高三数学练习试题
- 格式:doc
- 大小:481.00 KB
- 文档页数:6
高三数学考试试题一、选择题(每题4分,共40分)1. 若函数f(x) = ax^2 + bx + c的图像是开口向上的抛物线,那么a 的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 02. 已知集合A={x|-1≤x≤2},B={x|-2≤x≤1},则A∪B的结果是:A. {x|-2≤x≤2}B. {x|-1≤x≤1}C. {x|-1≤x≤2}D. {x|-2≤x≤1}3. 若sin(α+β)sin(α-β) = m,那么cos^2α - sin^2β的值是:A. mB. -mC. 1-mD. 1+m4. 已知数列{an}满足a1=2,an+1 = an + 3n,那么a5的值是:A. 23B. 28C. 33D. 385. 函数y = ln(x)的导数是:A. 1/xB. x/ln(x)C. ln(x)/xD. ln^2(x)6. 已知直线l1: x + y - 3 = 0 与直线l2: 2x - y + 6 = 0,它们的交点坐标是:A. (1, 2)B. (-1, 4)C. (3, 0)D. (0, 3)7. 已知圆心在原点,半径为2的圆的方程是:A. x^2 + y^2 = 4B. x^2 + y^2 = 2C. x^2 + y^2 > 4D. x^2 + y^2 < 48. 若z = x + yi,其中x和y为实数,i为虚数单位,那么|z|的值是:A. √(x^2 + y^2)B. √(x^2 - y^2)C. x - yiD. x + yi9. 已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f'(1)的值:A. -1B. 0C. 1D. 210. 若方程x^2 - 4x + 3 = 0有实数根,则实数根的和是:A. 1B. 2C. 4D. 0二、填空题(每题3分,共15分)11. 若sin(θ) = √3/2,且θ为锐角,则cos(θ) = _______。
高三数学考试题目及答案大全第一节选择题1.若a+b=0,则下列说法错误的是() A. a=-b B. b=-a C. a·b=0 D. a=b2.若函数y=ax+b在点(1,-3)处的斜率为-2,则a,b的值分别为() A. 2,-1 B. -2,1 C. -1,2 D. 1,-23.若直线2x+y+1=0与x轴交于点(-1, 0),求直线的斜率k为() A. k=0 B. k=1 C. k=-1 D. k=1/2第二节填空题1.已知平方根2的近似值为1.414,则2的近似值为_________。
2.已知函数y=x^2+4x+6,当x=-2时,y的值为_________。
第三节计算题1.求函数y=3x^2-4x+5的极小值。
2.解方程组: \[ \begin{cases} 2x+y=3 \\ x-3y=-2 \end{cases} \]3.计算极限: \[ \lim_{{x\to 1}}\frac{x^2-1}{x-1} \]第四节证明题证明:直线y=3x+1与直线y=3x+2平行。
答案参考第一节选择题1. D. a=b2. D. 1,-23. B. k=1第二节填空题1.2的近似值为1.414 x 2 =2.8282.当x=-2时,y=(-2)^2 + 4 × (-2)+ 6 = 2第三节计算题1.函数y=3x^2-4x+5的极小值为(4, 9)2.解得x=5,y=-73.解得极限值为2第四节证明题设直线y=3x+1过点(0, 1),直线y=3x+2过点(0,2),斜率均为3,两直线平行。
证毕。
以上为高三数学考试题目及答案大全内容,希望对你的学习有所帮助。
1高三数学考试试卷数学试题一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个选项中只有一个是符合题目要求的,不选,多选,错选均不给分.)1. 已知集合{}10<≤=x x P ,{}32≤≤=x x Q .记Q P M Y =,则 A .{}M ⊆2,1,0 B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 3. 将不等式组⎩⎨⎧≥-+≥+-01,01y x y x 表示的平面区域记为Ω,则属于Ω的点是A .)1,3(-B .)3,1(-C .)3,1(D .)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 25. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .367. 若锐角α满足53)2πsin(=+α,则=αsinA .52 B .53 C .43 D .548.在三棱锥ABC O -中,若D 为BC 的中点,则= A .OB OC OA -+2121 B . OC OB OA ++2121 C .OA OC OB -+2121 D . OA OC OB ++21219. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是 A .{}n n b a ⋅ B .{}n n b a + C .{}1++n n b a D .{}1+-n n b aABCD 1A1D 1C 1B(第6题图)210.