钟面上的追及问题
- 格式:doc
- 大小:20.00 KB
- 文档页数:1
奥数基础二:相遇、追及(行程)与时钟问题一、行程问题两人的行程问题,从方向看有两种情况:同向或反向。
方向相同,就是两人一前一后,快的从后面追上慢的,这种问题叫做追及问题。
追及实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程),这种情况,要用到两人的速度差。
方向相反的,就是两人面对面起来,直到相遇,所以叫作相遇问题。
这类题实质上是两人一起走了这段路程,要计算路程和,所以要用到速度和。
记住要点:方向相同,速度要相减,方面相反,速度要相加。
1、相遇问题一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?A、B两地相距9000米,包子和菠萝从A、B两地同时出发相对而行,经过60分钟相遇。
已知包子每分钟走80米,菠萝分钟走多少米?甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?2、追及问题甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行千米,300乙机每小时行千米,飞行小时后它们相隔多少千米?这时候甲机提高速度用34042小时追上乙机,甲机每小时要飞行多少千米?甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,甲要行多少千米才追上乙?两船同时到达目的地A,问两地距离?甲乙两人要从A地到B地办事。
【小升初奥数知识点讲解】时钟问题—钟面追及
时钟问题—钟面追及
基本思路:封闭曲线上的追及问题。
关键问题:①确定分针与时针的初始位置;
②确定分针与时针的路程差;
基本方法:
①分格方法:
时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。
②度数方法:
从角度观点看,钟面圆周一周是360°,分针每分钟转360/60 度,即6°,时针每分钟转360/12*60 度,即1/2 度。
科技馆有一只奇妙的钟,一圈共有20格。
每过7分钟,指针跳一次就要跳过9个格,今天早上8点整的时候,指针恰好从0跳到9,问:昨晚8点整的时候时针指着几?
昨晚8点整到今天早上8点整,12x60=720分钟
720/7=102 (6)
今天早上8点整,指针恰好从0跳到9,昨晚8点整到今天早上8点整,指针跳动103次
103x9=927
927/20=46 (7)
9-7=2
昨晚8点整的时候时针指着2
1。
钟表问题之相遇与追及奥数拓展知识点1.钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
2.我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
3.时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
①对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
②分针速度:每分钟走1小格,每分钟走6度③时针速度:每分钟走 1/12 小格,每分钟走0.5度4.注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
简单的分类:①环形时钟的时针和分针的追及和相遇的问题,具体体现的就是路程转换为角度问题。
②时间标准问题和闹钟问题,这类问题是因为问题闹钟的原因导致时钟比标准钟快或者慢,引发的时间问题。
解决这类问题需要的就是十字交叉法。
典型例题例1、三点钟到四点钟之间,分针与时针在什么时候重合?【练习1】有一座时钟现在显示10时整。
那么,经过多少分钟,分针与时针第一次重合;再经过几分钟分针与时针第二次重合?(答案写成假分数的格式)【练习2】钟表的时针与分针在4点几分第一次重合?(答案写成假分数的形式)【练习3】现在是3点,几分钟之后时针与分针第一次重合?(答案写成假分数的形式)例2、七点钟到八点钟之间,分针与时针在什么时候成直线?【练习4】4点钟到5点钟之间,分针与时针在什么时候成直线?A、4点600/11分B、4点600/13分C、4点45分D、4点47分【练习5】1点钟到2点钟之间,分针与时针在什么时候成直线?A、1点420/11分B、1点420/13分C、1点35分D、1点37分【练习6】8点钟到9点钟之间,分针与时针在什么时候成直线?A、8点120/13分B、8点120/11分C、8点13分D、8点10分例3、一点钟到两点钟之间,分针与时针在什么时候成直角?【练习7】2点钟到3点钟之间,分针与时针在2点____分时第一次成直角?(答案写成假分数的形式)【练习8】5点钟到6点钟之间,分针与时针在什么时候成直角?A、5点120/11分B、5点480/11分C、两个都对D、两个都不对【练习9】8点钟到9点钟之间(不包含9点钟),分针与时针在8点______分成直角?(答案写成假分数的形式)例4、一只闹钟每小时慢4分钟,标准钟三点半时,此钟与标准钟对准,现在标准时间是十点半。
