三角形知识总结与尺规作图知识点上课讲义
- 格式:doc
- 大小:411.00 KB
- 文档页数:13
第一章三角形【夯实基础】一、认识三角形1.三角形的概念及其分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
分类:①按内角大小分为三类:锐角三角形、直角三角形、钝角三角形②按边分为两类:等腰三角形和等边三角形2.三角形的三边关系三角形任意两边之和大于第三边三角形任意两边之差小于第三边3.三角形的内角与外角(1)三角形的内角和为180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角③一个三角形中至少有两个内角是锐角(2)三角形的外角等于与它不相邻的两个内角的和4.三角形的角平分线、中线、高和垂直平分线(1)角平分线定义:三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线性质:①角平分线可以得到两个相等的角②角平分线上的点到角两边的距离相等③三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边距离相等④三角形一个角的平分线,此角平分线其对边所成的两条线段与这个角的两邻边对应成比例(2)中线定义:三角形的中线是连接三角形的一个顶点及其对边中点的线段,一个三角形有三条中线 性质:①三角形的三条中线总是相交于同一点,这个点称为三角形的重心,重心分中线为2:1 ②任意三角形的三条中线把三角形分成面积相等的六个部分。
中线都把三角形分成面积相等的两个部分③在一个直角三角形中,直角所对应的边上的中线为斜边的一半(3)高定义:从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段 性质:①锐角三角形:三条高都在三角形内部,交点也在三角形内部 ②直角三角形:两条高分别在两条直角边上,另一条高在三角形的内部。
交点是直角的顶点。
③钝角三角形:钝角的两边上的高在三角形外部,交点在三角形的外部(4)垂直平分线(中垂线) 定义:经过某一条线段的中点,且垂直于这条线段的直线,叫做线段的垂直平分线,又称“中垂线” 性质:①垂直平分线垂直且平分其所在线段②垂直平分线上任意一点,到线段两端点的距离相等③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等 ④垂直平分线的判定:必须同时满足(1)直线过线段中点(2)直线垂直线段判定方法:1、利用定义:经过某一条线段的中点,且垂直于这条线段的直线是线段的垂直平分线 2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)作图方法:① 尺规作图法a. 在纸上任意点出A 、B 两个点,连接AB 两点作为要做出垂直平分线的线段b. 分别以A 、B 为圆心,以大于线段AB 的二分之一长度为半径画圆弧,得到两个圆弧的交点C 、D(两交点交于线段的两侧)c. 连接CD ,与AB 相交于E ,则CD 为AB 的垂直平分线,AE=BEd. AB 、CD 相互垂直平分,即CD 是AB 的垂直平分线 ② 度量法③ 折纸法(折叠法)【拓展提升】尺规作图一、知识点梳理:(一)尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
教学过程课前检测1、不改变数的大小,把下面各小数改写成两位小数。
0.3 24.2500100.5 752、将下列小数按从小到大的顺序排列。
0.50.5060.605 0.056 0.065 0.56()3、把3.33的小数点先向左移动1位,再向右移动2位,得到的数是()。
4、填入适当的小数或整数。
82厘米=()米 6.14元=6元()角()分9吨145千克 =()吨 5.02千克=()千克()克7平方分米=()平方米5.6平方分米=()平方分米()平方厘米5、把下面各数改写成以“万”作单位的数。
72500= 65200000吨=3200000人=6、把下面各数改写以“亿”作单位的数,再精确到个位。
426000000 24090000000知识纵横知识点一:三角形的特性①三角形的高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段②三角形的底:这条对边叫做三角形的底三角形的性质:①物理特性:三角形具有稳定性(不易变形)②边的特性:三角形任意两边的和大于第三边知识点二:三角形的分类按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形1、三个角都是锐角的三角形叫做锐角三角形。
2、有一个角是直角的三角形叫做直角三角形。
(其他两个角必定是锐角)3、有一个角是钝角的三角形叫做钝角三角形。
(其他两个角比定是锐角)4、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
知识点三:三角形的内角和180三角形的内角和等于。
1、两条边相等的三角形叫做等腰三角形。
(等腰三角形的特点:两腰相等,两个底角相等)2、三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60度)3、等边三角形是特殊的等腰三角形知识点四:图形的拼组1、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