不等式1112<+--x x 的解集是 A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A .)2(+x f 为奇函数B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分 别为四个小正方形的内切圆,则图中某个圆的方程是 A .01222=++-+y x y x B .012222=+-++y x y x C .01222=-+-+y x y x D .012222=-+-+y x y x13. 设a 为实数,则“21aa >”是“a a 12>”的A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=a A .41 B .43 C .1 D .3415. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A .乙甲乙甲,V V S S >>B . 乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<ABCDxyo(第12题图)a a a aa a 15题图①)a aa aaa 侧视图15题图②)316.如图,F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB的面积是△OPF 面积的25倍,则该椭圆的离心率是 A .52或53 B .51或54C .510或515 D .55或552 17.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A .1或3B . 2或3C . 2或4D .3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC .若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19. 已知函数1)3π2sin(2)(++=x x f ,则)(x f 的最小正周期是 ▲ ,)(x f 的最大值是 ▲ .20. 若平面向量,满足)6,1(2=+,)9,4(2-=+,则=⋅ ▲ . 21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ . 22.若不等式02)(22≥----a x a x x 对于任意R ∈x 恒成立,则实数a 的最小值是▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分)在等差数列{})N (*∈n a n 中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物ABCDEF(第18题图)(第16题图)4线上位于第一象限内的点.(Ⅰ) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(Ⅱ)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分) 如图,在直角坐标系xOy 中,已知点)0,2(A ,)3,1(B ,直线t x =)20(<<t 将△OAB 分成两部分,记左侧部分的多边形为Ω.设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(Ⅰ) 分别求函数)(t f 和)(t g 的解析式;(Ⅱ)是否存在区间),(b a ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b - 的最大值;若不存在,说明理由.ABxoyt x =(第25题图)xyO ABPD(第24题图)5数学试题答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(Ⅰ)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (Ⅱ)将(Ⅰ)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(Ⅰ)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(Ⅱ)由直线AD PA ,的位置关系知 t k k AD -=-=11.因为PB AD ⊥,所以 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(Ⅰ)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为 t t t 2,3,; 当21<<t 时,多边形Ω是四边形(如图②),边长依次为62),1(2),2(3,--t t t .所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(t t t tt tt g(Ⅱ)由(Ⅰ)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减.证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.(第25题图②)。