四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
钟面上按“时”分为12大格,按“分”分为60小格。
每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。
而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。
2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。
在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。
因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。
因此,需追及(20+30)小格。
解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。
3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。
所以分针需追及(5×1+15)小格或追及(5×1+45)小格。
解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。
4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。
时钟追及与相遇问题知识框架时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】142.5度【答案】142.5度【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题【难度】☆☆【题型】填空【解析】16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有秒。
【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答【解析】 解:它们的速度比为1:12:720,所以秒针转了1466÷(720+12+1)×720=1440圈.即1440×60=86400秒【答案】86400秒.【巩固】 在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有 秒。
第一部分:师:同学们,《龟兔赛跑》的故事大家一定很熟悉吧,今天老师也让大家来听一个新的《龟兔赛跑》故事。
学生听故事。
师:看来兔子是没有办法来解决这个问题了,那么同学们体们有没有兴趣来帮助兔子解决这个问题?讨论问题一、( 出题)“比赛时,兔子追到乌龟时用了多少分钟? ”师:老师为同学们准备了一张表格,我们讨论的时候可以用这张表来解决这个问题。
师:首先我们来讨论一下,兔子每分钟比乌龟多跑了多少米?生:(55 米) 。
师:你的55 米是怎样得到的?生:兔子每分钟跑60 米,乌龟每分钟跑5 米,所以……师:好,接下来请同学们根据刚才得出来的兔子每分钟比乌龟多跑55 米这个速度,分别计算出“兔子跑1 分钟比乌龟多跑了多少米,2 分钟、3 分钟…呢? 最后可以根据左边的图找出当兔子追到了乌龟时,兔子比乌龟多跑了多少米? ”( 学生开始讨论) 。
生:1 分钟多跑55 米。
师:那么当兔子追到了乌龟时,兔子比乌龟多跑了多少米?生:900 米,因为兔子跑了1200 米,乌龟跑了3OO 米,所以多跑了900 米;因为兔子和乌龟相距3 格,每大格是300 米,所以是900 米。
师:那你能不能根据900 米和55 这两个条件,列式算出兔子共追了多少时间? 动动脑,把你的算式列在方框下的横线上。
生:(900 ÷55=16 分多)师:同学们做得真不错! 从算式中我们可以知道,兔子追上乌龟的时间等于兔子一共多跑的路程除以兔子每分钟多跑的路程。