中考冲刺第12天——三角形与尺规作图考点:1.了解:三角形的中线、角平分线、高线;三角形的外角;等腰(边)三角形的概念;全等图形的概念;尺规作图概念;了解五种基本作图的理由2.理解:三角形的中线、角平分线、高线;三角形的三边关系;等腰(边)三角形的性质及判定;直角三角形的性质及判定;全等三角形的判定;角平分线的性质与判定;理解并掌握角平分线的性质;3.会:作三角形的中线、角平分线、高线;证明三角形的内角和定理.识别全等图形;利用HL判定两个三角形全等;会用尺规作图完成五种基本作图;使用精练、准确的作图语言叙述画图过程;利用基本作图画三角形较简单的图形;利用基本作图画较简单的图形;会判定两个三角形全等4.掌握:三角形的内角和定理及其三边关系定理;三角形的外角性质;等腰三角形的性质及判定;直角三角形的性质及判定;勾股定理及逆定理;全等三角形的判定方法;5.能:利用三角形内(外)角和定理进行角的有关计算与证明;解决等腰三角形的有关计算;证明一个三角形是等腰(边)三角形;运用勾股定理及逆定理解决实际问题;利用角平分线的判定解决有关的实际问题题型:1.从考查的题型来看,涉及本知识点的主要以填空题或选择题考查,难度系数小,较简单,属于低档题2.从考查内容来看,涉及本知识点的主要有:三角形的中线、角平分线、高线;三角形的内(外)角和定理及其三边关系定理;勾股定理及逆定理;等腰(边)三角形的性质及判定;全等三角形的判定方法3.从考查热点来看,涉及本知识点的主要有:三角形的内(外)角和定理及其三边关系定理;勾股定理及逆定理;等腰(边)三角形的性质及判定;全等三角形的判定方法;角平分线的性质知识点:1.三角形的有关线段(1)三角形的中线、高线、角平分线、中位线都是线段,三角形的中位线性质可以证明“平行”关系、“线段相等”关系,三角形的中线特点可以证明面积相等.(2)三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.2.等腰三角形①等腰对等角、等角对等腰②等腰直角三角形的两个底角相等且等于45°. ③等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). ④等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a⑤等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°−2∠B ,∠B =∠C =1802A ∠ . 3.直角三角形(1)直角三角形的性质①直角三角形两锐角互余.②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;③在直角三角形中,斜边上的中线等于斜边的一半.④两个内角互余的三角形是直角三角形.三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.(2)勾股定理及逆定理直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2.如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.4. 全等三角形(1)全等三角形的性质全等三角形的对应边相等,对应角相等方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角. (2)三角形全等的判定定理:方法归纳:证明三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,还有直角三角形的HL 定理. (3)角平分线角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.5.尺规作图(1)尺规作图的步骤①已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; ②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.(2)与圆有关的尺规作图①过不在同一直线上的三点作圆(即三角形的外接圆);②作三角形的内切圆;③作圆的内接正方形和正六边形.真题:1.(四川中考)如图所示,直线EF //GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°2.(贵州中考)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )A .9B .17或22C .17D .223.(广西中考)观察下列作图痕迹,所作CD 为△ABC 的边AB 上的中线是( )A .B .C .D .4.(辽宁中考)如图,ABC 中,60,40,//A B DE BC ︒︒∠=∠=,则AED ∠的度数是( )A .50︒B .60︒C .70︒D .80︒5.(四川中考)如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到A BC ''△.此时恰好点C 在A C ''上,A B '交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .346.