1-2牛顿运动定律
- 格式:ppt
- 大小:1.17 MB
- 文档页数:42
高一物理必修1、2二级结论大全(非常适用)一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G.(3)两个力的合力的大小范围: |F₁-F₂|≤F≤F₁+F₂.(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F₁和 F₂的合力为 F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.(6)物体沿斜面匀速下滑,则μ=tanα.2.运动和力(1)沿粗糙水平面滑行的物体:a=μg(2)沿光滑斜面下滑的物体: a=gsinα(3)沿粗糙斜面下滑的物体: a=g(sinα-μcosα)(4)沿图所示光滑斜面下滑的物体:(6)下面几种物理模型, 在临界情况下,a=gtan a.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降).(5)一起加速运动的物体系,若力是作用于m ₁上,则m ₁和m ₂的相互作用力为 N =m 2Fm 1+m 2,与有无摩擦无关,平面、斜面、竖直方向都一样.(7)如图所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.二、直线运动和曲线运动 (一)直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T):①1T 末、2T 末、3T 末、…、nT 末的速度比: v 1:v 2:v 3::v n =1:2:3::n.②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比: x 1:x 2:x 3:⋯:x n =1:3:5:…:(2n-1).③连续相等时间内的位移差 △x=aT ²,进一步有 x ₘ−x ₘ=(m −n )aT ²,此结论常用于求加速度a =x T 2=x m −xnm−nT 2.位移等分(x): 通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1:t 2:t 3::t n =1:(√2−1):(√3−√2)::(√n −√n −1). 2.匀变速直线运动的平均速度 v =v t2=v 0+v 2=x 1+x 22T.②前一半时间的平均速度为v ₁,后一半时间的平均速度为 v ₂,则全程的平均速度: v̅= v 1+v 22.③前一半路程的平均速度为v ₁,后一半路程的平均速度为v ₂,则全程的平均速度: v̅= 2v 1v 2v 1+v 2.3.匀变速直线运动中间时刻、中间位置的速度 v t2=v̅=v 0+v 2,v x2=√v 02+v 22.4.如果物体位移的表达式为 x=At ²+Bt, 则物体做匀变速直线运动,初速度 v ₀=B(m/s),加速度a=2A(m/s ²).5.自由落体运动的时间 t =√2ℎg . 6.竖直上抛运动的时间 t ⟂=t F =v 0g=√2Hg ,同一位置的速率 v E =v F 上升最大高度 ℎm =v 022g7.追及相遇问题匀减速追匀速:恰能追上或追不上的关键: v 2q =v 匀减- 搜狐号②初理大师 v ₀=0的匀加速追匀速: v N =v 动时,两物体的间距最大. 同时同地出发两物体相遇:时间相等,位移相等.A 与B 相距△s, A 追上B: sA=sB+△s; 如果A 、 B 相向运动, 相遇时: S A +S B =s.8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t ₀,如果题干中的时间t 大于t ₀,用 v 02=2ax 或 x =v 0t 02求滑行距离; 若t 小于t ₀时, x =v 0t +12at 2. 9.逐差法:若是连续6段位移,则有: a ̅=(x 6+x 5+x 4)−(x 3+x 2+x 1)9T 2(二)运动的合成与分解(10)系统的牛顿第二定律(整体法——求系统外力)∑Fₓ=m₁a₁ₓ+m₂a₂ₓ+m₃a₃ₓsr ∑F y =m 1a 1y +m2a 2y +m 3a 3y1.小船过河(1)当船速大于水速时①船头的方向垂直于水流的方向则小船过河所用时间最短,t=dv梯.②合速度垂直于河岸时,航程s最短,s=d.(2)当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t=dv侧.②合速度不可能垂直于河岸,最短航程s=d×v 水v 侧.2.绳端物体速度分解:分解不沿绳那个速度为沿绳和垂直于绳(三)圆周运动1.水平面内的圆周运动, F=mgtanθ, 方向水平,指向圆心.2.竖直面内的圆周运动如图所示,小球要通过最高点,小球最小下滑高度为2.5R.(3)竖直轨道圆周运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:绳上拉力 F T =3mg,向心加速度a =2g, 与绳长无关.小球在“杆”模型最高点 v min =0,v 稀=gR,v >v 追,杆对小球有向下的拉力. v=v ₀,杆对小球的作用力为零. v<v ₐ, 杆对小球有向上的支持力.