第二部分:师:同学们,你们仔细看一看,这个龟兔赛跑的跑道有点像我们生活中的哪样东西啊?生:钟师:对了,我们的钟面上有时针、分钟、秒针,但是在今天的课上我们只用到分针和时针,秒针我们今天就暂时不用。
师:那么同学们,请你们再想一想,刚才的故事中的兔子像钟里面的什么,乌龟又像钟里面的什么? 那么兔子追乌龟就像钟里面的分针追时针。
下面我要请同学们以小组为单位一起来玩钟,在玩钟的时候要拨一拨钟,并完成动手操作里面的题目。
解题方法一、追及计算法追及计算法,就是将钟表问题看做是行程问题里面的相遇追及问题,将时针和分针作为运动的物体,将时间差作为路程差,从而得到追及的时间。
这类“相遇追及问题”的特殊之处在于:(1)钟面被分成12个大格,每个大格又分为5个小格,即整个钟面共有60个小格;(2)分针每分钟走1个小格,时针每分钟走1/12小格;分针每小时走60个小格,即12个大格,时针每小时走5个小格,即1个大格;(3)钟面一圈为360°,时针每小时走30°,分钟每小时走360°,时针每分钟走0.5°,分针每分钟走6°;(4)分钟与时针的速度比是已知的,分针的速度是时针的12倍,时针的速度是分针的1/12,分针和时针的速度差是11/12小格,也就是6-0.5=5.5度。
钟表问题的基本公式:相差的小格数÷(分针速度-时针速度)=运动所需时间或者相差的角度数÷(分针速度-时针速度)=运动所需时间。
【注】不论是从“格”的角度,还是从“角度”的角度分析,分钟和时针的速度差都包含有11,这个约数,所以在精确计算的时候,正确选项往往会是含有11作为分母的分数。
********************************************************************* *********【真题示例1】张某下午六时多外出买菜,出门时看手表,发现表的时针和分针的夹角为110°,七时前回家时又看手表,发现时针和分针的夹角仍是110°,那么张某外出买菜用了多少分钟?A.20分钟 B.30分钟C.40分钟 D.50分钟【思路点拨】由于张某在下午六点多出门,在七时前回家,则刚开始分针与时针形成110°的夹角时,时针在前,分针在后,回家时分针与时针仍形成110°的夹角,则此时应为时针在后,分针在前。
【答案】C【解析一】本题考查的是钟表问题。
2020年小升初数学专题复习训练—拓展与提高行程问题(2)知识点复习一.钟面上的追及问题 【知识点归纳】1.时钟问题-钟面追及问题: 基本思路:封闭曲线上的追及问题. 关键问题:(1)确定分针与时针的初始位置; (2)确定分针与时针的路程差; 2.基本方法:(1)分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格.分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走121分格. (2)度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转60360度,即6°,时针每分钟12360×60度,即0.5度. 3.在钟面上总是分针追赶时针的局面,或是分针超越时针的局面.这里的转动角度用度数来表示,相当于行走的路程.因此钟面上两针的运动是一类典型的追及行程问题.【命题方向】例1:现在是下午3点整,再过( )分时针与分针第一次重合.A 、25B 、20C 、18D 、16114 分析:解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关依据这一关系列出方程,可以求解.解:设从3点开始,经过x分钟,时针和分针第一次重合.此时时针与分针之间的夹角是30×3=90°.【命题方向】例1:一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A、1200×2+200B、1200×2-200C、(1200+200)×2D、(1200-200)×2 分析:从车头上桥到车尾离开桥一共用2分钟,则火车等于是跑了桥的全长加车的长度,于是,我们用2分钟所行驶的距离再减去车长200米就是桥的长度.解:1200×2-200=2400-200=2200(米),故选:B.点评:解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.三.发车间隔问题【知识点归纳】(1)一般间隔发车问题.