(济南中考)如图,在ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .57.(四川中考)已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .D .8.(青海中考)已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形.9.(绥化中考)在Rt ABC 中,90C ∠=︒,若2,8AB AC BC -==,则AB 的长是________. 10.(镇江中考)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.11.(葫芦岛中考)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.12.(眉山中考)如图,等腰ABC 中,10AB AC ==,边AC 的垂直平分线交BC 于点D ,交AC 于点E .若ABD △的周长为26,则DE 的长为________.13.(盘锦中考)如图,菱形ABCD 的边长为4,45A ︒∠=,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,M N 两点,直线MN 交AD 于点E ,连接CE ,则CE 的长为____________. 14.(柳林中考)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =O B . 求证:△AOC ≌△BO C .15.(南京中考)如图,点 D 在 AB 上,点 E 在 AC 上, AB = AC ,∠B = ∠C ,求证:BD = CE .16.(大连中考)如图,ABC 中,AB AC =,点,D E 在边BC 上,BD CE =.求证ADE AED ∠=∠.培训班内部题:1.(佛山一模)如图,以点O 为圆心,任意长为半径画弧,分别交OA OB 、于点C D 、.分别以C D 、两点为圆心,CD 长为半径画弧,两段弧交于点P ,作射线OP ,连接PC PD 、,则POC △与POD 全等,其全等的判定依据是( )A .SSSB .SASC .AASD .ASA2.(邢台一模)嘉淇在用直尺和圆规作一个角等于已知角的步骤如下:已知:AOB ∠求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)如图,以点O 为圆心,m 为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O A '',以点O '为圆心,n 为半径画弧,交O A ''于点C ';(3)以点C '为圆心,p 为半径画弧,与第(2)步中所画的弧相交于点D ;(4)过点D 画射线O B '',则A O B AOB '''∠=∠.下列说法正确的是( )A .0m p =>B .0n p =>C .102p n => D .0m n => 3.(陕西模拟)如图是由边长为1的小正方形组成的网格,△ABC 的顶点A ,B ,C 均在格点上,BD ⊥AC 于点D ,则BD 的长为( )A .125B .245C .45D .354.(上海)如图,点D 在等边三角形ABC 内部,AD =AE ,若△DAB ≌△EAC ,则需添加一个条件:_______.5.(四川一模)如图,在ABC 中,30B C ∠=∠=︒,底边BC =AB 的垂直平分线交BC 于点E ,则ACE 的周长为__________.6.(陕西三模)如图,等边ABC 中,2AB =,点D 为BC 的中点,点E 在边AB 上,点F 在AC 的延长线上,且DE DF =,120EDF ∠=︒,过点D 作DG AC ⊥于点G ,若DG GF =,则BE CF +=______7.(广西二模)如图,ACB △和ECD 都是等腰直角三角形,90ACB ECD ∠=∠=︒,D 为AB 边上一点. (1)求证:ACE BCD △≌△.(2)已知3AD =,6BD =,求ED 的长度.8.(江西一模)在Rt ABC △中,90BAC ∠=︒,AB AC =,动点D 在直线BC 上(不与点B ,C 重合),连接AD ,把AD 绕点A 逆时针旋转90°得到AE ,连接DE ,F ,G 分别是DE ,CD 的中点,连接FG .(特例感知)(1)如图1,当点D 是BC 的中点时,FG 与BD 的数量关系是______.FG 与直线BC 的位置关系是______.(猜想论证)(2)当点D 在线段BC 上且不是BC 的中点时,(1)中的结论是否仍然成立?①请在图2中补全图形;②若成立,请给出证明;若不成立,请说明理由.(拓展应用)(3)若AB AC ==BF 、CF .当ACF 是等边三角形时,请直接写出BDF 的面积.专家押题:1.如图,在Rt ABC 中,90ACB ∠=︒,3BC =,5AB =,角平分线CD 交AB 于点D ,则点D 到AC 的距离是( )A .127B .2C .157D .32.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若AB=3,AC=4,则CD=()A.125B.95C.85D.753.如图,在Rt△ABC中,∠C=90°,线段AB的垂直平分线交BC于点D,交AB于点E.若AC=6,BC=8,则AD的长为()A.5 B.7 C.D.25 44.观察下列尺规作图的痕迹:其中,能够说明AB AC>的是()A.