数学建模
- 格式:doc
- 大小:1.24 MB
- 文档页数:12
什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。
数学建模可以帮助我们更好地理解、分析、解决实际问题。
它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。
数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。
在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。
2. 建立模型。
在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。
模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。
3. 求解模型。
在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。
4. 验证模型。
在这个阶段,我们需要根据模型的求解结果,进行模型的验证。
验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。
5. 应用模型。
在这个阶段,我们需要将模型的结果应用于实际问题的解决中。
根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。
数学建模具有广泛的应用领域和重要性。
在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。
在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。
在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。
在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。
总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。
什么是数学建模第一篇:数学建模基础数学建模是指利用数学方法及其它学科的知识和技术,对实际问题进行抽象、分析和求解的一种综合性学科。
数学建模的目的是通过对实际问题的建模进行定量分析和解决,从而为实际问题提供可行的解决方案,为现代社会的发展提供技术和理论支持。
数学建模可以分为三个阶段:问题分析阶段、建模阶段和求解阶段。
在问题分析阶段,需要对实际问题进行详细的调查和分析,了解实际问题的背景以及运作模式。
在建模阶段,需要对实际问题进行抽象、量化并建立数学模型,确定模型的参数、变量及其相互关系。
在求解阶段,需要运用数学方法和技术对建立的数学模型进行求解,并给出实际问题的解决方案。
数学建模是一门综合性的学科,需要掌握数学、物理学、工程学等多学科的知识。
在数学方面,需要熟练掌握微积分、线性代数、统计学等数学基础知识,并能够灵活运用这些知识;在其它学科方面,需要了解相关学科的基本知识和应用技术,如电子技术、通信技术等。
此外,数学建模还需要高超的计算机应用技术,能够用计算机模拟实际问题的过程,并对其进行分析和求解。
总之,数学建模是一门综合性、学科交叉性强的学科,对全面培养学生的综合素质提出了更高的要求。
通过学习数学建模,可以培养学生的创新思维能力和解决实际问题的能力,提高综合应用数学知识解决实际问题的能力,并为未来走向各个领域和专业打下坚实基础。
第二篇:数学建模与实际应用数学建模是数学和实际应用之间的桥梁,主要应用于工程、自然科学和社会科学等领域。
在工程领域,数学建模可以应用于各种工程设计和工程管理中,如市政供水、排水、高速公路等。
在自然科学领域,数学建模可以应用于气象、生态学、地理学、天文学等领域,如预测天气、分析生态系统破坏的原因等。
而在社会科学领域,数学建模可以应用于经济、管理学、政治学等领域中,如预测股票市场走势、企业管理优化等。
数学建模与实际应用密不可分,具有卓越的应用价值和广阔的应用前景。
随着科技和工业的不断发展,实际问题的规模和复杂性也在不断提高,对数学建模提出了更高的要求。
新手入门:什么是数学建模数学建模数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
建模示例:椅子能在不平的地面上放稳吗日常生活中一件普通的事实:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍挪支几次,就可以使四只脚同时着地,放稳了。
这个看来似乎与数学无关的现象能用数学语言给以表述,并用数学工具来证实吗?模型假设对椅子和地面应该作一些必要的假设:1. 椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形。
2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
假设1显然是合理的。
假设2相当于给出了椅子能放稳的条件,因为如果地面高度不连续,譬如在有台阶的地方是无法使四只脚同时着地的。