高三数学专项训练:排列与组合练习题一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81 B.64 C.14 D.122.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324B.328C. 360D.6483.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的左边,那么不同的排法共有()A.60种 B.48种 C.36种 D.24种4.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法的种数是()A.360 B.288 C.216 D.965.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种 C.9种 D.8种6.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,从中任选1人参加某项活动,则不同选法种数为()(A)60 (B)12 (C)5 (D)57.从10名大学生中选3个人担任乡村干部,则甲、丙至少有1人入选,而乙没有入选的不同选法的种数为()A. 85 B. 56 C. 49 D. 288.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有()A. 24种B. 36种C. 38种D. 108种9.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙不能排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种10.有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有()种不同去法A. 36种B. 35种C. 63种D. 64种11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A. 6种B. 12种C. 30种D. 36种12.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有()A.240种 B.280种 C. 96种 D.180种13.2位教师与5位学生排成一排,要求2位教师相邻但不排在两端,不同的排法共有()A. 480种B.720种C. 960种D.1440种14.4名运动员报名参加3个项目的比赛,每人限报一项,不同的报名方法有(A)43种(B)34种(C)34A种(D)34C种15.从9名学生中选出4人参加辩论赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为()A.36 B.51 C.63 D.9616.今有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,现从10人中选派4人承担这三项任务,不同的选派方法有A.1260种B.2025种C.2520种D.5054种17.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种 B.36种 C.42种 D.60种18.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A.140种 B. 120种 C. 35种 D. 34种19.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有()不同的装法.A.240 B.120 C.600 D.36020.有11名学生,其中女生3名,男生8名,从中选出5名学生组成代表队,要求至少有1名女生参加,则不同的选派方法种数是 ( )A.406B.560C.462D.15421.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的种数为()A.5 B.80 C.105 D.21022.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A.85B.56 C.49 D.2823.某班乒乓球队9名队员中有2名是校队选手,现在挑5名队员参赛,校队必须选,那么不同的选法共有()种.A)126;B)84;C)35;D)21;24.三名教师教六个班的课,每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种25.某班级有一个8人小组,现任选其中3人相互调整座位,其余5人座位不变,则不同的调整方案的种数有()A.56B.112C.336D.16826.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种27.平面上有5个点,其中任何3个点都不共线,那么可以连成的三角形的个数是( ) A.3 B.5 C.10 D.2028.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A.2264C C B C.336A D.36C29.某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14B.24C.28D.4830.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A、120 B、72 C、12 D、3631.从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有A.300种B.240种C.144种D.96种32.将4个不同的球放入3个不同的盒中,每个盒内至少有1个球,则不同的放法种数为()(A)24 (B)36 (C)48 (D)9633.现安排5名同学去参加3个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案个数为()(A)72 (B)114 (C)144(D)150 34.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数()A . 8 B. 15 C. 243 D. 12535.7名志愿者安排6人在周六,周日两天参加社区公益活动若每天安排3人,则不同的安排方案共有()A.280种B.140种C.360种D.300种36.某班级要从4名男生、2名女生中选4人接受心理调查,如果要求至少有1名女生,那么不同的选法种数为()A.14 B.24 C.28 D.4837.某节目表有6个节目,若保持其相对顺序不变,在它们之间再插入2个小品节目,且这2个小品在表中既不排头也不排尾,那么不同插入方法有()A. 20种B. 30种C. 42种D. 56种38.现从甲、乙、丙等6名学生中安排4人参加4×100m接力赛跑。