用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)求到达目的地后相遇和追及的公共汽车的辆数.标准方法是:画图--尽可能多的列3个好使公式--结合s全程=v×t--结合植树问题数数.(3)当出现多次相遇和追及问题--柳卡.【命题方向】例1:公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车要出发,这人走了()分钟.A、35B、40C、50D、45分析:因为是相向而行,所以骑自行车的时间加上公交车的时间应等于(10+1)×5=55(分钟),又因为公交车走全程需15分钟,所以骑自行车的时间为:55-15=40(分钟)解:由题意可得(10+1)×5-15=55-15=40(分钟).答:他从乙站到甲站共用了40分钟.故选:B.点评:此题属于多次相遇问题,考查了学生“相向而行”这一知识点,以及分析问题的能力.四.错车问题【知识点归纳】列车错车问题最终都是转化为直线上的相遇或追及问题;相向而行错车相当于相遇问题,同向而行错车相当于追及问题.但在实际解题过程中我们会发现:同样是错车,如果给出的题设条件不同,则错车时所计算的路程与车长有关.【命题方向】例1:甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整列火车经过甲身边用了18秒,2分后又用了15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身后,甲、乙两人还需要多少时间才能相遇?分析:(1)设火车的长度为S,火车速度为V1,甲乙的速度为V2,因为火车经过甲用的时间长,所以甲与火车同向而行,而乙与火车相对而行;则火车经过甲的速度为V1-V2,经过乙的速度V1+V2,由于经过的距离同是火车的长度,由此可得:(V1-V2)×18=(V1+V2)×15,整理后得:V1=11V2,即火车速度为甲的速度的11倍.(2)经过甲后,火车行了2分钟即120秒才与乙相遇,当火车经过了乙,火车一共行驶了120+15秒=135秒.此时甲行走了135秒,火车在此时间段行走了135×V1的路程,甲走了135×V2的路程.那么火车经过乙以后甲乙之间的距离为135V1-135V2=1350V2.所以甲乙走这段路程所需要的时间为1350V2÷(V2+V2)=675秒.即火车经过乙675秒后甲乙两人相遇.解:(1)设火车的长度为S,火车速度为V1,甲乙的速度为V2,由此可得:(V1-V2)×18=(V1+V2)×1518V1-18V2=15V1+15V2,3V1=33V2,V1=11V2.答:火车速度为甲的速度的11倍.(2)2分钟=120秒,135V1-135V2=135×11V2-135V2,=1485V2-135V2,=1350V2.1350V2÷(V2+V2),=1350V2÷2V2,=675(秒).答:火车经过乙身后,甲、乙工人还需要675秒才能相遇.点评:本题为相遇问题与追及问题的综合,完成问题(2)时要注意从火车经过的距离中减去甲行的距离.同步测试一.选择题(共6小题)1.一辆小汽车每秒行20米,刚驶入隧道时,发现一辆客车正在前面180米处行驶.如果两车速度保持不变,1.5分钟后两车同时驶出隧道,那么客车每秒行驶()米.A.10B.16C.18D.202.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200B.1200×2﹣200C.(1200+200)×2D.(1200﹣200)×23.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.854.早上6时10分1路车和2路车同时发车,1路车每隔10分发一辆车,2路车每隔15分发一辆车,第二次同时发车的时间是()A.6:20B.6:30C.6:40D.6:505.公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车要出发,这人走了()分钟.A.35B.40C.50D.456.(北京市第一实验小学学业考)现在是下午3点整,再过()分时针与分针第一次重合.A.25B.20C.18D.16二.填空题(共8小题)7.从时钟指向4点开始,再经过分钟,时针正好与分针重合.8.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃.中午12点整,电子钟响铃又亮灯.则下一次既响铃又亮灯是点钟.9.一列长360米的火车以30米/秒的速度全车通过一段隧道,一共用了45秒,这段隧道长米.10.