至于假设3是要排除这样的情况:地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使是连续变化的),致使三只脚无法同时着地。
模型构成中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来。
首先要用变量表示椅子的位置。
数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。
数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。
在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。
数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。
数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。
数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。
通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。
数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。
在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。
数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。
无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。
在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。
数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。
数学建模的概念数学建模是指将现实世界中的问题,通过数学语言和技术进行分析、表述、求解的过程。
它是数学与应用学科相结合的一项重要工作。
数学建模包括以下三个阶段:第一、问题的数学化,即将实际问题转化为符合数学语言和数学规律的数学问题;第二、建立数学模型,根据数学问题的特性和问题的需求建立数学模型,确定数学模型中的各个参数;第三、求解数学模型,利用数学方法和计算机技术进行建模求解,从而给出实际问题的数值解或者给出实际问题的变化规律。
数学建模在解决实际问题中具有重要意义。
首先,它能够帮助人们对实际问题进行深入的分析和理解,将问题形式化,从而更好地理解问题的本质和内在规律。
其次,它可以为实际问题提供更加准确、可靠的解决方案,并且在求解问题中提高效率,降低成本。
最重要的是,数学建模还能够帮助人们预测问题发展的趋势,提前做预防和控制,从而减少潜在风险和代价。
在数学建模的过程中,需要注意以下几个方面:一、正确理解实际问题。
这是数学建模的前提和基础。
要深入理解问题的背景、目的、约束条件以及关键因素,从而确定问题的数学表达方式和求解方法。
二、合理选择数学模型。
数学模型一是根据实际问题的特点和要求,二是根据数学方法和工具的可行性与有效性的考虑,进行选择。
建立的数学模型应当简单明了,能够反映实际问题的本质,准确捕捉关键因素的变化趋势,并且方便求解和分析。
三、确定数学模型的参数。
参数的选择应该考虑模型的可靠性和准确性,必须要有实际意义,并且需要根据实际数据和情况进行校正和调整。
四、有效求解数学模型。
为了提高效率和准确性,需要选择合适的数学工具和计算机软件,并且要按照求解计划进行前期数据处理、模型运行、结果验证等多个环节。
总之,数学建模是一项综合性的工作,需要涉及到多个学科和领域的知识。
在实际工作中,需要有一定的数学知识和操作技能,并且要具备对实际问题的深入理解、清晰思路、认真负责的态度。
这样才能够将数学建模发挥出其最大的应用价值。
什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。
这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。
数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。
数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。
数学建模的过程可以分为以下几个步骤:1.问题描述。
将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。
2.建立模型。
通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。
3.求解模型。
采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。
4.模型验证。
将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。
5.预测和应用。
根据问题的特点,应用建立好的模型进行预测和实际应用。
数学建模在现代科学技术和社会发展中扮演着至关重要的角色。