高三数学名校试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 3x + 1,则f(-1)的值为:A. 0B. 4C. 2D. -22. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B为:A. {1, 2, 3}B. {2, 3}C. {1, 2}D. {2, 3, 4}3. 若直线y = 2x + 3与直线y = -x + 5平行,则它们的斜率k1和k2的关系为:A. k1 = k2B. k1 > k2C. k1 < k2D. k1 ≠ k24. 已知等比数列的首项为2,公比为3,那么它的第五项a5为:A. 162B. 108C. 72D. 54二、填空题(每题5分,共20分)5. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,求f'(x)的值为______。
6. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标为______。
7. 已知向量a = (3, 4),向量b = (-4, 3),求向量a与向量b的点积为______。
8. 已知等差数列的前三项为2,5,8,求它的通项公式为______。
三、解答题(每题10分,共60分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求函数的单调区间。
10. 已知直线l1:y = 2x + 1与直线l2:y = -x + 2相交,求交点坐标。
11. 已知三角形ABC的顶点坐标分别为A(1, 2),B(4, 6),C(7, 10),求三角形的面积。
12. 已知函数f(x) = x^2 - 4x + 4,求函数的极值点。
四、附加题(10分)13. 已知函数f(x) = sin(x) + cos(x),求函数在区间[0, π]上的值域。
答案:一、选择题答案1. B2. B3. A4. A二、填空题答案5. 3x^2 - 12x + 96. (2, 3)7. -258. a_n = 2 + 3(n - 1) = 3n - 1三、解答题答案9. 单调递增区间为(-∞, 1)和(2, +∞),单调递减区间为(1, 2)。
一.选择题 :1. 已知集合 ( )(A) (B) (C) (D)2 .函数的定义域是 ( )( A ) ( B )( C ) ( D )3 、下列函数中,在其定义域内既是奇函数又是减函数的是( ) ( A ) ( B ) ( C ) ( D )4 . 已知是周期为 2 的奇函数,当时,设则( )( A ) ( B )( C ) ( D )5 . 已知函数,若 , 则的取值范围是( )( A) (B) 或(C) (D) 或6 . 若是的图象的一条对称轴,则可以是( )( A ) 4 ( B ) 8 ( C ) 2 ( D )17 .已知是上的减函数,则的取值范围是( )(A) (B) (C) (D)8. 给定函数 :① ,② ,③ ,④,其中在区间(0,1)上单调递减的函数的序号是( )( A ) ①②( B ) ②③( C ) ③④( D ) ①④9. 设若是与的等比中项,则的最小值为( )( A ) 8 ( B ) 4 ( C ) 1 ( D )10.在进行一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有( )( A ) 34 ( B ) 48 ( C ) 96 ( D )14411. 已知命题 : 存在 ; 命题, 则下列命题为真命题的是 ( )( A ) ( B )( C ) ( D )12.若 : , 是偶函数,则是的( )( A ) 充分必要条件 ( B ) 充分不必要条件( C ) 必要不充分条件 ( D ) 既不充分也必要条件二.填空题13. 已知 , 若 , 则实数的取值范围是( ) ;14. 已知是上的奇函数 , 则 =( ) ;15. 已知双曲线的右焦点F,与抛物线的焦点重合,过双曲线的右焦点F作其渐近线的垂线,垂足为M,则点M的纵坐标为( ) ;16. 已知在上是单调减函数 ; 关于的方程的两根均大于 3, 若 , 都为真命题 , 则实数的取值范围是( ) ;三 . 解答题17. 在△ ABC 中, a 、 b 、 c 分别为角 A 、 B 、 C 的对边,且 4sin 2 - cos 2 A = .(1) 求∠ A 的度数;(2)若 a =, b + c = 3 ,求 b 、 c 的值 .解 (1) ∵ B + C =π- A ,即=-,由 4sin 2 - cos 2 A =,得 4cos 2 -cos 2 A =,即 2(1 + cos A ) - (2cos 2 A - 1) =,整理得4cos 2 A - 4cos A + 1 = 0 ,即 (2cos A - 1) 2 = 0. ∴ cos A =,又 0°< A <180°,∴ A = 60°.