统计学 统计数据的搜集整理
- 格式:pptx
- 大小:198.91 KB
- 文档页数:51
一、单选题1、抽样调查中,抽取样本必须遵循什么原则。
()A.随机原则B.随意原则C.对等原则D.可比原则正确答案:A解析:随机抽样也叫概率抽样,即总体中的个体有一个事先已知的概率被抽中。
2、某市工商企业2017年生产经营成果的年报呈报时间规定在2018年1月31日,则调查期限为()。
A.一个月B.一年C.一日D.一年零一个月正确答案:A解析:调查期限:调查工作进行的起迄时间。
3、次数分布的类型主要取决于()。
A.变量是连续还是离散B.统计总体所处的条件C.社会经济现象的性质D.分组标志的选择正确答案:C解析:社会经济现象的性质决定了社会经济现象呈现何种分布。
4、以下有关典型调查的表述不正确的是()。
A.必须同其他调查结果结合起来使用B.不容易受人们主观认识上的影响C.可以检验全面调查数据的真实性D.能够补充全面调查资料的不足正确答案:B5、重点调查中重点单位是指()。
A.标志总量在总体中有很大比重的单位B.具有反映事物属性差异的品质标志的单位C.能用以推算总体标志总量的单位D.具有典型意义或代表性的单位正确答案:A二、多选题1、采用类型抽样的组织形式是()。
A.最符合随机原则B.需要对总体各单位进行分组C.适用于总体各单位标志值差异较大的总体D.组内是进行全面调查正确答案:B、C解析:类型抽样是将总体全部单位按有关标志分成若干层,然后按照随机原则从每层中分别抽取样本单位组成样本,适合于差异大的总体,能使样本结构更接近于总体结构,提高样本的代表性。
2、在组距数列中,组中值是()。
A.在开放式分组中,可参照相邻组的组距来确定B.上限和下限之间的中点数值C.在开放式分组中无法确定D.就是组平均数正确答案:A、B解析:组中值是下限与上限之间的中点值,是在假定各组内均匀分布时的一个近似值。
闭口组的组中值是上限与下限的简单算术平均数;开口组组中值的确定,一般以其相邻组的组距的来调整3、对于离散型变量数列()。
统计师工作中的数据收集和整理方法在统计师工作中,数据收集和整理是非常重要的环节。
准确和全面地收集和整理数据对于完成统计报告、分析数据趋势和做出决策都具有重要意义。
那么,在统计师工作中,我们应该如何进行数据收集和整理呢?本文将探讨几种常见的方法。
一、问卷调查法问卷调查是一种常见的数据收集方法。
统计师可以设计和发放问卷,通过收集受访者的回答来获取数据。
在设计问卷时,需要合理安排问题的顺序和类型,确保问题清晰明了,并且考虑到可能出现的答案。
此外,还需要制定有效的答题规则和选择题的选项,并设置必填项或选答数量的限制。
二、观察法观察法是指统计师通过直接观察来收集数据。
这种方法适用于需要观察某些现象、过程或行为的情况。
通过观察,统计师可以获取真实、客观的数据,尤其是在实地调研或对于实验数据的收集。
在进行观察时,需要记录下所观察到的内容和数据,并尽量避免主观偏见的产生。
三、抽样调查法抽样调查是一种将总体数据中的一部分作为样本进行调查的方法。
通过抽样,我们可以更高效、更经济地收集数据。
在进行抽样调查时,需要根据研究目的和总体特点选择合适的抽样方法,比如简单随机抽样、分层抽样等。
同时,还需要控制好样本数量和样本质量,确保代表性和可靠性。
四、文献资料法文献资料法是指通过查阅和分析相关的文献资料来收集数据。
这种方法适用于需要获取历史数据、背景资料或者特定领域知识的情况。
在进行文献资料调研时,需要选择权威、可靠的来源,并进行全面而系统地搜集、整理和分析数据。
同时,还需要注意文献资料的时效性和适用性,避免使用过时或不相关的资料。
五、网络调查法随着互联网的发展,网络调查成为一种便捷、快速的数据收集方法。
统计师可以通过设计在线调查表格或者利用社交媒体平台等渠道来进行网络调查。
在进行网络调查时,需要确保问卷的可用性、信息保密性和回答者的真实性。
同时,还需要针对网络调查的特点,注意样本的代表性和数据的真实性。
六、数据整理方法在数据收集完成后,统计师还需要进行数据整理工作。