它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。
同时,数学建模也推动了数学学科的发展和应用。
在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。
例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。
总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
什么是数学建模数学建模是一种通过数学方法解决实际问题的过程。
它结合数学理论与实际问题,将抽象的数学模型与具体的实际情况相结合,通过计算机模拟、优化算法等手段,对问题进行分析和求解,从而得到实际问题的答案或者有效的解决方案。
数学建模可以应用于各个领域,如物理学、生物学、经济学、化学、环境科学、社会学等。
在实际问题中,通常会涉及到大量的变量、约束条件和目标函数。
数学建模的过程一般包括以下几个步骤:问题的建立、模型的建立、模型的求解、模型的验证和结果的分析与应用。
首先,问题的建立是数学建模的起点。
在这一步骤中,需要明确问题的目标、所处环境以及问题的限制条件。
具体来说,要确定需要解决的问题是什么、为什么需要解决这个问题、解决这个问题对应的适用范围等。
接下来,模型的建立是数学建模的关键步骤。
在这一步骤中,需要确定适用的数学模型和假设,并将实际问题转化为数学形式。
根据实际问题的性质,常见的数学模型包括线性规划模型、非线性规划模型、随机模型等。
通过数学模型的建立,可以对问题进行抽象和简化,提高问题的可计算性和可解性。
然后,模型的求解是数学建模的核心步骤。
在这一步骤中,需要用数学方法和计算机技术对建立的模型进行求解。
根据不同的数学模型,常见的求解方法包括数值计算方法、优化算法、随机模拟等。
通过模型的求解,可以得到问题的解答、最优解或者有效的解决方案。
模型的验证是数学建模的重要步骤。
在这一步骤中,需要对模型的求解结果进行验证和分析。
对模型的验证可以通过与实际数据的对比、灵敏性分析、误差分析等方法进行。
通过验证结果,可以判断建立的模型是否准确可靠,并根据需要进行调整和优化。
最后,结果的分析与应用是数学建模的最终目标。
在这一步骤中,需要对模型的求解结果进行分析和解释,从而得出实际问题的结论或者决策依据。
根据实际问题的需求,可以通过模型的结果进行业务分析、评估和预测等。
总之,数学建模是一种结合数学理论和实际问题的求解方法。
数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。
从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。
(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。
简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。
3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。
下面列举一些影响力和认可度较大的比赛。
1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。
2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。
在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。
竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。
赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。
数学建模是什么1. 什么是数学建模?:数学建模是一种以数学方法描述和分析实际问题的方法。
它是一种将实际问题的复杂性转化为数学模型,以便更好地理解和解决实际问题的方法。
数学建模的过程包括描述实际问题,建立数学模型,求解模型,验证模型,以及分析模型的结果。
数学建模的目的是提出有效的解决方案,以解决实际问题,并且可以更好地控制和管理实际问题。
数学建模的应用非常广泛,可以用于科学研究,经济分析,社会研究,工程设计,管理决策,以及其他各种实际问题的分析和解决。
2. 数学建模的基本步骤:数学建模是一种将实际问题转换为数学模型,以便利用数学方法来解决实际问题的方法。
它是一种以数学抽象的方式来描述实际问题的过程,是一种将实际问题转换为数学模型的过程,是一种将实际问题转换为数学模型的过程。
数学建模的基本步骤包括:首先,要确定问题的范围和目标,明确问题的描述,确定变量和参数,构建数学模型,解决模型,分析模型的结果,并将模型的结果应用到实际问题中。
确定问题的范围和目标时,要明确问题的描述,以便确定问题的范围和目标,以及确定变量和参数。
确定变量和参数时,要确定变量的类型,变量的取值范围,参数的取值,以及变量和参数之间的关系。
构建数学模型时,要根据问题的描述,确定变量和参数,构建一个恰当的数学模型,以表达问题的特征。
解决模型时,要根据模型的特征,利用数学方法来解决模型,求出模型的解。
