博弈论案例分析
- 格式:docx
- 大小:27.00 KB
- 文档页数:5
博弈论经典案例博弈论是研究决策者之间策略和利益的数学理论,它在经济学、政治学、生物学等领域有着广泛的应用。
在博弈论中,经典案例是帮助我们理解和应用博弈论理论的重要工具。
下面,我们将介绍几个经典的博弈论案例,帮助大家更好地理解博弈论的核心概念和应用。
第一个经典案例是囚徒困境。
囚徒困境是指两个犯罪嫌疑人被分开审讯,如果两人都沉默不发言,警方只能以轻罪定罪,每人判刑一年;如果其中一人选择认罪举证,而另一人沉默不发言,认罪者将免于刑事处罚,而另一人将被判十年重刑;如果两人都选择认罪举证,警方将以共同犯罪定罪,每人判刑八年。
在这个案例中,每个囚徒都面临着合作和背叛的选择,他们的最佳策略取决于对方的选择。
囚徒困境案例展示了合作和背叛之间的博弈,以及如何在利益最大化和风险最小化之间进行权衡。
第二个经典案例是孩子分糖果。
假设有两个孩子,他们要平分一袋糖果。
如果他们能够达成一致,那么每个人都会得到一半的糖果;但如果他们无法达成一致,糖果将被拿走。
在这个案例中,每个孩子都需要考虑对方的利益和策略,以及如何最大化自己的利益。
这个案例展示了博弈论在日常生活中的应用,以及如何在博弈中进行合作和谈判。
第三个经典案例是价格竞争。
假设有两家公司在同一个市场上销售相似的产品,它们需要决定产品的定价策略。
如果它们选择相同的价格,那么它们将平分市场份额;但如果它们选择不同的价格,价格较低的公司将获得更多的市场份额。
在这个案例中,每家公司都需要考虑对方的定价策略,以及如何最大化自己的利润。
这个案例展示了博弈论在市场竞争中的应用,以及如何在竞争中制定最佳策略。
以上三个经典案例展示了博弈论在不同领域的应用,以及博弈论理论对于理解和解决现实生活中的冲突和竞争问题的重要性。
通过学习这些经典案例,我们可以更好地理解博弈论的核心概念和方法,为我们在实际问题中的决策和策略制定提供有益的启示。
希望大家能够通过这些案例,深入了解博弈论的精髓,为自己的决策和行为提供更加理性和有效的指导。
博弈论的经典案例五篇博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
本站为大家整理的相关的博弈论的经典案例供大家参考选择。
博弈论的经典案例篇一囚徒困境学习管理学或经济学的人一定都了解一些博弈论方面的知识。
在博弈论中有一个经典案例囚徒困境,非常耐人回味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
博弈论案例分析一、经济学中的“智猪博弈” (Pigs’payoffs) 故事背景:猪圈里有一头大猪和一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略,答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边; 而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在,因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗,试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成相当高(每次提供双份的食物) ;而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
结果呢,小猪和大猪都在拼命地抢着踩踏板。
十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
(1)失火了,你往哪个门跑失火了,你往哪个门跑——这就是博弈论一天夜晚,你参加一个派对,屋里有好多人,你玩得很高兴。
这时候,屋里忽然失火,火势很大,没法息灭。
此时你想逃生。
你的眼前有两个门,左门和右门,你一定在它们之间选择。
但问题是,其余人也要争抢这两个门出逃。
假如你选择的门是好多人选择的,那么你将因人多拥堵、冲不出去而烧死;相反,假如你选择的是较少人选择的,那么你将逃生。
这里我们不考虑道德要素,你将怎样选择?这就是博弈论!你的选择一定考虑其余人的选择,而其余人的选择也考虑你的选择。
你的结果——博弈论称之为支付,不单取决于你的行动选择——博弈论称之为策略选择,同时取决于别人的策略选择。
你和这群人构成一个博弈(game)。
上述博弈是一个叫张翼成的中国人在 1997 年提出的一个博弈论模型,被称之为少量者博弈或少量派博弈( Minority Game)。
自然,本来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。
此刻好多学者在研究这个问题。
生活中博弈的案例好多,你会见到好多例子。
只需波及到人群的互动,就有博弈。
什么叫博弈?博弈的英文为 game,我们一般将它翻译成“游戏”。
而在西方, game 的意义不一样于汉语中的游戏。
在英语中, game即是人们按照必定规则下的活动,进行活动的人的目的是使自己“赢” 。
奥林匹克运动会叫Olympic Games。