统计学中的数据收集和分析统计学是一门研究和应用数据收集、处理、分析和解释的学科。
在当今信息时代,数据的重要性日益凸显,统计学的作用也变得越来越重要。
本文将探讨统计学中的数据收集和分析过程,并介绍常用的统计方法。
一、数据收集数据收集是统计学中的第一步,它是指获取和记录原始数据的过程。
数据可以通过多种方式收集,包括实地调查、问卷调查、实验设计等。
下面将介绍几种常见的数据收集方法:1. 实地调查实地调查是通过观察和记录来获取数据的方法。
例如,一个环境科学家可以亲自前往污染区域,记录下空气质量、水质状况等数据。
实地调查要求研究人员具备一定的专业知识和技能,并能准确记录和分类数据。
2. 问卷调查问卷调查是一种常用的数据收集方法,它通过向受访者提问来收集数据。
问卷可以设计成面对面的形式,也可以通过网络或电话进行。
在设计问卷时,需要注意问题的准确性和一致性,以及样本的代表性和合适的样本大小。
3. 实验设计实验设计是一种有针对性的数据收集方法,它通过设定条件和观察结果来验证假设和推断。
在实验设计中,研究人员需要控制影响因素,确保实验结果的可靠性。
实验设计通常用于科学研究和药物试验等领域。
二、数据分析数据收集后,接下来的关键步骤是数据分析。
数据分析是指利用统计方法对收集的数据进行处理和解读,以揭示数据中的规律和趋势。
下面将介绍几种常用的数据分析方法:1. 描述性统计描述性统计是对数据进行概括和描述的方法。
它包括计算平均值、中位数、标准差等统计量,以及制作柱状图、饼图等可视化图表。
描述性统计能够帮助我们了解数据的分布和集中趋势。
2. 探索性数据分析探索性数据分析是一种主观的数据探索方法,它通过可视化手段发现数据中的模式和相互关系。
例如,散点图可以帮助我们观察两个变量之间的相关性,箱线图可以显示数据的离散程度。
探索性数据分析有助于提出新的研究假设和问题。
3. 统计推断统计推断是基于样本数据对总体特征进行推断的方法。
它利用抽样和概率理论,通过估计总体参数和进行假设检验来做出推断。
第⼆章统计数据的搜集与整理第⼆章统计数据的搜集与整理(⼀)教学⽬的通过本章的学习,了解统计数据搜集与整理的基本理论与⽅法,掌握各种⽅法的特性。
(⼆)基本要求要求灵活运⽤各种数据搜集的⽅式⽅法,并对所得数据进⾏加⼯整理,为以后各章学习打下基础。
(三)教学要点1、数据搜集的⽅式⽅法;2、统计调查⽅案的设计;3、统计分组;4、变量数列的编制;5、统计数据的显⽰。
(四)教学时数9课时(五)教学内容本章共分四节:第⼀节数据的计量与类型⼀、数据的计量尺度在计量学的⼀般分类⽅法中,依据对事物计量的精确程度,可将所采⽤的计量尺度由低级到⾼级、由粗略到精确分为四个层次,即名类尺度、顺序尺度、区间尺度和⽐尺度。
1.定类尺度定类尺度(Nominal scale,亦称分类尺度、列名尺度等)是这样⼀种品质标志,按照它可对研究客体进⾏平⾏的分类或分组,使同类同质,异类异质。
例如,按照性别将⼈⼝分为男、⼥两类;按照经济性质将企业分为国有、集体、私营、混合制企业等。
这⾥的“性别”和“经济性质”就是两种名类尺度。
名类尺度是最粗略、计量层次最低的计量尺度,利⽤它只可测度事物之间的类别差,⽽不能了解各类之间的其他差别。
名类尺度计量的结果表现为某种类别,但为了便于统计处理,例如为了计算和识别,也可⽤不同数字或编码表⽰不同类别。
⽐如⽤1表⽰男,0表⽰⼥;⽤1表⽰国有企业,2表⽰集体企业,3表⽰私营企业,等等。
这些数字只是不同类别的代码,决不意味着它区分了⼤⼩,更不能进⾏任何数学运算。
名类尺度能对事物做最基本的测度,是其他计量尺度的基础。
2.定序尺度定序尺度(Ordinal scale,亦称序数尺度、顺位尺度等)是这样⼀种品质标志,利⽤它不仅能将事物分成不同的类别,还可确定这些类别的等级差别或序列差别。
例如“产品等级”就是⼀种测度产品质量好坏的顺序尺度,它可将产品分为⼀等品、⼆等品、三等品、次品等;“考试成绩”也是⼀种顺序尺度,它可将成绩分为优、良、中、及格、不及格等;“对某⼀事物的态度”作为⼀种顺序尺度,可将⼈们的态度分为⾮常同意、同意、保持中⽴、不同意、⾮常不同意,等等。