(四)万有引力与航天1.重力加速度:某星球表面处(即距球心 R) g =GM R 2.距离该星球表面h 处(即距球心R+h 处): g ′=GM r 2=GM (R+ℎ)2.2.人造卫星: G r 2Mm =m v 2r=mω2r =m4π2T 2r =ma =mg ′. 速度 v =√GM r,周期 T =2π√r 3GM ,加速度 a =GM r 2<g第一宇宙速度 v 1=gR =GM R=7.9km/s,v 2=11.2km/s,v 3=16.7km/s地表附近的人造卫星: r =R =6.4×106m,v 差=v 1,T =2πRg =84.6分钟. 3.同步卫星(1)绳,内轨,水流星最高点最小速度为 gR ,最低点最小速度为 5gR ,上下两点拉压力之差为6mg.(2)离心轨道,小球在圆轨道过最高点 v⟂ᵢ⟂=gR,7.恒星质量: M =4π2r 3GT 2或 =gR 2G8.引力势能: E P =−GMm r,卫星动能 E k =GMm 2r,卫星机械能 E =−GMm 2r同一卫星在半长轴为a=R 的椭圆轨道上运动的机械能,等于半径为R 圆周轨道上的机械能。
第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。
⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。
力是改变物体运动状态的原因,而并非维持物体运动状态的原因。
▲第二定律(Second lawF ρ:物体所受的合外力。
m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。
若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。
第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。
Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。
已知:桶绕z轴转动,ω= const.水对桶静止。
求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。
第二章 牛顿定律【基本内容】一、牛顿运动定律概述1、牛顿第一定律定律内容:任何物体都保持静止或匀速直线运动状态,除非作用在它上面的力迫使它改变这种状态。
定律意义:引入了惯性的概念,惯性——物体保持其原有运动状态的一种属性;定性确定了力的概念,力——是使物体的运动状态发生改变的原因。
2、牛顿第二定律定律内容:运动的变化与所加的动力成正比,且发生在该力所沿的直线上。
定律意义:定量确定了力的概念;引入了质量的概念,质量——是物体惯性大小的量度。
定律的数学形式am F =在直角坐标系下:yyy xxx madtdv m F madtdv mF ====,在自然坐标系下:nn mavmF madtdv mF ====ρττ2,3、牛顿第三定律当物体A 以力1F作用在物体B 上时,物体B 必以力2F 作用在物体A 上,且1F 与2F大小相等、方向相反,并在同一直线上。
二、力学中常见的力1、万有引力2211221/1067.6,kgmN G rm m GF ⋅⨯==-若忽略地球的自转,则地球表面附近的物体所受的万有引力叫重力。
2RM Gg g m P ==2、弹力 包括拉力、支撑力等。
胡克定律 kxf -=,k 叫弹簧的倔强系数。
3、摩擦力 滑动摩擦力:kk k N f μμ,=——滑动摩擦系数。
静摩擦力:ss s N f μμ,max=——静摩擦系数。
注意:静摩擦力)0(N f μ≤≤是一个范围概念,只有最大静摩擦力才能用等式Nf μ=max 表示。
惯性系中,静摩擦力由平衡条件求出。
三、惯性系与非惯性系惯性系:牛顿定律适用的坐标系称为惯性系。
相对于惯性系作匀速直线运动的参照系均为惯性系。
非惯性系:相对于惯性系作加速度运动的参照系为非惯性系。
【典型例题】如物体处于惯性系,首先进行受力分析,根据具体情况将力分解,再运用牛顿定律,写出微分方程并求解;如物体处于非惯性系,首先引入惯性力(或利用加速度变换将非惯性系转化为惯性系),再按上面步骤求解。
2024年高一必修一物理知识点总结____年高一必修一物理涉及的知识点较多,涵盖了力学、热学、光学等多个方面。
下面是对其中一些重要的知识点进行总结,帮助你更好地理解和掌握物理知识。
一、力学1. 力的概念与性质:- 力的定义、性质和计算公式。
- 力的合成与分解,平行力系统的平衡条件。
2. 牛顿运动定律:- 牛顿第一定律(惯性定律):物体静止或匀速直线运动的条件。
- 牛顿第二定律(运动定律):物体受力和加速度的关系。
- 牛顿第三定律(作用与反作用定律):相互作用的两个物体对彼此的力相等、方向相反。
3. 动能与功:- 动能的概念及计算公式。
- 动能定理和功的概念及计算公式。
- 动能守恒定律和功的定义、性质。
4. 机械能与能量守恒:- 动能和势能的概念及计算公式。
- 机械能守恒定律的概念和应用。
5. 线性动量与冲量:- 线性动量的概念及计算公式。
- 冲量的概念及计算公式。