在英文中,game有比赛的意思,进行 game的人是很仔细的,不一样于汉语中游戏的观点。
在汉语中,游戏有儿戏的滋味。
所以将对于game的理论,即 game theory 翻译成博弈论或许对策论,是适合的。
本书下边统称 game theory 为博弈论。
博弈论的出现只有 50 多年的历史。
博弈论的创始者为诺意曼与摩根斯坦,他们 1944 年第一版了《博弈论与经济行为》。
诺意曼是着名的数学家,他同时对计算机的发明作出了巨大贡献,他逝世时博弈论还未对经济学产生宽泛影响,不然经济学的诺贝尔奖必定有他的名字,由于诺贝尔奖有规定,只颁发给在世的学者。
博弈论经典案例分析博弈论作为一门独立的学科,研究的是决策者之间的相互作用和冲突。
在现实生活中,博弈论的应用非常广泛,涉及到经济、政治、军事等各个领域。
本文将通过分析几个经典的博弈案例,来深入了解博弈论的基本原理和应用。
首先,我们来看一个经典的零和博弈案例,囚徒困境。
在这个案例中,两名犯人被关押在不同的牢房,警察向他们提出交代对方的证词的选择。
如果两人都选择沉默,则会被判处较轻的刑罚;如果其中一人选择交代对方,而另一人选择沉默,则沉默的人将被判处重刑,而交代对方的人将获得自由;如果两人都选择交代对方,那么两人都将被判处较重的刑罚。
在这个案例中,每个人的最佳选择是交代对方,但如果两人都这样选择,结果将是最糟糕的。
这个案例展示了在零和博弈中,即使每个人都追求自己的最佳利益,最终的结果可能并不理想。
接下来,我们来看一个非零和博弈案例,围棋。
围棋是一种非零和博弈,即双方的利益并不完全对立。
在围棋中,双方玩家都追求自己的利益,但他们的行动会直接影响对手的利益。
围棋的策略非常复杂,需要考虑到整个棋局的局势和对手的反应。
在这种非零和博弈中,玩家需要不断调整自己的策略,以应对对手的变化。
围棋案例展示了在非零和博弈中,双方玩家需要考虑到对方的利益,寻求最优的策略。
最后,我们来看一个混合博弈案例,竞价拍卖。
竞价拍卖是一种混合博弈,既包括合作又包括对抗。
在竞价拍卖中,每个竞拍者都希望以最低的价格获得物品,但他们也需要考虑到其他竞拍者的行为。
竞价拍卖的策略涉及到出价的时间、出价的金额等多个因素,竞拍者需要综合考虑这些因素来制定自己的策略。
竞价拍卖案例展示了在混合博弈中,竞拍者需要在合作和对抗之间找到平衡,以获得最大的利益。
通过以上案例的分析,我们可以看到博弈论在不同情境下的应用。
无论是零和博弈、非零和博弈还是混合博弈,博弈论都能够为我们提供理论指导,帮助我们理解决策者之间的相互作用和冲突。
在现实生活中,我们也可以运用博弈论的原理来分析和制定策略,以达到最优的决策结果。
十大博弈论经典案例甲乙丙博弈论是一种方法论,研究的是在一个决策者在给定的条件下,应该怎么去做决策,才能使自身的利益最大化。
决策者可以是个人,也可以是一个团队。
如果是个人,就有点“人不为己天诛地灭”的意思,个人主要思考怎么让自己的利益最大化。
如果是团队,就得考虑一群人的利益最大化,这其中可能会牺牲掉部分个体利益。
举一个经典的案例:一家农户最近养了一只猫,它每天都乐此不疲地抓老鼠,让原本猖狂的老鼠产生了恐惧。
于是老鼠们不得不召开了一会会议,内容是“如何在猫的脖子上系上一个铃铛”,这样每次猫经过的时候,老鼠们就能听到铃铛声提前逃走。
在会议上,老鼠们虽然表面上都很同意这个观点,但也很犯难,究竟应该谁去做这件事呢?毕竟想在猫的脖子上系铃铛,就意味着存在给猫当晚餐的风险。
站在团队的角度:做这件事情对整个团队是非常有利益的,是值得做的。
站在个人的角度:做这件事情对个人是有非常大的风险,如果有其他同伴做了,自己也能不劳而获,所以不值得做。
怎样解决这种困境呢?方案1:仍然选出一个代表去做这件事,但必须承诺给予其相同价值的回报,在足够大的回报下,就有个人愿意冒风险。
但在通常情况下,定义与付出相等的回报这一点很难。
方案2:老鼠们一起去做这件事,集中群众的力量与强权做斗争,这样成功的概率很大,即使失败了,风险也能得到有效分摊。
虽然方案2 看似是比较可靠的方案,但这是做到这点也不容易,群体行动很难保证个体没有异心,如果个人都有自己的小算盘,那么真正行动起来,就会“千里之堤,溃于蚁穴”。
生活中的博弈生活中的博弈非常多,我这里选了一个比较有意思的案例。
某个公司项目在招标,最初打算从几家竞标公司中选择价格最低一家来做。
对于每个竞标的公司而言,大家都想中标,同时也想让自己的利益最大化,于是他们会这样报价:竞标报价必须大于成本价。
竞标价格不能太高,以免被其他公司抢走。
所以,竞标公司最终的价格是:成本价+ 利润,大家都在成本的基础上适当加上了利润。
博弈论经典案例博弈论是研究决策者之间相互作用的数学理论,它涉及到策略的制定、收益的分配以及决策者之间的互动关系。
在现实生活中,博弈论可以被应用到各种各样的情境中,从商业竞争到国际政治。
下面我们将介绍一些博弈论的经典案例,帮助大家更好地理解这一理论。
1. 囚徒困境。
囚徒困境是博弈论中最经典的案例之一。
在这个案例中,两名犯罪嫌疑人被捕,然后被单独审讯。