①②B.②③C.①③D.③④5.如图,在△ABC中,∠B=90°,AC的垂直平分线交BC于点E、交AC于点D,若BE=DE,DC=3,则AE的长为_____.6.如图,已知AB∥CD,∠BFC=127°4',观察图中尺规作图的痕迹,可知∠BCD的度数为_____.7.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF=120°,设ADn DB=,(1)若1n =,则DE DF =__________;(2)若3DF AD DE DB+=,则n =__________. 8.如图,在正方形网格中,ABC 的顶点均在格点上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中,作ABC 的高AM ;(2)在图2中,作ABC 的高AN .(提示:三角形的三条高所在的直线交于一点)9.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积123,,S S S 之间的关系问题”进行了以下探究:类比探究:(1)如图2,在Rt ABC △中,BC 为斜边,分别以,,AB AC BC 为直径,向外侧作半圆,则面积123,,S S S 之间的关系式为_____________;推广验证:(2)如图3,在Rt ABC △中,BC 为斜边,分别以,,AB AC BC 为边向外侧作ABD △,,ACE BCF ,满足123,∠=∠=∠∠=∠=∠D E F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用:(3)如图4,在五边形ABCDE 中,105,90,2A E C ABC AB DE ∠=∠=∠=︒∠=︒==,点P 在AE上,30,ABP PE ∠=︒=ABCDE 的面积.。
第14讲尺规作三角形与三角形全等的应用知识点1 尺规作三角形已知三边作三角形;2.已知两边及其夹角作三角形;3.已知两角及其夹边作三角形;4.已知两角及其中一角的对边作三角形。
知识点2 全等三角形的应用1.利用全等三角形测距离;2.其他应用问题。
例1.尺规作图:已知:∠α,线段a, b 求作:△ABC,使∠A= , AB=a, AC=b。
(不写作法,保留痕迹,写出结论)例2.如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB =c (要求画出图形,并保留作图痕迹,不必写出作法)αβ c例3. 下列各作图题中,可直接用“边边边”条件作出三角形的是()A. 已知腰和底边,求作等腰三角形B. 已知两条直角边,求作等腰三角形C. 已知高,求作等边三角形D. 已知腰长,求作等腰直角三角形例4.如图,要测量池塘两岸相对的两点A,B的距离,可以再AB的垂直线BF上取两点C,D.使BC=CD,再画出BF的垂直线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.它的理论依据是()A.SSSB.SASC.ASAD.AAS例5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.POB.PQC.MOD.MQ例6.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()A.边边边B.角边角C.边角边D.角角边例7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°的OB边上,用尺规作出了CN OA,作图痕迹中,FG是例8.如图所示,点C在AOB().A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧例9.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧 B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DM为半径的弧例10.已知∠AOC,请用尺规作图的方法作出该角的角平分线.例11.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B. 4C. 5D. 6例12.如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A.AD=BCB. ∠DAB=∠CBAC. △ACE≌△BDED. AC=CE 例13.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为()A. 8 cmB. 9 cmC. 10 cmD. 11 cm例14.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D,BD=2,则△ABE的面积为________.例15.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可例16.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS例17.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米例18.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形。