分析模型的结果时,要分析模型的结果,分析模型的有效性,并对模型的结果进行评价。
最后,将模型的结果应用到实际问题中,以解决实际问题。
3. 数学建模的应用领域数学建模的应用领域十分广泛,从社会科学到工程科学,从经济学到生物学,都可以使用数学建模来解决问题。
在社会科学领域,数学建模可以用来研究社会系统中的结构和行为,以及社会系统中的社会经济、政治、文化等因素之间的关系。
在工程科学领域,数学建模可以用来研究和设计工程系统,比如电力系统、燃气系统、水利系统等,以及这些系统中的各种参数和变量之间的关系。
数学模型数学实验课程设计学院:班级:姓名学号:设计时间:摘要:本实验建立了奖学金发放方案的优化模型。
为了使20万基金能永远利用下去,根据题目提供的原始数据及相关信息,首先立足于让基金得到最合理的利用,让每年发放的奖学金数额达到最大,之后采用将基金分批存入的形式让闲置的资金见到最少,鉴于此提出了四中方案并求解得:1、部分金额以2年为期存入银行,每年可发放奖学金5565元;2、部分金额以3年为期存入银行,每年可发放奖学金6613元;3、(ⅰ)第四年以两年连续存入两次,每年可发奖学金5594元;(ⅱ) 第四年以3年和1年存入,每年可发奖学金6109元;4、部分金额以5年为期存入银行,第四年以两年连续存入两次,每年可发奖学金7102元;第四年以3年和1年存入,每年可发奖学金7116元。
综合比较之下,将部分金额以5年为期存入银行,第四年以3年1年的形式可得最多利息,即第一年存入6960元,第二年存入6735元,第三年存入6450元,第四年存入6308元,剩余的第五年存入可使每年发放的奖学金数额达到最大。
此模型的中心在于怎样使基金得到子合理的利用,即怎样使资金能够存入银行时间更长,享利率最高。
解决了这一点,此题也就迎刃而解了。
课题:某人向学院捐款20万元设立优秀本科生奖学金,学院领导计划将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续存入银行。
请研究这个问题,向院领导写一份报告。
要求:1、分析方案的合理性2、给出自己的方案解:一、分析查存款利率可知:定期存款一年的利率为2.25%即:将20万存入银行一年后可得利息:200000*2.25% = 4500 (元)①每年发奖学金不高于4500元的话,可永远持续下去,即用20万本金每年产生的利息全作为奖学金;②每年发奖学金高于4500元的话,设为 y ,则:第一年本金减少 ( y - 4500 )第二年本金减少 ( y - (200000 - (y - 4500))*2.25% )…………20万本金会不断减少,最终将全部发放完毕。
结论:若每年发奖学金数额不高于4500元时,方案可行;若每年发奖学金数额高于4500元时,本金最终将发放完毕;考虑实际情况,每年发4500元奖学金太少,20万本金没有得到充分利用。
所以此方案不可行。
二、建模:1、假设与参数⑴设每年发放奖学金数额一定,设为y 元;⑵设银行存款利率为 a ;⑶设发放奖学金年限为:s2、分析⑴利率不同:查银行存款利率为(以死期存款为准):存款年限利率三个月 1.71六个月 1.98一年 2.25二年 2.79三年 3.33五年 3.60⑵由上表可知:定期存款时间越长,存款的利率越高;所以有可能的话,应该将资金尽可能以五年为期存入银行。
⑶资金合理利用:由分析可知:每年的奖学金小于20万及一年所得利息,所以,一年后剩余的钱将继续存入银行。
即:一大部分的钱存入银行一年后,取出再存入银行,这就导致部分资金不能得到更好的利用,流程图如下:将本金全部存入银行一年到期后全部取出从本息和中取出部分作为奖学金将剩余资金作为本金存入银行假设有资金n 始终在剩余资金中,即这部分资金始终都以定期存款一年的形式存入,所以每年可得利息n * 2.25% 。
但如果这部分资金以定期存款两年的形式存入,存款利率变为 2.79% ,如果以三年的形式,利率变为3.33% ,如果以五年的形式存入,利率变为3.60% 。
综上:应该将部分资金以2年或3年或5年的形式存入银行才能使资金得到合理利用。
①部分金额以2年为期存入银行: a1 = 2.25% a2 = 2.79%设以x1 万元存入一年,以x2 万元存入两年。
则: x1 * ( 1 + 2.25%) = y2x2 * ( 1 + 2.79%)^2 = 20 + y2x1 + x2 = 20②部分金额以3年为期存入银行:a3 = 3.33%则: x1 * ( 1 + 2.25%) = y3x2 * ( 1 + 2.79%)^2 = y3x3 * ( 1 + 3.33%)^3 = 20 + y3x1 + x2 + x3 = 20③(ⅰ)第四年以两年连续存入两次x1 * ( 1 + 2.25%) = y4x2 * ( 1 + 2.79%)^2 = y4x3 * ( 1 + 3.33%)^3 = y4x4 * ( 1 +2.79%)^4 = y4 + 20x1 + x2 + x3 + x4 = 20(ⅱ) 第四年以3年和1年存入x1 * ( 1 + 2.25%) = y4x2 * ( 1 + 2.79%)^2 = y4x3 * ( 1 + 3.33%)^3 = y4x4 * ( 1 +3.33%)^3( 1 + 2.25%) = y4 + 20x1 + x2 + x3 + x4 = 