(2) 由 A = 60°,根据余弦定理 cos A =,即=,∴ b 2 + c 2 - bc = 3 ,①又 b + c = 3 ,②∴ b 2 + c 2 + 2 bc = 9. ③①-③整理得: bc = 2. ④解②④联立方程组得或18. 设数列{a n }的前n项和为S n ,且满足S n =2-a n ,n=1,2,3,… .(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b 1 =1,且b n+1 =b n +a n ,求数列{b n }的通项公式;(Ⅲ)设c n =n(3-b n ),求数列{c n }的前n项和T n .解: ( Ⅰ ) ∵ n=1 时, a 1 +S 1 =a 1 +a 1 =2 , ∴ a 1 =1∵ S n =2-a n 即 a n +S n =2 , ∴ a n+1 +S n+1 =2两式相减: a n+1 -a n +S n+1 -S n =0即 a n+1 -a n +a n+1 =0 , 2a n+1 =a n∵ a n ≠0 ∴ (n ∈ N *)所以,数列 {a n } 为首项 a 1 =1 ,公比为的等比数列 . a n = (n ∈ N *)( Ⅱ ) ∵ b n+1 =b n +a n (n=1 , 2 , 3 ,…)∴ b n+1 -b n =( ) n-1得 b 2 -b 1 =1b 3 -b 2 =b 4 -b 3 =( ) 2……b n -b n-1 =( ) n-2 (n=2 , 3 ,… )将这 n-1 个等式累加,得b n -b 1 =1+又∵ b 1 =1 ,∴ b n =3-2( ) n-1 (n=1 , 2 , 3 ,…)( Ⅲ ) ∵ c n =n(3-b n )=2n( ) n-1∴ T n =2[( ) 0 +2( )+3( ) 2 + … +(n-1)( ) n-2 +n( ) n-1 ] ①而 T n =2[( )+2( ) 2 +3( ) 3 + … +(n-1)] ②① - ②得:T n = =8-(8+4n) (n=1 ,2 , 3 ,…)19. 如图,在三棱柱 ABC - A 1 B 1 C 1 中, AA 1 C 1 C 是边长为4 的正方形 .平面 AB C ⊥平面 AA 1 C 1 C , AB=3 , BC=5.(Ⅰ)求证: AA 1 ⊥平面 ABC ;(Ⅱ)求二面角 A 1 -BC 1 -B 1 的余弦值;(Ⅲ)证明:在线段 BC 1 存在点 D ,使得 AD ⊥ A 1 B ,并求的值 .解 : (1) ∵为正方形 ,,又面⊥面 ,又面∩面 =∴ AA 1 ⊥平面 ABC .(2 ) ∵AC=4,AB=3,BC=5,∴ ,∴∠CAB= ,即AB⊥AC,又由(1) ∴ AA 1 ⊥平面 ABC . 知 ,所以建立空间直角坐标系 A-xyz , 则 (0,0,4), (4,0,4), (0,3,4),B(0,3,0)设面 C 与面 B 的法向量分别为 ,,由 , 得 , 令 , 则,同理 , ,,由图知 , 所求二面角为锐二面角 , 所以二面角 A 1 -BC 1 -B 1 的余弦值为 .(3) 证明 : 设 , , 则 ,, ,因为三点共线 , 所以设 , 即,所以 , (1)由得 (2)由 (1)(2)求得 , 即,故在线段 BC 1 存在点 D ,使得 AD ⊥ A 1 B ,且 = .20. 已知函数过曲线上的点的切线方程为 y=3 x +1 。
高三数学试题及解析答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)解析:奇函数满足f(-x) = -f(x)的性质。
选项A是偶函数,选项B是偶函数,选项D是偶函数,只有选项C满足奇函数的定义。
因此,正确答案是C。
2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。
解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
3. 计算下列积分:∫(3x^2 - 2x + 1)dx解析:根据积分的基本公式,我们可以计算出:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C4. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)是圆心坐标,r是半径。
根据题目给出的方程,圆心坐标为(3, 4),半径为5。
二、填空题(每题4分,共12分)1. 若sinθ = 3/5,且θ为锐角,求cosθ的值。
答案:根据勾股定理,cosθ = √(1 - sin²θ) = √(1 -(3/5)²) = 4/5。
2. 已知函数f(x) = x^3 - 2x^2 + 3x - 4,求f(2)的值。
答案:将x=2代入函数f(x),得到f(2) = 2³ - 2×2² + 3×2- 4 = 8 - 8 + 6 - 4 = 2。
3. 求方程2x + 5 = 7x - 3的解。
答案:将方程化简,得到5x = 8,解得x = 8/5。
三、解答题(每题18分,共54分)1. 解不等式:|x - 3| < 2。