统计学原理教案中的数据收集与整理解析学生如何收集和整理可靠的统计数据统计学是一门研究数据收集、整理和分析的学科。
在实际应用中,收集和整理可靠的统计数据对于准确分析和推断结论至关重要。
本文将介绍统计学原理教案中学生如何收集和整理可靠的统计数据。
一、数据收集方法1. 问卷调查:学生可以设计和分发问卷来收集数据。
问卷应该具有合适的问题和选项,以确保数据能够全面反映研究主题。
此外,学生还应考虑样本的数量和代表性,以避免采样偏差。
2. 观察法:学生可以通过观察事件、行为或现象来收集数据。
观察需要进行合理的记录和分类,以确保数据的准确性和可靠性。
3. 实验法:学生可以设计和执行实验来收集数据。
在实验中,学生需要控制和调整变量,以确定不同因素对结果的影响。
正确的实验设置和数据记录是确保数据可靠性的关键。
二、数据整理与清洗1. 数据录入:学生需要将收集到的原始数据进行录入,并确保数据的准确无误。
可以利用计算机软件或电子表格来进行数据录入和管理,这样可以提高效率和减少错误。
2. 数据清洗:在数据收集过程中,可能会出现错误、缺失或异常值。
学生需要进行数据清洗,即检查和修正数据中的错误和异常值,填补缺失值。
这样可以确保数据集的准确性和一致性,以便进行后续的分析和解释。
三、数据分析与解释1. 描述性统计:学生可以使用描述性统计方法对收集到的数据进行总结和描述。
常用的描述性统计指标包括均值、中位数、标准差等,它们可以帮助学生了解数据的分布和特征。
2. 推论统计:学生可以运用推论统计方法对收集到的数据进行推断和推断结论。
推论统计主要包括假设检验和置信区间估计,它们能够帮助学生从有限的样本中推断总体的特征和关系。
3. 数据可视化:学生可以利用图表、图形和图像等方法将数据可视化,以便更直观地呈现数据的模式和趋势。
数据可视化可以帮助学生更好地解释和传达统计结果。
总结:在统计学原理教案中,学生需要学习如何收集、整理和解释可靠的统计数据。
《统计》复习教案四:帮助学生学会收集、整理和分析数据整理和分析数据作为数学学科中的一门重要课程,《统计》在实际应用中发挥着非常重要的作用。
很多工作和社会现象都需要用到统计方法进行数据的收集、整理和分析。
因此,学会收集、整理和分析数据对于每个人来说都是非常重要的。
在这篇文章中,我将为大家介绍一些有效的方法,来帮助学生掌握数据收集、整理和分析的技能。
1.数据的收集在进行数据收集时,首先需要了解数据的来源和收集的方法。
一般来说,数据的来源可以是实际的调查、实验或案例分析等。
数据的收集方法包括问卷调查、实验设置、观察、采访等方式。
在实际收集数据时,需要注意以下几个方面。
(1)数据的来源要可靠。
数据来源的可靠性是影响数据质量的重要因素。
收集数据时应该注意不要采用不真实或不可靠的数据来源。
(2)数据的收集方式要合适。
根据不同的数据类型和来源,选用不同的收集方法可以有效地保证数据的质量。
(3)数据的样本要有代表性。
数据的样本是指对某一群体或特定对象的数据调查。
样本的代表性要求是对这个群体或对象的性质和特点进行准确描述。
2.数据的整理对于收集到的数据,如何进行整理是一个非常重要的环节。
只有对数据进行整理和分类,才能更好地发掘数据背后的规律和价值。
具体地说,数据的整理包括以下几个环节。
(1)数据的清洗:清洗数据是指去除数据中的错误、无效或重复数据的过程。
在数据清洗时,应该认真核对每一份数据,并删除掉不符合要求或与其他数据重复的数据。
(2)数据的分类:将整理后的数据按照特定的分类方式进行分组。
分类的方式也因数据类型和不同问题的关系而异。
(3)数据的评估:将整理后的数据进行评估,判断该数据的质量和实用性,并对数据的价值和使用限制进行分析。
3.数据的分析数据的分析是对整理好的数据进行研究和分析的过程。
数据分析的目的是揭示数据背后的规律和发现数据的价值,进而为决策和应用提供依据。
在数据分析时,可以采用以下几种方式。
(1)描述性统计:对数据进行整体的统计分析,包括均值、中位数、众数、标准差等。