最新12.2平方根和开平方(2)(1)教学讲义ppt
- 格式:ppt
- 大小:693.50 KB
- 文档页数:7
12.2 平方根和开平方(2)教学目标:1、经历2是无限不循环小数的探索过程,尝试用夹逼方法估计一个无理数的大小;2、会用计算器求一个正数的正平方根,并按指定精确度取近似值;3、会根据一个正数的正平方根求它的负平方根.教学重点:1、会用计算器对任意正数进行开方运算,并按指定精确度取其近似值;.2.理解“逐步逼近数学思想”基本原理,对“极限”思想有初步认识.教学难点:尝试用逐步逼近法探索2的近似值.教学过程:一、复习引入:1.问题:2的意义是什么?(面积为2的正方形的边长可用根号2来表示,它是一个无理数)根据其意义,你能否猜测2有多大?2.书第9页的探索:2的意义是“面积为2的正方形的边长”;比较面积分别为1、2和4的三个正方形的大小可知:因为面积1<2<4,所以边长1<2<2,即2的整数部分为1.3.规律总结:当 c>a>b>0时,b>.c>a二、新授:1、请用计算器计算:1.12=________,1.22=________,1.32=________,1.42=________,1.52=________;2、思考:(1)观察计算结果,你有什么发现?小结:由以上计算结果可知:1.42<2<1.52,根据上述规律可得:1.4<2<1.5,所以2的十分位为4.(2):如何求2的百分位?方法讨论:用计算器计算:1.412=________,1.422=________.因为1.412<2<1.422,所以1.41<2<1.42,得2的百分位为1. (3)请求出2的千分位.师:从中可以看出,随着左右夹逼根号2的两个小数的位数不断增加,根号2与这两个小数的差别越来越小。
书第9页下半段:……3、师:在实数范围内,任意一个正数都有两个平方根,求出了它的正平方根,可知它的相反数就是另一个平方根。
对于任意给定的一个正数a,可以利用计算器来求它的正平方根或求得正平方根的近似值。
12.2平方根和开平方(1)教学目标:1.理解平方根、开平方的概念,知道平方根的符号表示.2.理解正平方根与平方根的区别,知道正数的两平方根之间的关系及实数范围内负数没有平方根.3.会根据开平方与平方的逆运算关系求完全平方数的平方根.教学重点及难点:重点:根据开平方与平方的逆运算关系求完全平方数的平方根.难点:对课本第七页公式的理解.教学过程:一、 问题导入师:我们知道加法与减法是互逆的运算,乘法与除法是互逆的运算,乘方的结果是幂,那么它的逆运算是什么?今天我们就来研究最简单的一种.思考1:填空(1) 2(3)+=______;2(3)-=______; 211=______; ()211-=______; (2) ( _____ )2=9; ( _____ )2=121.师:上述填空题中第(1)题组是我们以前学习的“已知一个数,求这个数的平方是多少”,而第(2)题组则是“已知一个数的平方是多少,去求这个数”,这是一种新的运算,我们把这种运算称为“开平方”,“开平方”与“平方”是互逆的运算.二、学习新课1、平方根和开平方的概念辨析:平方根:已知一个数的平方等于a ,那么这个数叫做a 的平方根.如果x 2=a ,我们把x 叫做a 的平方根,a 叫做被开方数.开平方:求一个数a 的平方根的运算叫做开平方运算.问1:实数a 可以取任何数吗?为什么?问2:求64的平方根,就是要对64进行“开平方”,64是被开方数.这就是要找出满足x 2=64的数x ,那么64的平方根是多少?例题1 求下列各数的平方根:(1)0.16; (2)925; (3)0; (4)7. 解:(1)因为(±0.4)2=0.16,所以0.16的平方根是±0.4.(2)因为239()525±=,所以259的平方根是35±. (3)因为02=0,所以0的平方根是0.(4)7的平方根是.练习:求下列各数的平方根:(1)25; (2)8116; (3)0.36.问:通过刚才的学习,我们已经知道负数没有平方根,那么根据上题你能说出正数、0的平方根是怎样的?2.性质归纳:(1)负数没有平方根;(2)正数a 的两个平方根互为相反数,可以用“a 的正平方根(又叫做算术平方根),读作“根号a ”,表示a 的负平方根,读作“负根号a ”;(3)0的平方根就是0,记作0=0.思考2 计算下列各题(1)2=________,2(=________;(2.思考3 从上题中,你能否发现并总结某些规律?为什么?归纳小结:因为开平方与平方互为逆运算,根据平方根的意义,我们可以得到(1)当a >0时,2a =,2(a =(2)当a ≥0a =, 当a <0a =-.0000a a a a a a >⎧⎪===⎨⎪-<⎩ .例题2 求下列各数的正平方根:(1) 225; (2)0.0001; (3)1219. 分析:学习了”的意义后,225的平方根可以用“”来表示,那么225.解:(115=; (20.01=;(3)311==.课堂练习:A 组1.下列等式是否正确?不正确的请说明理由并加以改正.(1)49-=-7; (2)2)2(-=2; (3)-2)5(-=5; (4)81=±9 ; (5)2*2________.*3.若一个正数的两个平方根分别是2m -5与4m -9,求m 的值.B 组1.下列等式是否正确?如果不正确,请改正:(1)7-49-=; (2)()33-2=; (3)()55--2=;(4)981±=.2.学校要围一个占地面积为144平方米的正方形花圃,需要准备多长的竹篱笆?三、课堂小结1.平方根和开平方的概念是什么?2.平方根的性质是什么?四、作业练习册12.2(1)堂堂练12.2(1)。