难。
另一种常见的传统电子显微镜是扫描电子显微镜(SEM),它可以在样品表面扫描电子束,然后利用信号处理和计算机技术获得我们感兴趣的像。
SEM 最大的优势是它可以成像时间稍长一点。
2、近年来的新兴电子显微镜技术(a) 3D - EM3D-EM是一种非常新的EM技术,它能够将细胞结构的三维模型可视化。
通过对厚样品进行扫描电子显微镜成像,3D-EM能够捕获样品的三维图像,同时保持高分辨率。
近年来,包括斯坦福大学和麻省理工学院在内的许多机构都已经开始使用3D-EM技术研究神经元、脑组织和其他细胞结构。
(b) 低温电子显微镜低温电子显微镜使用冷冻技术将样品冻结之后进行成像,这种技术的主要优势是,它能够保持活体样品的形状和状态。
该技术已经被广泛应用于生物医学领域中,特别是用于研究生物大分子的结构和功能。
(c) 时间分辨电子显微镜时间分辨电子显微镜是一种可以拍摄静止和运动物体的EM技术。
通过快速扩散、捕捉和显影电子束,时间分辨电子显微镜能够非常精确地捕捉材料中的化学反应以及微观颗粒的动态变化。
这种技术在研究动态变化类研究中很有用。
电子显微镜的应用与发展在科学技术领域,电子显微镜是一种强有力的工具,可以将对象放大到超出人眼视界的范围,让人们看到平常看不到的微观世界。
它的应用领域十分广泛,包括材料科学、生物学、化学等领域。
本文将探讨电子显微镜的应用与发展。
一、电子显微镜的基本原理电子显微镜是一种利用电子束代替光束的显微镜,其基本原理是利用高能电子束与样品的原子间作用相互作用,获得高分辨率、高对比度的影像。
电子显微镜通常分为透射电子显微镜和扫描电子显微镜两类。
透射电子显微镜(Transmission electron microscope,TEM)的电子束穿过薄样品,被二极管或磁透镜集中,聚焦并投射到荧光屏或探测器上形成像。
透射电子显微镜由于其较高的分辨率能够观察到样品的内部结构,因此在材料科学、生物学等领域广泛应用。
扫描电子显微镜(Scanning electron microscope,SEM)则是通过电子束的照射,获得物理性质以及形貌的显微镜。
扫描电子显微镜可以通过不同的探测器形成二次电子像、反射电子像和X射线能谱图。
适用于表面形貌观察、分析和测量领域,例如:矿物学、冶金学、生物学、医学、电子元件等。
二、电子显微镜在材料科学中的应用材料科学是使用电子显微镜最广泛的领域之一。
通过透过电子显微镜观察到的材料的微小结构,我们可以更好地理解它们的物理和化学特性。
透射电子显微镜在分析材料结构方面的贡献尤为显著。
透射电子显微镜可以观察到小到原子尺度的结构,将样品放到电子束下,利用电子散射和探测设备能够测量与处理电子信号来形成最终的图像。
这种技术不仅可以捕获材料表面的形态和结构,还可以观察到材料的晶格结构和原子排列方式,有助于材料的精确分析,同时探测材料中不同原子所占比例,考察材料的纯度。
应用于材料科学领域中,电子显微镜可以在方方面面上帮助科学家们理解材料的特性,为材料的进一步设计和应用提供依据。
三、电子显微镜在生物科学中的应用电子显微镜在生物科学领域中也有着广泛的应用。
透射电子显微镜的现状与展望透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。
扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。
电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。
我国的电子显微学也有了长足的进展。
电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。
电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。
电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。
电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。
扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。
为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。
半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究。
近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。
下面见介绍部分透射电镜和扫描电镜的主要性能1.高分辨电子显微学及原子像的观察材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。
观察试样中单个原子像是科学界长期追求的目标。
一个原子的直径约为1千万分之2—3mm。
因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。
70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。
计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。
例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。
因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献。
用HREM使单个原子成像的一个严重困难是信号/噪声比太小。
电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。
在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子。
对于晶体试样,原子阵列会加强成像信息。
采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。
再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构。