高三数学试题及详细答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是:A. m≤-2B. m≥-2C. m≤2D. m≥2答案:B2. 已知数列{an}满足a1=1,an+1=2an+1(n∈N*),则a5的值为:A. 31B. 63C. 127D. 255答案:C3. 若直线l:y=kx+1与椭圆C:x^2/4+y^2/2=1有公共点,则k的取值范围是:A. -√2/2≤k≤√2/2B. -1≤k≤1C. -√3/2≤k≤√3/2D. -√2≤k≤√2答案:A4. 已知函数f(x)=x^3-3x,若f(x1)=f(x2)(x1≠x2),则x1+x2的值为:A. 0B. 1C. -1D. 2答案:D5. 已知向量a=(1,-2),b=(2,1),则|2a+b|的值为:A. √5B. √10C. √17D. √21答案:C6. 若不等式x^2-2ax+4>0的解集为R,则a的取值范围是:A. a<-2或a>2B. a<-1或a>1C. a<-2√2或a>2√2D. a<-√2或a>√2答案:C7. 已知三角形ABC的内角A,B,C满足A+C=2B,且sinA+sinC=sin2B,则三角形ABC的形状是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形答案:C8. 已知函数f(x)=x^2-4x+m,若f(x)在区间[1,3]上的最大值为5,则m的值为:A. 3B. 5C. 7D. 9答案:C9. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线方程为y=√2x,则双曲线C的离心率为:A. √3B. √2C. 2D. 3答案:A10. 已知函数f(x)=x^3-3x,若方程f(x)=0有三个不同的实根,则f'(x)=0的根的个数为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)11. 已知等比数列{an}的前n项和为Sn,若a1=1,S3=7,则公比q的值为______。
高中数学高三试题及答案一、选择题(每题4分,共20分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. -5答案:B2. 已知集合A={1, 2, 3},B={3, 4, 5},则A∩B的元素个数为:A. 1B. 2C. 3D. 0答案:A3. 函数y = x^2 - 6x + 8的对称轴方程为:A. x = 3B. x = -3C. x = 2D. x = -2答案:A4. 已知等差数列{a_n}的前三项分别为2,5,8,则该数列的公差为:A. 3B. 2C. 1D. 4答案:A5. 函数y = |x - 2| + |x + 2|的最小值为:A. 2B. 4C. 0D. 6答案:B二、填空题(每题5分,共20分)6. 已知向量a = (3, 4),向量b = (-4, 3),则向量a与向量b的夹角θ满足______。
答案:θ =135°7. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求圆心坐标。
答案:(3, -4)8. 已知函数f(x) = x^3 - 3x^2 + 4x - 5,求f'(x)。
答案:f'(x) = 3x^2 - 6x + 49. 已知等比数列{a_n}的前三项分别为2,4,8,则该数列的公比为______。
答案:2三、解答题(每题10分,共60分)10. 解方程:x^2 - 5x + 6 = 0。
答案:x = 2 或 x = 311. 已知函数f(x) = 2x^3 - 3x^2 + 5x - 1,求f(x)的极值点。
答案:x = 1/2(极大值点),x = 2(极小值点)12. 已知直线l:y = 2x + 3,求与l平行且与x轴交于点(2, 0)的直线方程。
答案:y = 2x - 413. 已知三角形ABC的三边长分别为a = 5,b = 7,c = 8,求三角形ABC的面积。
全国高三数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的最小值为m,则m的值为:A. 0B. 1C. 2D. 32. 已知向量a = (3, -1),b = (1, 2),则向量a与b的数量积为:A. 1B. 2C. 3D. 43. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, √2]4. 已知数列{an}的通项公式为an = 2n - 1,求数列的前n项和Sn:A. n^2B. n(n+1)C. n^2 - nD. n^2 + n5. 直线l:2x - y + 3 = 0与直线m:x + 2y - 5 = 0的交点坐标为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (2, -1)6. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线的一条渐近线方程为y = 2x,则a与b的关系为:A. a = 2bB. a = b/2C. b = 2aD. b = a/27. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2 + b^2 = c^2,若三角形ABC的面积为3√3,则c的值为:A. 2√3B. 3√3C. 6D. 6√38. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x + 49. 已知抛物线方程为y^2 = 4x,求抛物线的焦点坐标:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)10. 已知椭圆方程为x^2/16 + y^2/9 = 1,求椭圆的离心率e:A. 1/4B. √5/4C. √3/2D. 3/4二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第10项a10的值为______。