(北京市第一实验小学学业考)如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发秒之后追上甲.11.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行使,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要秒.12.小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.13.一列火车长1000米,以每秒20米的速度通过一座长2400米的大桥,从上桥到下桥共需要秒.14.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔分发一辆车.三.应用题(共4小题)15.一列火车以20米/秒的速度行驶,经过了一个隧道用了5分钟.列车长700米,你知道隧道有多长吗?16.一列火车长是200米,每秒行驶32米.如果这列火车经过一座大桥时,从车头上桥到车尾离开桥共用104秒.这座大桥长是多少米?17.有甲、乙两列火车,甲车长116米,每秒行驶10米;乙车长124米,每秒行驶14米.两车相遇后,从甲车与乙车车头相遇到车尾分开需要多少秒?18.有A,B两站,每隔相同时间发出一辆汽车,A,B之间有一人骑自行车,发现每隔4分钟迎面开来一辆车,每隔12分钟后面开来一辆汽车并超过他,若人与车的速度都是匀速的,问A,B两站每隔多少分钟发一次车?四.解答题(共4小题)19.一铁路隧道长2000米,一列火车从车头进入隧道到车尾离开隧道用了一分钟,整列火车完全在隧道内的时间是40秒.求火车的车长及其行驶的速度.20.甲、乙两地相距120千米.一辆大客车从甲地出发前往乙地.开始时每小时行50千米,中途减速为每小时行40千米.大客车出发1小时后,一辆小轿车也从甲地出发前往乙地,每小时行80千米,结果两辆车同时到达乙地,问大客车从甲地出发多少时间后才降低速度?21.12点整时,钟面上的时针、分针、秒针刚好重合.请你计算,再过多长时间,钟面上的时针与分针再次重和?重和时,时针、分针分别走了几圈几格?22.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分钟有一辆公共汽车超过小光,每隔20分由一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔多少分钟?参考答案与试题解析一.选择题(共6小题)1.【分析】因为小汽车的速度是20米每秒,行驶1.5分钟=90秒后,行驶了20×90=1800米,因为客车在小汽车的前面180米处,所以客车行驶的路程就是1800﹣180=1620米,再除以行驶的时间90秒,据此即可求出客车行驶的速度.【解答】解:1.5分=90秒,(20×90﹣180)÷90,=1620÷90,=18(米/秒),答:客车每小时行驶18米.故选:C.【点评】根据小汽车行驶的速度和时间求出行驶的路程,再减去客车与小汽车的距离,即可得出客车行驶的路程,再利用速度=路程÷时间即可解答.2.【分析】从车头上桥到车尾离开桥一共用2分钟,则火车等于是跑了桥的全长加车的长度,于是,我们用2分钟所行驶的距离再减去车长200米就是桥的长度.【解答】解:1200×2﹣200=2400﹣200=2200(米),故选:B.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.3.【分析】从车头上桥到车尾离开桥所走路程为:2000+200=2200(米),于是,我们所行驶的距离除以火车的速度,就是所用时间.【解答】解:(2000+200)÷20=2200÷20=110(秒)答:火车从上桥到离开桥需要110秒.故选:A.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.4.【分析】1路车每隔10分发一辆车,2路车每隔15分发一辆车,那么两车同时发车的时间间隔应是10与15的最小公倍数,10与15的最小公倍数为30,所以30分钟后,两车第二次同时发车,即6点10分+30分=6点40分.【解答】解:10和15的最小倍数为:3×2×5=30.所以每隔30分钟,两车都同时发车一次,则第二次同时发车的时间是:6点10分+30分=6点40分.故选:C.【点评】在此类问题中,两车同时发车的时间间隔是两车各自发车时间间隔的最小公倍数.5.