复变函数与积分变换:8-Laplace变换习题课
- 格式:ppt
- 大小:433.50 KB
- 文档页数:24
《复变函数与积分变换》习题册合肥工业大学《复变函数与积分变换》校定平台课程建设项目资助2018年9月《复变函数与积分变换》第一章习题1.求下列各复数的实部、虚部、模、辐角和辐角主值:(1)122345i i i i +---; (2)312⎛⎫+ ⎪ ⎪⎝⎭.2. 将下列复数写成三角表达式和指数形式:(1)1; (2)21i i+.3. 利用复数的三角表示计算下列各式:(1; (2)103⎛⎫4. 解方程310z +=.5. 设12cos z zθ-+=(0,z θ≠是z 的辐角),求证:2cos n n z z n θ-+=.6.指出满足下列各式的点z 的轨迹或所在范围.(1)arg()4z i π-=;(2)0zz az az b +++=,其中a 为复数,b 为实常数. (选做)7.用复参数方程表示曲线:连接1i +与i 41--的直线段.8.画出下列不等式所确定的图形,指出它们是否为区域、闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?并标出区域边界的方向.(1) 11,Re 2z z <≤;(2) 0Re 1z <<;9.函数z w 1=把下列z 平面上的曲线映射成w 平面上怎么样的曲线? (1)224x y +=; (2)x y =; (3)1=x .10.试证:0Re limz z z→不存在.《复变函数与积分变换》第二章习题1.用导数定义求z z f Re )(=的导数.2.下列函数在何处可导,何处不可导?何处解析,何处不解析?(1)z z f 1)(=; (2))32233(3)(y y x i xy x z f -+-=;3.试讨论y ix xy z f 22)(+=的解析性,并由此回答:若复变函数),(),()(y x iv y x u z f +=中的),(y x u 和),(y x v 均可微,那么iv u z f +=)(一定可导吗?4.设3232()(f z my nx y i x lxy =+++)为解析函数,试确定,,l m n 的值.5.设()f z 在区域D 内解析,试证明在D 内下列条件是彼此等价的:(1)()f z =常数; (2)Re ()f z =常数; (3)()f z 解析.6.试解下列方程:(1)1ze =+; (2)0cos =z ; (3)0cos sin =+z z .7.求下列各式的值:(1)Ln(34)i -+; (2)i -33; (3)i e +2.8.等式33Ln 3Ln z z =是否正确?请给出理由.《复变函数与积分变换》第三章习题3.1复积分的概念与基本计算公式1. 计算积分dz ix y x C )(2⎰+-,其中C 为从原点到点1+i 的直线段.2.计算积分dz z zC ⎰的值,其中C 为2=z3.当积分路径是自i -沿虚轴到i ,利用积分性质证明:2)(22≤+⎰-dz iy x i i3.2柯西古萨基本定理1.计算积分dz z C ⎰1,其中C 为2=z2. 计算积分dz z e z C z)sin (⎰⋅-,其中C 为a z =.3.3基本定理的推广1. 计算积分dz z e Cz⎰,其中C 为正向圆周2=z 与负向圆周1=z 所组成。
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
《Laplace 变换》习题课一、 基本要求1.理解并记住Laplace 变换及其逆变换的定义;了解Laplace 变换存在定理; 2.理解Laplace 变换的性质,并会证明积分性质和微分性质; 3.熟练掌握Laplace 变换及其逆变换的计算方法; 4.理解卷积的定义与卷积定理,会计算两个函数的卷积; 5. 掌握Laplace 变换在求解线性微分方程(组)的求解方法二、 内容提要1. Laplace 变换及其逆变换的定义;0()()st F s f t e dt +∞-=⎰;)]([)(1s F L t f -==1()2i st i F s e ds iββπ+∞-∞⎰(右端成为反演积分) 2. Laplace 变换的性质;线性性质;微分性质;积分性质;位移性质;延迟性质3. Laplace 逆变换的计算方法;重要定理:若1s 、2s ……n s 是函数)(s F 的所有奇点(包含在β<)Re(s 的X 围内),且0)(lim =∞→s F s ,则∑==nk k st s e s F s t f 1],)([Re )(,其中)]([)(t f L s F =。
有了以上定理,就可以利用复变函数求留数的方法来求像原函数)(t f ,下面就函数)(s F 是有理函数的情形来给出计算方法,即()()/()F s A s B s =分两种情形考虑:4. 卷积的定义与卷积定理;)(1t f 与)(2t f 的卷积(t>=0)定义为:⎰-=*td t f f t f t f 02121)()()()(τττ 卷积定理:1212[()*()]()()L f t f t F s F s =•或=*)()(21t f t f 112[()()]L F s F s -•其中=)(s F i 1[()]i L f t -(i=1,2)5. 应用主要掌握Laplace 变换在解常微分方程(组)中的应用。