- 线性动量守恒定律的概念和应用。
6. 牛顿万有引力定律:- 万有引力定律的表达式和计算公式。
- 重力的概念、性质和计算公式。
- 行星运动的规律和绕行速率的计算。
二、热学1. 温度与热量:- 温度的概念、计量单位和测量方法。
- 热量的概念、计量单位和传递方式。
- 热平衡和热力学第零定律。
2. 热量传递:- 热传导的概念、特征和影响因素。
- 热传导方程和导热性质的计算。
- 热辐射的概念、特征和应用。
3. 量热学定律:- 定压比热容和定容比热容的概念和计算公式。
- 等压和等容过程的热量计算公式。
- 热传导方程和绝热过程的计算公式。
4. 理想气体状态方程:- 真实气体与理想气体的区别。
- 理想气体状态方程的概念和公式。
- 理想气体的温度、压力、体积、物质量之间的关系。
三、光学1. 光的反射与折射:- 光的反射定律及相关公式和计算。
- 光的折射定律及相关公式和计算。
- 不同介质之间的折射现象。
2. 凸透镜成像:- 凸透镜的概念、特征和符号规定。
50个常用物理公式1. 运动学公式:- 平均速度:v = (Δx) / (Δt)- 平均加速度:a = (Δv) / (Δt)- 位移与初末速度关系:Δx = (v + v₀) * t / 2- 位移与加速度关系:Δx = v₀* t + (1/2) * a * t²- 末速度与初速度、加速度、位移关系:v² = v₀² + 2a * Δx2. 牛顿运动定律:- 第一定律(惯性定律):物体静止或匀速直线运动,除非受到外力作用。
- 第二定律(牛顿定律):F = ma,力等于物体质量乘以加速度。
- 第三定律(作用-反作用定律):任何作用力都有一个大小相等、方向相反的反作用力。
3. 动能和势能:- 动能:KE = (1/2) * m * v²- 重力势能:PE = m * g * h(其中g 是重力加速度,h 是高度)- 弹性势能:PE = (1/2) * k * x²(其中k 是弹性系数,x 是弹簧变形量)4. 万有引力定律:- F = (G * m₁ * m₁) / r²(其中G 是万有引力常数,m₁和m₁是两个物体的质量,r 是它们之间的距离)5. 浮力:- F = ρ * V * g(其中ρ是液体密度,V 是物体在液体中的体积,g 是重力加速度)6. 压强:- P = F / A(其中F 是受力,A 是力作用的面积)7. 能量守恒定律:- E₀= E₁(系统能量守恒)8. 热力学定律:- 热传导公式:Q = k * A * (ΔT / d)(其中Q 是传热量,k 是热导率,A 是传热面积,ΔT 是温度差,d 是厚度)9. 斯特藩-玻尔兹曼定律:- P = σ * A * T⁴(其中P 是辐射功率,σ是斯特藩-玻尔兹曼常数,A 是发射面积,T 是绝对温度)10. 热容和比热容:- Q = mcΔT(其中Q 是吸收或释放的热量,m 是物体的质量,c 是比热容,ΔT 是温度变化)11. 理想气体状态方程:- PV = nRT(其中P 是气体压强,V 是体积,n 是物质的摩尔数,R 是气体常数,T 是绝对温度)12. 理想气体的升压工作:- W = P(V₁ - V₁)(其中W 是气体的升压功,P 是气体的压强,V₁和V₁分别是末态和初态的体积)13. 声速公式:- v = √(γ * RT)(其中v 是声速,γ是气体的绝热指数,R 是气体常数,T 是绝对温度)14. 压强与速度关系(伯努利定律):- P₁ + (1/2)ρv₁²+ ρgh₁ = P₁ + (1/2)ρv₁²+ ρgh₁(其中P 是压强,ρ是液体密度,v 是速度,g 是重力加速度,h 是高度)15. 光速:- c ≈ 3.00 × 10^8 m/s(真空中的光速)16. 折射定律(斯涅尔定律):- n₁sinθ₁ = n₁sinθ₁(其中n₁和n₁分别是两个介质的折射率,θ₁和θ₁分别是入射角和折射角)17. 焦距公式:- 1/f = 1/v + 1/u(其中f 是焦距,v 是像距,u 是物距)18. 球面镜成像公式:- 1/f = 1/v + 1/u(其中f 是焦距,v 是像距,u 是物距)19. 波长、频率和速度关系:- v = λf(其中v 是波速,λ是波长,f 是频率)20. 光的折射和反射:- θ₁ = θ₁(反射角等于入射角,反射)- n₁sinθ₁ = n₁sinθ₁(折射定律)21. 波的叠加:- 两个波叠加时,波峰和波谷相遇时会发生叠加干涉,波峰与波峰、波谷与波谷相遇时会发生叠加增强。
牛一牛二牛三定律内容
“牛一牛二牛三定律”分别指:
1、牛顿第一运动定律:
牛顿第一运动定律,简称牛顿第一定律。
又称惯性定律。
常见的完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
2、牛顿第二运动定律:
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
3、牛顿第三运动定律:
牛顿第三运动定律的常见表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
牛顿第三运动定律和第一、第二定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。