【分析】因为是相向而行,所以骑自行车的时间加上公交车的时间应等于(10+1)×5=55(分钟),又因为公交车走全程需15分钟,所以骑自行车的时间为:55﹣15=40(分钟).【解答】解:由题意可得(10+1)×5﹣15=55﹣15=40(分钟).答:他从乙站到甲站共用了40分钟.故选:B.【点评】此题属于多次相遇问题,考查了学生“相向而行”这一知识点,以及分析问题的能力.6.【分析】解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关系.每一小时,分针转动360°,而时针转动30°,即分针每转动1°时针转动()°;依据这一关系列出方程,可以求解.【解答】解:设从3点开始,经过x分钟,时针和分针第一次重合.此时时针与分针之间的夹角是30×3=90°.则:6x﹣0.5x=90,5.5x=90x=16答:从现在起时针和分针在3时16分第一次重合.故选:D.【点评】考查钟表分针所转过的角度计算.钟表里的分钟与时针的转动问题基本上与行程问题中的两人追及问题非常相似.行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时(分)针的转动速度.二.填空题(共8小题)7.【分析】(1)方法一:时钟指向4点即时针从12点走到4点共走了20个小格(一分钟为一格),所以20÷(1﹣)=20×=21(分钟);(2)方法二:时钟指向4点即时针从12点走到4点共走了4个大格(一小时为一格).所以4÷(12﹣1)=(小时)=21(分钟).【解答】解:我们知道:时针1小时走1格,分针1小时走12格,所以从4点开始分针与时针重合所用时间为:4÷(12﹣1)=(小时)=21(分钟).【点评】注意:此题的解法类似于“行程问题”.8.【分析】中午12点整,电子钟响铃又亮灯.那么到1点又响一次铃,即每隔60分响一次铃;则下一次既响铃又亮灯的时间间隔应是60和9的最小公倍数,只要求出60和9的最小公倍数,再根据12点向后推算即可得出答案.【解答】解:60=2×2×3×5,9=3×3,60和9的最小公倍数:2×2×3×3×5=180(分钟)=3小时;中午12时+3小时=下午3点;答:下一次既响铃又亮灯是下午3点钟.故答案为:下午3.【点评】本题考查了发车时间间隔问题,关键是理解距离下一次都同时钟响铃又亮灯的时间间隔应是60和9的最小公倍数.9.【分析】根据速度×时间=路程,求出火车过隧道所行驶的路程,再根据火车过隧道所经过的路程是车身长加隧道长,由此用火车过隧道所行驶的路程减去火车的长度就是隧道的长度.【解答】解:30×45﹣360=1350﹣360=990(米)答:这段隧道长990米.故答案为:990.【点评】解答此题的关键是知道火车过隧道所经过的路程是车身长加隧道长,由此再根据基本的数量关系解决问题.10.【分析】乙要追上甲的话,乙比甲会多经过一次转弯,而甲和乙所用的总时间相同,乙转弯的时间比甲多10秒,根据时间关系可以列出方程.【解答】解:设甲运动x米后,乙追上甲,则乙运动了(x+100)米,甲运动的时间(不包括转弯)是分=x秒,乙运动的时间(不包括转弯)是分=秒,甲的运动时间比乙多10秒,列出方程为:x﹣=10,解得x=230,所以甲运动了230米,运动用时230秒,转弯用时20秒,用的总时间是230+20=250秒故答案为:250.【点评】此题属于复杂的追及应用题,此类题的解答方法是根据“追及(拉开)路程÷(速度差)=追及(拉开)时间”,代入数值,计算即可.11.【分析】根据题意,快车在后面追上慢车的车尾到完全超过慢车,那么快车比慢车多行了这两辆车身的长度,也就是追及路程是125+140=265米,再除以两车的速度差即可求出追及时间.【解答】解:(125+140)÷(22﹣17)=265÷5=53(秒)答:快车从追上慢车的车尾到完全超过慢车需要53秒.故答案为:53.【点评】本题的关键是求出追及路程,然后再根据追及路程÷速度差=追及时间进行解答.12.【分析】设析:迟到8分钟,说明在规定时间内少走了50×8=400米,早到5分钟,说明在规定时间内可以比实际多走5×(50+10)=300米.根据“分配对象=(盈+亏)÷(两次分得的差),可以求出规定时间(不含已经走的2分钟)为(300+400)÷10=70(分),如果按50米的速度,总路程为:50×2+50×(70+8)=4000米,如果按60米的速度,总路程为:50×2+(50+10)×(70﹣5)=4000米.