高三数学巩固练习题(四)班级________学号_________姓名__________一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在后面的表格中)1.已知4(,0),cos ,tan 225x x x π∈-==则A .247B .247-C .724D .724-2.函数R x y 是)0)(sin(πϕϕ≤≤+=上的偶函数,则ϕ=A .0B .4πC .2πD .π3.已知()f x 是定义域为R 的奇函数,方程()0f x =的解集为M ,且M 中有有限个元素,则A .M 可能是∅B .M 中元素个数是偶数C .M 中元素个数是奇数D .M 中元素个数可以是偶数,也可以是奇数4.甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点后改为跑步,而乙则是先跑步到中点后改为骑自行车,最后两人同时到达B 地.又知甲骑自行车比乙骑自行车的速度快,并且两人骑车速度均比跑步速度快.若某人离开A 地的距离S 与所用时间t 的函数关系可用图①~④中的某一个来表示,则甲、乙两人的图象只可能分别是A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④5.等比数列{}n a 的首项11a =-,前n 项和为,n S 若3231510=S S ,则公比q 等于A .12 B .12- C .2 D .2- 6.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C CA .3B .31C .61D .67.数列{}n a 的通项公式是32(1)(32)2n n n n n n a ----++--=()n N *∈,则 12lim()n n a a a →∞+++等于A .1124B .1724 C .1924 D .25248.给定正数,,,,p q a b c ,其中p q ≠,若,,p a q 成等比数列,,,,p b c q 成等差数列,则一元二次方程220bx ax c -+=A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根9.已知函数21()()2x xf x e e e-=+(1x <,且e 为大于1的常数),则 A .1113()()22f f --< B .1113()()22f f --> C .113()(2)2f f --< D .113()(2)2f f -->10.若()(),f x f x π+=-且()()f x f x -=,则()f x 可以是A.二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 11.设322cos =θ,则θθ44cos sin +的值是__________________; 12.设正数数列{a n }前n 项和为S n ,且存在正数t ,使得对所有自然数n ,有2nn a t tS +=,则通过归纳猜测可得到S n = n 2t . 13.如果)4(,41)4(,52)(παπββα+=-=+tg tg tg 那么的值是 223.14.某品牌彩电为了打开市场,促进销售,准备对某特定型号的彩电降价,现有四种降价方案: 方案①:先降价%a ,再降价%b ; 方案②:先降价%b ,再降价%a ; 方案③:先降价%2b a +,再降价%2ba +; 方案④:一次性降价()%ab +。
其中0a >,0b >,且a b ≠。
上述四种方案中,降价幅度最小的是方案________③_____________.三、解答题(本大题共5小题,共44分,解答题应写出文字说明,证明过程或演算步骤) 15.(本小题满分8分)已知)2,0(,πβα∈ 且满足)cos(sin sin βααβ+=.(1)求证αααβ2sin 1cos sin tan +=;(2)求βtan 的最大值,并求当βtan 取得最大值时,)tan(βα+的值.解:(1)βαβααββααβsin sin cos cos sin sin ),cos(sin sin 2-=∴+= 2分βαααβββαααββtan sin cos sin tan ,cos sin sin cos sin cos sin 22-=-=∴即 4分αααβ2sin 1cos sin tan +=∴5分 (2)1tan 2tan cos sin 2cos sin sin 1cos sin tan 2222+=+=+=αααααααααβ7分0tan ),2,0(>∴∈απα221tan 1tan 21tan ≤+=∴ααβ 9分当且仅当22tan ,tan 1tan 2==ααα即取最大值,最大值为42221=此时2tan tan 1tan tan )tan(=-+=+βαβαβα12分16.(本小题满分8分)已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=。
(Ⅰ)求证:B A tan 2tan =;(Ⅱ)设3AB =,求AB 边上的高。