20④部分金额以5年为期存入银行:a5 = 3.60%则:(ⅰ) x1 * ( 1 + 2.25%) = y4x2 * ( 1 + 2.79%)^2 = y4x3 * ( 1 + 3.33%)^3 = y4x4 * ( 1 +2.79%)^4 = y4 (第四年以两年连续存入两次)x5 * ( 1 + 3.60%)^5 = 20 + y4x1 + x2 + x3 + x4 + x5 = 20(ⅱ) x1 * ( 1 + 2.25%) = y4x2 * ( 1 + 2.79%)^2 = y4x3 * ( 1 + 3.33%)^3 = y4x4 * ( 1 +3.33%)^3( 1 + 2.25%) = y4 (第四年以3年和1年存入)x5 * ( 1 + 3.60%)^5 = 20 + y4x1 + x2 + x3 + x4 + x5 = 20利用matlab解得:①[x1 x2 y]=solve('x1*(1+0.0225)=y','x2*(1+0.0279)^2=y+20','x1+x2=20','x1,x2,y') x1 =.54426432142114351521739865501273x2 =19.455735678578856484782601344987y =.55651026865311924430979012475051即:将0.5442万元以一年定期的形式存入,剩余资金以两年定期形式存入,则每年可发奖学金0.5565万元,即5565元,优于以一年为期的存款形式。
②[x1 x2 x3 y]=solve('x1*(1+0.0225)=y','x2*(1+0.0279)^2=y','x3*(1+0.0333)^3=y+20' ,'x1+x2+x3=20','x1,x2,x3,y')x1 =.64672264654413324264244690670303x2 =.62586354200761705948723858753071x3 =18.727413811448249697870314505766y =.66127390609137624060190196210385即:将0.6467万元以一年定期的形式存入,将0.6259万元以两年定期的形式存入,将剩余资金以三年定期的形式存入,则每年可发放奖学金0.6613万元,即6613元,优于以一年和两年为期的存款形式。
③(ⅰ)[x1 ,x2 ,x3 ,x4 ,y]=solve('x1*(1+0.0225)=y','x2*(1+0.0279)^2=y','x3*(1+0.0333)^3 =y','x4*(1+0.0279)^4=y+20','x1+x2+x3+x4=20','x1,x2,x3,x4,y')x1 =.54707180284523552801771763337398x2 =.52942679229008032389959234556467x3 =.50702381590273503976806199599599x4 =18.416477588961949108314628025065y =.55938091840925332739811628012489此方案每年可发奖学金0.5594万元,即5594元,少于上述方案②,舍去。
(ⅱ)[x1 ,x2 ,x3 ,x4 ,y]=solve('x1*(1+0.0225)=y','x2*(1+0.0279)^2=y','x3*(1+0.0333)^3= y','x4*(1+0.0225)*(1+0.0333)^3=y+20','x1+x2+x3+x4=20','x1,x2,x3,x4,y')x1 =.59744932958138474764312702303014x2 =.57817946469014628499279800828821x3 =.55371349303224766715034819055496x4 =18.270657712696221300213726778127y =.61089193949696590446509738104832此方案每年可发奖学金0.6109万元,即6109元,少于上述方案②,舍去。
④(ⅰ)[x1 ,x2 ,x3 ,x4 ,x5 ,y]=solve('x1*(1+0.0225)=y','x2*(1+0.0279)^2=y','x3*(1+0.0333)^ 3=y','x4*(1+0.0279)^4=y','x5*(1+0.036)^5=20+y','x1+x2+x3+x4+x5=20','x1,x2,x 3,x4,x5,y')x1 =.69455462115948991824476417333068x2 =.67215276539256413672627606239902x3 =.64371026351871140834332309929849x4 =.63615985243590595110331287424188x5 =17.353422497493328585582323790730y =.71018210013557844140527136723062即:将0.6946万元以一年定期的形式存入,将0.6722万元以两年定期的形式存入,将0.6437万元以三年定期的形式存入,将0.6363万元以两年为期连续存入两次,剩余资金以五年定期形式存入,每年可发奖学金0.7102万元,即7102元,优于上述方案②。