【解答】解:[50×8+5×(50+10)]÷10=70(分钟)总路程为:50×2+50×(70+8)=4000(米)或50×2+(50+10)×(70﹣5)=4000(米)答:小明家到学校的路程是4000米.故答案为:4000.【点评】本题根据分配对象=(盈+亏)÷(两次分得的差),可以求出规定时间是完成本题的关键.13.【分析】火车从上桥到车尾巴离开桥所行的路程是:桥长+车长=2400+1000=3400米,然后根据“时间=路程÷速度”,列式为:3400÷20=170(秒),据此解答.【解答】解:(2400+1000)÷20=3400÷20=170(秒)答:从上桥到下桥共需要170秒.故答案为:170.【点评】解答这类应用题,必须考虑到车身的长度,这就是说,列车运动的总路程是桥长加上车长,这是解答过桥问题应用题的关键.14.【分析】因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的,所以设车速为x,则(x﹣4)×=(x+4)×,求出车速32千米,再(32﹣4)×÷32即可.【解答】解:设汽车每小时x千米.由题意得:(x﹣4)×=(x+4)×,(x+4)×7=(x﹣4)×9,解得:x=32.则发车分钟数:(32﹣4)×÷32×60=(分钟).故答案为.【点评】此题属于行程问题,先求出汽车的速度,再求发车的时间.三.应用题(共4小题)15.【分析】根据关系式:速度×时间=路程,可知这列火车5分钟行驶的距离是:20×5×60=6000米,它包括车身的长度和隧道的长度,所以这条隧道长(6000﹣700)米,据此解答.【解答】解:20×5×60﹣700=6000﹣700=5300(米)答:这个隧道长5300米.【点评】本题关键是明确5分钟行驶的距离是车身的长度和隧道的长度.16.【分析】从车头上桥到车尾离开桥一共用104秒,则火车行驶的路程等于桥的全长加车的长度,于是,我们用104秒所行驶的距离再减去车长200米就是桥的长度.【解答】解:104×32﹣200=3328﹣200=3128(米)答:这座大桥长是3128米.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.17.【分析】本题属于错车问题,从两车头相遇到车尾分开两车共行了甲乙两车的长度和,即116+124米,由于两车的速度和是10+14米,则从两车头相遇到车尾分开需要:(116+124)÷(10+14)米.【解答】解:(116+124)÷(10+14)=240÷24=10(秒)答:从甲车与乙车车头相遇到车尾分开需要10秒钟.【点评】完成本题要注意从两车头相遇到车尾分开两车共行了甲乙两车的长度和,而不是单个列车的长度.18.【分析】把间隔时间内车行驶的距离看作单位“1”,由题意可得,发现背后每隔12分钟开过来一辆汽车,看作追及问题人车的速度差就是;同理,迎面每隔4分钟有一辆汽车驶过去,看作相遇问题,则人车的速度和是,所以车的速度是(+)÷2=,然后用1除以车的速度就是车站每隔多少分钟发一辆车.【解答】解:(+)÷2==1=6(分钟)答:A,B两站每隔6分钟发一次车.【点评】本题考查了行程问题和工程问题的综合应用,关键是理解人与同向行驶的车是追击问题,相对行驶的车可以看成相遇问题,由此找出速度和与差解决问题.四.解答题(共4小题)19.【分析】设火车的长度为x米,一列火车从车头进入隧道到车尾离开隧道用了一分钟(即60秒),所行的路程为(2000+x)米,则速度为米/秒;整列火车完全在隧道内的时间是40秒,所行的路程为(2000﹣x)米,则速度为米/秒,由于火车的速度是不变的,所以可得=,解方程即可求得火车的长度,进而求得火车的速度.【解答】解:设火车的长度为x米,根据题意得:=(2000+x)×40=(2000﹣x)×6080000+40x=120000﹣60x100x=40000x=400(2000﹣400)÷40=1600÷40=40(米/秒)答:车长400米,行驶速度40米/秒.【点评】此题考查的知识点是一元一次方程的应用,关键是用两个时间表示出火车的速度列方程.20.【分析】据题意可知,小汽车行完全程用时:120÷80=1.5(小时),由于两车同时到达乙地,所以大客车用时1+1.5=2.5(小时),由此可设大客车从甲地出发x小时后开始降速,由此可得等量关系式:50x+40(2.5﹣x)=120,解此方程即可.【解答】解:轿车用时:120÷80=1.5(小时);则货车用时:1+1.5=2.5(小时);设x小时后变速,得方程:50x+40×(2.5﹣x)=12010x+100=120,x=2.答:大客车从甲地出发2小时后才降低速度.