抽象代数1
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
抽象代数一习题答案在抽象代数中,习题通常涉及群、环、域等代数结构的定义、性质和例子。
以下是一些抽象代数习题的答案示例。
习题1:证明如果一个群G是阿贝尔群,那么它的每个子群也是阿贝尔群。
答案:设H是群G的一个子群。
由于G是阿贝尔群,对于任意的a, b属于G,我们有ab = ba。
现在考虑任意的h1, h2属于H。
由于H是G的子群,h1和h2也属于G。
因此,我们有h1h2 = h2h1(因为h1h2和h2h1都是G中的元素,并且G是阿贝尔的)。
这表明H中的元素满足交换律,所以H也是阿贝尔群。
习题2:证明如果一个环R有单位元,那么它的每个理想都是主理想。
答案:设I是环R的一个理想,我们需要证明I是一个主理想,即存在一个元素r∈R使得I = (r),其中(r)表示由r生成的理想。
由于R有单位元1,考虑元素1 - r。
由于I是理想,1 - r也属于I。
因此,我们有1 - r = a(r) + b,其中a, b属于R。
将等式两边乘以r,我们得到1 = ar + rb。
这意味着r(1 - ar) = rb。
由于1 - ar属于I(因为I是理想),我们有r属于I。
现在,对于I中的任意元素x,我们可以写x = (1 - ar)x + arx。
由于ar属于I,(1 - ar)x也属于I。
因此,x = r(1 - ar)x,表明x可以由r生成。
所以I = (r),证明完成。
习题3:证明如果一个域F的元素a不是单位元,那么a的阶是有限数。
答案:设a是域F中的一个非单位元。
我们需要证明存在一个正整数n使得a^n = 1。
考虑集合{1, a, a^2, a^3, ...}。
由于F是域,它没有零除数,因此a^n ≠ 1对于所有n。
这意味着集合中的元素都是不同的。
然而,域F是有限的,因此不可能有无限多不同的元素。
因此,必须存在最小的正整数n > 1,使得a^n = a^1。
这意味着a^(n-1) = 1,所以a的阶是有限的。
抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。
要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。
对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。
⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。
1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。
1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。
Wedderburn 定理:有限体必为域。
证明:我们所需要证明的可以化为:有限除环的乘法群是Abel 群。
现在记x G ∈的中心化子为()G C x ,即{}()|G C x g G gx xg =∈=。
首先我们来证明一个引理:中心化子()G C x 一定是一个子环。
显然0()G C x ∈,1()G C x ∈。
假设有,()G y z C x ∈,从而有以下结果: ()()()()x y x y y x y x-=-=-=- ()()x y z x y x z y x z x yz x +=+=+=+ ()()()()()(x y z x y z y x z y x z y z x y z x ===== 故y -,y z +,yz 均属于()G C x 。
假设0y ≠,由11xy yx y x xy --=⇒=,故1y -也属于()G C x 。
引理得证。
现令G 为有限体,()Z G 是G 的中心,即有{}()|,Z G c G g G cg gc =∈∀∈=。
显然()()G x GZ G C x ∈= 。
由于()Z G 中的可交换性,故()Z G 为G 的Abel 子环,从而()Z G 为有限域,现令Z q =。
由于{}0,1()Z G ∈,故2q ≥。
现在将G 和每个()G C x 视为()Z G 上的有限维向量空间。
不妨假定G 的维数为n ,()G C x 的维数为x n ,即()n n G Z G q ==,()()x x n n G C x Z G q ==。
考虑到{}*()()0G G C x C x =-为{}*0G G =-的1x n q -阶子群,从而必有1|1|x n n x q q n n --⇒。
将乘法群{}*0G G =-中的元素分成不同的共轭类。
与*x G ∈共轭的元素个数为**:()(1)/(1)x n n G G C x q q ⎡⎤=--⎣⎦。
地方师范院校由于受生源质量、师资水平等各方面条件的限制,数学专业毕业生主要去地方中小学担任数学教师,所以很多数学专业学生对大学数学课程的重要性认识不够,抱着应付过关的态度,对每门专业数学课程的学习都是“蜻蜓点水”浅尝辄止,对各门数学课程之间的联系鲜少思考,这导致学生所学的大学数学知识是零散的,孤立的。
但是,数学专业的数学课程是一个完整的体系,互相之间联系紧密,学生不仅要掌握每门专业课程,更要思考和掌握各门课程之间的联系,这样才能真正掌握数学学科的基本理论、基本知识与基本方法,才能运用所学的数学知识解决实际问题。