(Ⅰ)证明:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A所以.tan 2tan B A =(Ⅱ)解:ππ<+<B A 2 ,,43)tan(,53)sin(-=+∴=+B A B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得.01tan 4tan 22=--B B解得262tan ±=B ,舍去负值得262tan +=B , .62tan 2tan +==∴B A 设AB 边上的高为CD.则AB=AD+DB=.623tan tan +=+CDB CD A CD 由AB=3,得CD=2+6. 所以AB 边上的高等于2+6.17.(本小题满分10分)对于函数)(x f ,若存在∈0x R ,使00)(x x f =成立,则称0x 为)(x f 的不动点,如果函数∈-+=c b cbx a x x f ,()(2N *)有且只有两个不动点0,2,且21)2(-<-f .(1)求函数)(x f 的解析式;(2)已知各项不为零的数列}{n a 满足1)1(4=⋅nn a f S ,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证当2≥n 时,恒有3<n a 成立.解:(1)设⎪⎪⎩⎪⎪⎨⎧-=⨯--=+⇒=++-⇒=-+b ab c a cx x b x c bx a x 1021020)1(22 ⎪⎩⎪⎨⎧+==∴210c b a c x cx x f -+=∴)21()(22分由32112)2(<⇒-<+-=-c c f 又*∈N c b ,, )1()1(2)(,,22≠-=∴==∴x x x x f c b c 4分 (2)由已知211122,2----=∴-=⇒n n n n n n a a S a a S相减得0)1)((11=+-+--n n n n a a a a 6分 1,11-=--=∴--n n n n a a a a 或当n=1时,1212111-=⇒-=a a a a ,若1,21=-=-a a a n n 则 这与1≠n a 矛盾,,11-=-∴-n n a a n a n -=∴ 9分(3)由⇒=+)(1n n a f a 2121)211(21222121≤+--=⇒-=++n n n n n a a a a a , 2011≥<∴++n n a a 或 11分 若3,011<<++n n a a 则成立; 若0)1(2)2(,211≤---=-≥++n n n n n n a a a a a a 则}{n a ∴在2≥n 时单调递减.3824242221212=-⨯=-=a a a ,可知3382<=≤a a n ,在2≥n 时成立 14分18.已知一个数列{}n a 的各项是1或3.首项为1,且在第k 个1和第1k +个1之间有21k -个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,….记数列的前n 项的和为n S . (Ⅰ)试问第2004个1为该数列的第几项?(Ⅱ)求2004a ; (Ⅲ)2004S ;(Ⅳ)是否存在正整数m ,使得2004n S =?如果存在,求出m 的值;如果不存在,说明理由.解:将第k 个1与第k +1个1前的3记为第k 对,即(1,3)为第1对,共1+1=2项;(1,3,3,3)为第2对,共1+(2×2-1)=4项;)3,,3,3,3,1(312个共-k 为第k 对,共1+(2k-1)=2k 项;….故前k 对共有项数为2+4+6+…+2k =k (k +1).(Ⅰ)第2004个1所在的项为前2003对所在全部项的后1项,即为2003(2003+1)+1=4014013(项).(Ⅱ)因44×45=1980,45×46=2070,故第2004项在第45对内,从而a 2004=3. (Ⅲ)由(Ⅱ)可知,前2004项中共有45个1,其余1959个数均为3,于是S 2004=45+3×1959=5922.(Ⅳ)前k 对所在全部项的和为 S k (k +1)=k +3[k (k +1)-k ]=3k 2+k .易得,S 25(25+1)=3×252+25=1900,S 26(26+1)=3×262+26=2054,S 651=1901,且自第652项到第702项均为3,而2004-1901=103不能被3整除,故不存在m ,使S m =2004.已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数k ,对任意x ∈D (D 为函数的定义域),等式f (kx )=2k+f (x )成立. (Ⅰ)一次函数f (x )= ax +b (a ≠0)是否属于集合M ?说明理由;(Ⅱ)设函数f (x )=x a log (a >1)的图象与y =x 的图象有公共点,试证明: f (x )=x a log ∈M .(Ⅰ)若一次函数f (x )∈M ,即存在非零常数k ,使得等式akx +b =2k + ax +b ,也就是a (k-1)x =2k 成立.显然对于任意x ∈D =R ,a (k-1)x =2k 不能恒成立,故f (x )= ax +b ∉M .(Ⅱ)如图,设函数f (x )=x a log (a >1)的图象与函数y =x 的图象的公共点为B (t ,t ),则显然t >1.在x ∈(1,t )上,函数f (x )=x a log (a >1)有定义,故在函数f (x )=x a log (a >1,x ∈(1,t ))的图象即弧AB 上,必存在点C (k ,2k ),使等式2log k k a =成立,其中1<k <t .于是,f (kx )=)(2log 2log log log x f kx k x k kx a a a a +=+=+=,故f (x )=x a log ∈M .第21题答图。