如果两人都保持沉默,那么他们将会被判处较轻的刑罚;如果其中一人选择交代另一人,而另一人保持沉默,那么交代的人将会被免罪,而另一人将被判处重刑;如果两人都选择交代对方,那么他们将会被判处较重的刑罚。
在这种情况下,每个人都会选择最大化自己的利益,最终导致了一个对双方都不利的结果。
2. 霍夫丁格-普雷兹勒模型。
霍夫丁格-普雷兹勒模型是用来解释两个公司之间的价格竞争的经典案例。
在这个模型中,两家公司同时决定它们的价格,然后根据对方的价格来调整自己的价格。
最终,这种竞争会导致价格不断下降,最终使得两家公司的利润都减少。
这个案例表明,即使在追求自身利益的情况下,双方最终都会受到损害。
3. 博弈论在国际政治中的应用。
博弈论在国际政治中也有着广泛的应用。
例如,在两个国家之间的军备竞赛中,双方都会不断增加军备以保持自己的安全。
然而,这种竞赛最终会导致双方都陷入困境,因为军备竞赛会对双方的经济造成负担,最终对双方都不利。
4. 超市定价竞争。
在超市的定价竞争中,每家超市都会根据对手的价格来调整自己的价格。
这种竞争往往会导致价格战,最终使得双方都陷入亏损。
这个案例表明,即使在追求市场份额的情况下,双方最终都会受到损害。
5. 博弈论在合作与冲突中的应用。
博弈论不仅可以解释竞争的情况,也可以解释合作与冲突的情况。
例如,在合作博弈中,参与者可以通过制定合适的策略来最大化整体利益;而在冲突博弈中,参与者则会通过制定对抗性的策略来争夺有限的资源。
总结。
博弈论作为一种研究决策者之间相互作用的数学理论,可以被广泛应用到各种情境中。
博弈论博弈论(Game Theory),亦名“对策论”、“游戏理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。
生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。
博弈论是研究棋手们“出棋”招数中理性化、逻辑化的部分,并将其系统化为一门科学。
换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。
现在,我们就一些例子来讨论博弈论相关内容。
一、从“囚徒困境”开始在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoners’dilemma)博弈模型。
该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。
警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。
如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。
如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
下表给出了这个博表囚徒困境博弈 [Prisoner's dilemma]我们来看看这个博弈可预测的均衡是什么。
对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。
显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。
但是,倘若他们都选择“抵赖”,每人只被判刑1年。
在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。
不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。
要了解纳什的贡献,首先要知道什么是非合作博弈问题。
现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子,每本书上的例子都大同小异。
话说有一天,一位富翁在家中被杀,财物被盗。
警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。
但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。
于是警方将两人隔离,分别关在不同的房间进行审讯。
由地方检察官分别和每个人单独谈话。
检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。
但是,我可以和你做个交易。
如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。
如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。
但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。
”斯卡尔菲丝和那库尔斯该怎么办呢?他们面临着两难的选择——坦白或抵赖。
显然最好的策略是双方都抵赖,结果是大家都只被判一年。
但是由于两人处于隔离的情况下无法串供。
所以,按照亚当·斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。
因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。