【点评】完成本题的关健是先据小汽车行完全程的时间求出大车所用时间从则列出等量关系式.21.【分析】分针每分钟走=6°,时针每分钟走=0.5°,因此再次重合分针超时针360°,分针与时针再次重合时,分针与时针相差360°,可设再过x分钟时针和分针再次重合,列方程解答即可求出再过多长时间;60分钟分针走1圈,重合时间减去60分钟,就是分钟与时针走的小格数.【解答】解:设再过x分钟时针和分针再次重合.6x﹣0.5x=3605.5x=3605.5x÷5.5=360÷5.5x=6565﹣60=5(分),此时分钟走了1圈5 格(小格),时针走了5格(小格)答:设再过65分钟时针和分针再次重合;重合时此时分钟走了1圈5格(小格),时针走了5格(小格).【点评】此题是考查时间与钟面问题,关键弄清分针、时针每分钟走的度数,再次复合时,分针比时针多走一圈.22.【分析】本题可以看作两个追及问题分别是公共车和小光,公共车和小明,设每两辆公共车间隔(即追及路程)为1,由此可以得出公共汽车与小光的速度之差为:1÷10=,;公共汽车与小明的速度差为:1÷20=.由此可求得人的速度为:(﹣)÷2=,由此即可解决问题.【解答】解:设每两辆公共汽车间隔(即追及路程)为1,由此可以得出公共汽车与小光的速度之差为:1÷10=,公共汽车与小明的速度差为:1÷20=.因为小明骑车速度是小光速度的3倍,所以小光的速度为:(﹣)÷(3﹣1)=÷2=,则公共汽车的速度是+=,1÷=1×8=8(分钟),答:每隔8分钟发一辆车.【点评】此题考查了追及问题中,间隔距离、速度差与追及时间之间关系的灵活运用.。
17 . 时钟问题就是行程问题,两个人速度不一样同向走,后面的追前面的,确定要追的路程。
在初始时刻需追赶的格数÷(1—1/12)=追及时间(分钟),其中,1—1/12为分针每分钟比时钟多走的格数。
时针:分钟1格: 12格X/12 :X1)在10点与11点之间,钟面上时针和分针在什么时刻垂直?①第一次垂直,时针和分钟差15分钟10+X—X/12=15 =〉11/12X=5 =〉X=5*12/11=5又5/11分钟所以第一次垂直时,10点5又5/11分钟②第二次垂直,时针和分钟差15分钟50+X/12-X=15 =〉11/12X=35 =〉X=12*35/11=420/11=38又2/11分钟所以第二次垂直时,10点38又2/11分钟2)现在是2点15分,再过几分钟,时针和分针第一次重合?因为要重合肯定是在3点15分之后,所以从三点开始算15+X/12=X [时钟走的格子数和分钟走的格子数相同]=〉15=11/12X =〉X=16又4/11分钟所以第一次重合的时间是3点16又4/11分钟需要经过的时间是45+16又4/11=61又4/11分钟3)在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?①第一次夹角成120°,时针和分钟差20分钟35+X/12—X=20 =〉11/12X=15 =>X=180/11=16又4/11所以时间是7点16又4/11分钟②第二次夹角成120°,时针和分钟差20分钟正好是8点整4)小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?答案:32又2/11分钟①开始分针与时针正好成一条直线,时针和分钟差30分钟35+X/12—X=30 =〉11/12X=5 =>X= 60/11= 5又5/11分钟所以此时是7点5又5/11分钟②后来两针正好重合,时针和分钟差0分钟35+X/12-X=0 =〉11/12X=35 =〉X= 420/11=38又2/11所以此时是7点38又2/11那么时间差是38又2/11 – 5又5/11 = 32又8/11分钟5)。
一天下午,小明去买酱油,他出门的时候看见钟面的时间刚好是3点整,当他回家的时候,发现时针与分针重合了,已知他出去了不到20分钟。
请问:他离开了多长时间?
钟面上的追击问题
分钟,1小时转1圈(360°)
每分钟转动360÷60=6°
时针,12小时转1圈
每分钟转动360÷12÷60=0.5°
3点整的时候,分针落后时针3/12×360=90
到两针重合,分针要比时针多转动90°(追击)
每分钟,分针比时针多转动6-0.5=5.5°
追上需90÷5.5=180/11分钟
15/(1-1/12)
你这个也同样道理
不过用的不是度数
把钟面分成60小格
分针每分钟转1个小格
时针每分钟转1/12个小格
3点整的时候,分针落后时针15个小格
然后追击15÷(1-1/12)。