《抽象代数》被认为是大学数学的新“三基”之一,它研究群、环、域等代数体系,是经典代数知识的抽象和深化,具有严密的逻辑性和高度的抽象概括性,学生必须跟上教师的授课进度消化每节课的内容并将已学的知识点连贯起来,才能理解后续的教学内容。
由于授课学时有限,每节课的授课内容多,教师在课堂上一般按照例子、定义、定理的模式讲解,学生被动地接受知识灌输;很多同学对于该课程的重要性认识不够,甚至认为该课程“无用”,课程内容又抽象难懂,因此学习该课程时不积极主动,甚至有厌学情绪,不仅没法掌握基本的知识与方法,更谈不上利用抽象代数的相关知识和方法解决实际问题。
事实上,抽象代数不仅能培养学生的抽象思维能力,更为解决很多实际问题提供了方法。
比如,伽罗瓦在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
此外,抽象代数还与其它的数学专业课程联系紧密,或为其它课程提供了理论基础,或者其它一些课程可提供抽象代数的具体例子,而抽象代数的相关概念是这些例子的高度抽象,比如高等代数知识为《抽象代数》提供了很多具体的模型[1]。
因此,要充分挖掘该课程的重要意义及其与其它数学课程的联系,利用第二课堂和课堂教学时间见缝插针帮助学生理解、巩固所学知识。
本文将从具体的实例入手,帮助学生充分认识《抽象代数》的重要性,分析《抽象代数》与《复变函数》《实变函数》等课程之间的联系,进一步理解抽象代数理论。
1,抽象代数名词解释1-1映上的映射(30 )当映射 f 是单射又是满射,称之为双射或f 是1-1 映上的。
2,二元运算(50)设S上个非空集合,把S×S到S的映射称之为S上的二元运算,简称为S上运算。
3,二元多项式(329)设R是个有1的交换表达式f(x,y)=a0.0+a1.0x+a0.1y+a2.0x2 +a0.2y2+a1.1xy+…+a n.0x n+a n-1. 1x n-1y+…+a0.n y n, a ij∈R,称为R上关于x,y的二元多项式。
4,子环(222)设(R,+,·)上个环,S是R的一个非空子集,如果+和·也是S的运算,且(S,+,·)也是个环,则说(S,+,·)是(R,+,·)的一个子环。
5,子域(334)设(F,+,·)是个域,F上的子集S称为(F,+,·)的子域。
如果(1)(S,+,·)是(F,+,·)的子环,(2)(S,+,·)本身是个域。
6,子集合(3)设A,B都是集合,说集合A是集合B的子集合。
7,子集族(6)设J是一共非空集合(可以有无限多个元素),每个j ∈J对应集合S的一个字集A j,则通常说{A j︱A j⊆S,j ∈J}是S的一个以J标号的字集族,J称为指标集。
8,子集生成的子群(80)设G是个群,S为其一非空字集合,℘为G的所有包含S的子群的族,则称子群℘∈HH为S在G中生成的子群,记为〈S〉。
9,子集生成的理想(236)设R是个环,T⊆R,ΦΦT非空,作R的理想族B={I是R的理想,T ⊆I}得到的理想BII∈称之为R的由子集T生成的理想,记为(T)。
10.子群(75)设(G,·)是个群,如果G的子集H对于·也构成群,则说(H,·)是(G,·)的子群。
10.么元(59)单位元,恒等元,中性元设·是集合A上的一个运算,如果元素e∈A对任何a∈A都有a*e=e*a=a,则说e是A对于运算·的一个单位元或恒等元,或么元、中性元。
《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。
抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的教材。
《抽象代数1:代数学基础》是由该教材修订、补充而成,内容包括基本概念、环、域、群、模和Galois理论六部分。
《抽象代数1:代数学基础》力求深入浅出、循序渐进,以利于学生掌握抽象代数课程的精髓.《抽象代数1:代数学基础》还特别注意与其他课程,如高等代数与解析几何、微分几何、李代数、有限群表示和抽象代数Ⅱ等的联系,加强学生对数学整体的把握。
书中基本逐节配有习题,既可帮助读者巩固和拓广教材讲述的内容,又可进行科学研究能力的初步培养。
图书目录前言第1章基本概念1.1 二元运算与同余关系1.2 幺半群群1.3 子群与商群1.4 环与域1.5 同态与同构1.6 模1.7 同态基本定理1.8 循环群第2章环2.1 分式域2.2 多项式环2.3 对称多项式2.4 唯一析因环2.5 主理想整环与Euclid环2.6 域上一元多项式2.7 唯一析因环的多项式环2.8 素理想与极大理想第3章域3.1 域的单扩张3.2 有限扩张3.3 分裂域正规扩张3.4 可分多项式完备域3.5 可分扩张本原元素3.6 代数学基本定理第4章群4.1 群的生成组4.2 群在集合上的作用4.3 Sylow子群4.4 有限单群4.5 群的直积4.6 可解群与幂零群4.7 Jordan-Holder定理4.8 自由幺半群与自由群4.9 点群第5章模5.1 自由模5.2 模的直和5.3 主理想整环上的有限生成模5.4 主理想整环上的有限生成扭模5.5 主理想整环上有限生成模的应用5.6 主理想整环上的矩阵第6章Galois理论6.1 Galois基本理论6.2 一个方程的群6.3 分圆域二项方程6.4 有限域6.5 方程的根式解6.6 圆规直尺作图序言从1984年开始,我为南开大学数学系本科生讲授抽象代数。