直角三角形全等的判定、尺规作图、测距离知识点一:直角三角形的判定 1、直角三角形全等的判定条件——HL 如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等. 2、直角三角形全等的判定方法的综合运用. 判定两个直角三角形全等的方法有五种,即 SSS、SAS,ASA、AAS,HL. 3、判定条件的选择技巧 (1)上述五种方法是判定两直角三角形全等的方法,但有些方法不可能运用.如 SSS,因为有两边对应相 等就能够判定两个直角三角形全等. (2)判定两个直角三角形全等,必须有一组对应边相等. (3)证明两个直角三角形全等,可以从两个方面思考: ①是有两边相等的,可以先考虑用 HL,再考虑用 SAS; ②是有一锐角和一边的,可考虑用 ASA 或 AAS. 例1、如图所示,有两个长度相等的滑梯(即 BC=EF) ,左边滑梯的高度 AC 与右边滑梯的水平方向的长度 DF 相 等,则∠ABC+∠DFE=________.分析: 本题解决问题的关键是证明 Rt△ABC≌Rt△DEF,由此,我们也知道三角形全等是解决问题的有力工具. 解: 由现实意义及图形提示可知 CA⊥BF,ED⊥BF,即∠BAC=∠EDF=90°.又因为 BC=EF,AC=DF,可知 Rt△ABC ≌Rt△DEF.得∠DFE=∠ACB.因为∠ACB+∠ABC=90°,故∠ABC+∠DFE=90°. 例2、如图所示,△ABC 中,AD 是它的角平分线,BD=CD,DE、DF 分别垂直于 AB、AC,垂足为 E、F.求证 BE=CF.解: (垂直的定义) 在△AED 和△AFD 中, (角平分线的定义) (公共边) 所以△AED≌△AFD(AAS). 所以 DE=DF(全等三角形的对应边相等). (已知) 在 Rt△BDE 和 Rt△CDF 中, (已证) 所以 Rt△BDE≌△Rt△CDF(HL). 所以 BE= CF(全等三角形的对应边相等).例3、如图所示,已知 AB=AE,BC=ED,∠B=∠E,AF⊥CD,F 为垂足,求证:CF=DF.分析:要证 CF=DF,可连接 AC、AD 后,证△ACF≌△ADF 即可. 证明: 连结 AC、AD.在△ABC 和△AED 中,所以 AC=AD(全等三角形的对应边相等). 因为 AF⊥CD(已知) ,所以∠AFC=∠AFD=90°(垂直定义). (已证) 在 Rt△ACF 和 Rt△ADF 中, (公共边) 所以 Rt△ACF≌Rt△ADF(HL). 所以 CF=DF(全等三角形的对应边相等). 例4、已知在△ABC 与△A′B′C′中,CD、C′D′分别是高,且 AC=A′C′,AB=A′B′,CD=C′D′,试判断 △ABC 与△A′B′C′是否全等,说说你的理由. 分析: 分析已知条件,涉及到三角形的高线,而三角形的高线有在三角形内、外或形上三种情形,故需分类讨论. 解: 情形一,如果△ABC 与△A′B′C′都为锐角三角形,如图所示.因为 CD、C′D′分别是△ABC、△A′B′C′的高. 所以∠ADC=∠A′D′C′=90°. 在△ADC 和△A′D′C′中∴Rt△ADC≌Rt△A′D′C′,则∠A=∠A′. 在△ABC 与△A′B′C′中,∴△ABC≌△A′B′C′(SAS). 情形二,当△ABC 为锐角三角形,△A′B′C′为钝角三角形,如图.显然△ABC 与△A′B′C′不全等. 情形三,当△ABC 与△A′B′C′都为钝角三角形时,如图.由 CD、C′D′分别为△ABC 和△A′B′C′的高,所以∠ADC=∠A′D′C′=90°, 在 Rt△ADC 和 Rt△A′D′C′中,CD=C′D′,AC=A′C′ ∴Rt△ACD≌Rt△A′C′D′,∴∠CAD=∠C′A′D′. ∴∠CAB=∠C′A′B′,在△ABC 与△A′B′C′中∴△ABC≌△A′B′C′. 例5、阅读下题及证明过程: 如图,已知 D 是△ABC 中 BC 边上的一点,E 是 AD 上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE. 证明:在△ABE 和△ACE 中∴△ABE≌△ACE ∴∠ABE=∠ACE第一步 第二步上面的证明过程是否正确?若正确,请写出每一步推理的根据,若不正确,请指出错在哪一步,并写出你 认为正确的证明过程. 分析: 用三角形全等的判定条件去判断,易发现错在第一步,它不符合全等三角形的条件,因此需另辟途径.由 题设知,当结论成立时,必有△ABE≌△ACE,而由已知条件不能求证这两个三角形全等,故需将这两个三角形中重 新构造出全等三角形. 解: 上面的证明过程不正确,错在第一步,正确的证明过程如下: 过 E 作 EG⊥AB 于 G,EH⊥AC 于 H.如图所示 则∠BGE=∠CHE=90° 在△AGE 与△AHE 中∴△AGE≌△AHE ∴EG=EH 在 Rt△BGE 与 Rt△CHE 中,EG=EH, BE=CE. ∴Rt△BGE≌Rt△CHE,∴∠ABE=∠ACE.例6、已知:如图所示,AD 为△ABC 的高,E 为 AC 上一点,BE 交 AD 于 F,且有 BF=AC,FD=CD.(1)求证:BE ⊥AC; (2)若把条件 BF=AC 和结论 BE⊥AC 互换,那么这个命题成立吗?