这种策略是损人利己的策略。
不仅如此,坦白还有更多的好处。
如果对方坦白了而自己抵赖了,那自己就得坐10年牢。
太不划算了!因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判 10年好吧。
所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。
这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。
因为,每一方在选择策略时都没有“共谋”(串供),他们只是选择对自己最有利的策略,而不考虑社会福利或任何其他对手的利益。
也就是说,这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成。
没有人会主动改变自己的策略以便使自己获得更大利益。
“囚徒的两难选择”有着广泛而深刻的意义。
个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。
他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。
只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。
“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。
按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。
从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。
我们将例举出许多类似于“囚徒的两难处境”这样的例子。
如价格战博弈、军奋竞赛博弈、污染博弈等等。
一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合,策略 (strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合。
其中所谓赢得是指如果一个特定的策略关系被选择,每一局中人所得到的效用。
所有的博弈问题都会遇到这三个要素。
二、经济学中的“智猪博弈”(Pigs’payoffs)这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
结果呢,小猪和大猪都在拼命地抢着踩踏板。
等待者不得食,而多劳者多得。
每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。
成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。
但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。
为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。
而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。
这相当于“智猪博弈”增量方案所描述的情形。
但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。
最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。
股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。
因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。
三、生活中的“占座大战”大学生活中,生活也是比较的丰富,其中,吃饭也是很重要的部分,大家一般都是在学校食堂吃饭,由于大家吃饭的时间比较集中,所以吃饭的时候人数特别多,食堂座位有限,同学们也希望在食堂买完饭后不用再找座位,因此很多同学在买饭之前就用自己的私人物品占座位,为此,食堂也经常发生因为占座位而引起的纠纷。
在这里称为“占座大战”博弈,就这个博弈问题进行讨论;现在就这个问题来进行一个博弈论的分析,两个发生纠纷的人都有两个选择,分别是U (冲上去进行理论,争取座位),D(选择退让,找其他的座位),若两人都进行理论,争取座位的话,很有可能就是两败俱伤,两个人也可能因意见不合而进而出现打架的现象,而且在食堂这个公共场所,对大家的形象都有着很不好的影响;如果一方选择退让,而另外一方则选择理论,则结果可能就是一方另找座位,有些损失,一方占领了座位,取得了胜利;还有就是双方都选择了退让,将座位让给其他人;根据以上的分析,现在有如下的支付图:参与人2U DU -2,-2 1,-1参与人1D -1,1 0,0求解过程(箭头法):参与人2参与人0,0现在求解这个博弈问题:由博弈问题的Nash均衡可以知道,在以上的博弈问题中存在着两个纯战略Nash均衡——(U,D)和(D,U),就是说,在整个的博弈中,两个人中有一个人退让,寻找其他的座位,另外一个人进行争论得到座位。