2.像差校正电子显微镜电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。
但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。
在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。
校正电子透镜的主要像差是人们长期追求的目标。
经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。
最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。
电镜的高度仅提高了24cm,而并不影响其它性能。
分辨本领由0.24nm提高到0.14nm。
在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs(110)取向的哑铃状结构像,点间距为0.14nm。
3.原子尺度电子全息学Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。
论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。
由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。
后来,这种光波全息思想应用到激光领域,获得了极大的成功。
Gabor也因此而获得了诺贝尔物理奖。
随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果。
Lichte 等用电子全息术在CM30FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。
目前,使用刚刚安装好的CM30FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领。
4.表面的高分辨电子显微正面成像如何区分表面和体点阵周期从而得到试样的表面信息是电子显微学界一个长期关心的问题。
目前表面的高分辨电子显微正面成像及其图像处理已得到了长足的进展,成功地揭示了Si〔111〕表面(7×7)重构的细节,不仅看到了扫描隧道显微镜STM能够看到的处于表面第一层的吸附原子(adatoms),而且看到了顶部三层的所有原子,包括STM目前还难以看到的处于第三层的二聚物(dimers),说明正面成像法与目前认为最强有力的,在原子水平上直接观察表面结构的STM相比,也有其独到之处。
李日升等以Cu〔110〕晶膜表面上观察到了由Cu-O 原子链的吸附产生的(2×1)重构为例,采用表面的高分辨电子显微正面成像法,表明对于所有的强周期体系,均存在衬度随厚度呈周期性变化的现象,对一般厚膜也可进行高分辨表面正面像的观测。
5.超高压电子显微镜近年来,超高压透射电镜的分辨本领有了进一步的提高。
JEOL公司制成1250kV的JEM-ARM1250/1000型超高压原子分辨率电镜,点分辨本领已达0.1nm,可以在原子水平上直接观察厚试样的三维结构。
日立公司于1995年制成一台新的3MV超高压透射电镜,分辨本领为0.14nm。
超高压电镜分辨本领高、对试样的穿透能力强(1MV时约为100kV的3倍),但价格昂贵,需要专门建造高大的实验室,很难推广。
6.中等电压电子显微镜中等电压200kV\,300kV电镜的穿透能力分别为100kV的1.6和2.2倍,成本较低、效益/投入比高,因而得到了很大的发展。
场发射透射电镜已日益成熟。
TEM上常配有锂漂移硅Si(Li)X射线能谱仪(EDS),有的还配有电子能量选择成像谱仪,可以分析试样的化学成分和结构。
原来的高分辨和分析型两类电镜也有合并的趋势:用计算机控制甚至完全通过计算机软件操作,采用球差系数更小的物镜和场发射电子枪,既可以获得高分辨像又可进行纳米尺度的微区化学成分和结构分析,发展成多功能高分辨分析电镜。
JEOL的200kVJEM-2010F 和300kVJEM-3000F,日立公司的200kVHF-2000以及荷兰飞利浦公司的200kVCM200FEG 和300kVCM300FEG型都属于这种产品。
目前,国际上常规200kVTEM的点分辨本领为0.2nm左右,放大倍数约为50倍—150万倍。
7.120kV,100kV分析电子显微镜生物、医学以及农业、药物和食品工业等领域往往要求把电镜和光学显微镜得到的信息联系起来。
因此,一种在获得高分辨像的同时还可以得到大视场高反差的低倍显微像、操作方便、结构紧凑,装有EDS的计算机控制分析电镜也就应运而生。
例如,飞利浦公司的CM120Biotwin电镜配有冷冻试样台和EDS,可以观察分析反差低以及对电子束敏感的生物试样。
日本的JEM-1200电镜在中、低放大倍数时都具有良好的反差,适用于材料科学和生命科学研究。
目前,这种多用途120kV透射电镜的点分辨本领达0.35nm左右。
8.场发射枪扫描透射电子显微镜场发射扫描透射电镜STEM是由美国芝加哥大学的A.V.Crewe教授在70年代初期发展起来的。
试样后方的两个探测器分别逐点接收未散射的透射电子和全部散射电子。
弹性和非弹性散射电子信息都随原子序数而变。
环状探测器接收散射角大的弹性散射电子。
重原子的弹性散射电子多,如果入射电子束直径小于0.5nm,且试样足够薄,便可得到单个原子像。
实际上STEM也已看到了γ-alumina支持膜上的单个Pt和Rh原子。
透射电子通过环状探测器中心的小孔,由中心探测器接收,再用能量分析器测出其损失的特征能量,便可进行成分分析。
为此,Crewe发展了亮度比一般电子枪高约5个量级的场发射电子枪FEG:曲率半径仅为100nm左右的钨单晶针尖在电场强度高达100MV/cm的作用下,在室温时即可产生场发射电子,把电子束聚焦到0.2—1.0nm而仍有足够大的亮度。
英国VG公司在80年代开始生产这种STEM。
最近在VGHB5FEGSTEM上增加了一个电磁四极—八极球差校正器,球差系数由原来的3.5mm减少到0.1mm以下。
进一步排除各种不稳定因素后,可望把100kVSTEM 的暗场像的分辨本领提高到0.1nm。
利用加速电压为300kV的VG-HB603U型获得了Cu(112)的电子显微像:0.208nm的基本间距和0.127nm的晶格像。