(1)证明:因为 AD⊥BC(已知) ,所以∠BDA=∠ADC=90°(垂直定义) ,∠1+∠2=90°(直角三角形两锐角互 余). (已知) 在 Rt△BDF 和 Rt△ADC 中, (已知) 所以 Rt△BDF≌Rt△ADC(HL). 所以∠2=∠C(全等三角形的对应角相等). 因为∠1+∠2=90°(已证) ,所以∠1+∠C=90°. 因为∠1+∠C+∠BEC=180°(三角形内角和等于180°) ,所以∠BEC=90°. 所以 BE⊥AC(垂直定义) ; (2)证明:命题成立,因为 BE⊥AC,AD⊥BC, 所以∠BDF=∠ADC=90°(垂直定义). 所以∠1+∠C=90°,∠DAC+∠C=90°. 所以∠1=∠DAC(同角的余角相等). (已证) 在△BFD 与△ACD 中, (已证) (已知) 所以△BFD≌△ACD(AAS).所以 BF=AC(全等三角形的对应边相等). 知识二:利用三角形全等测距离 通过探索三角形全等,得到了“边边边” , “边角边” , “角边角” , “角角边”定理,用这些定理能够判断两个三 角形是否全等,掌握了这些知识,就具备了“利用三角形全等测距离”的理论基础.体会数学与生活的密切联系, 能够利用三角形全等解决生活中的实际问题. 在解决实际问题时确定方案使不能直接测量的物体间的距离转化为可以测量的距离(即把距离的测量转化 为三角形全等的问题) .例1、如图,有一湖的湖岸在 A、B 之间呈一段圆弧状,A、B 间的距离不能直接测得.•你能用已学过的知识或 方法设计测量方案,求出 A、B 间的距离吗?答案: 要测量 A、B 间的距离,可用如下方法: (1)过点 B 作 AB 的垂线 BF,在 BF 上取两点 C、D,使 CD=BC,再定出 BF 的垂线 DE,使 A、C、E 在一条 直线上,根据“角边角公理”可知△EDC≌△ABC.因此:DE=BA.•即测出 DE 的长就是 A、B 之间的距离. (如图甲)(2)从点 B 出发沿湖岸画一条射线 BF,在 BF 上截取 BC=CD,过点 D 作 DE∥AB,使 A、•C、E 在同一直线 上,这时△EDC≌△ABC,则 DE=BA.即 DE 的长就是 A、B 间的距离. (•如图乙) 例2、如图、小红和小亮两家分别位于 A、B 两处隔河相望,要测得两家之间的距离,请你设计出测量方案.分析: 本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通 过测量这个三角形中与 AB 相等的线段的长,就可求出两家的距离. 方案: 如图,在点 B 所在的河岸上取点 C,连接 BC 并延长到 D,使 CD=CB,利用测角仪器使得∠B=∠D,A、C、 E 三点在同一直线上.测量出 DE 的长,就是 AB 的长.因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD, 所以 AB=DE.知识点三:尺规作图 1、用尺规作三角形的根据是三角形全等的条件. 2、尺规作图的几何语言 ①过点×、点×作直线××;或作直线××;或作射线××; ②连接两点××;或连接××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; ④在××上截取××=××; ⑤以点×为圆心,××的长为半径作圆(或弧) ; ⑥以点×为圆心,××的长为半径作弧,交××于点×; ⑦分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 3、用尺规作图具有以下三个步骤 ①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; ②求作:能根据题目写出要求作出的图形及此图形应满足的条件; ③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复 杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 例1、已知三角形的两角及其夹边,求作这个三角形. 已知: ∠α ,∠β ,线段 c(如图).求作:△ABC,使∠A=∠α ,∠B=∠β ,AB=c. 请按照给出的作法作出相应的图形.例2、如图,已知线段 a,b,c,满足 a+b>c,用尺规作图法作△ABC,使 BC=a,AC=b,AB=c. 错误作法:(1)作线段 AB=c; (2)作线段 BC=a; (3)连接 AC,则△ABC 就是所求作的三角形(如图).分析: 本题第2步作线段 BC=a,在哪个方向作,∠CBA 的度数是多少是不确定,所以这步的作法不正确,不能保 证 AC 的长一定等于 b.错误的原因在于没有真正理解用尺规作三角形的方法. 正确作法:(1)作射线 CE; (2)在射线 CE 上截取 CB=a; (3)分别以 C,B 为圆心,b,c 长为半径画弧,两弧交于点 A.连接 AC、AB,则△ABC 为所求作的三角形 (如图).例3、已知两边和其中一边上的中线,求作三角形. 已知线段 a、b 和 m. 求作△ABC,使 BC=a,AC=b,BC 边上的中线等于 m.分析: 如果 BC 已作出,则只要确定顶点 A.由于 AD 是中线,则 D 为 BC 的中点,A 在以 D 为圆心,m 为半径的圆 上,又 AC=b,点 A 也在以 C 为圆心 b 为半径的圆上,因此点 A 是这两个轨迹的交点. 作法: 1、作线段 BC=a. 2、分别以 B、C 为圆心,大于 长为半径画弧,在 BC 两侧各交于一点 M、N,连接 M、N 交 BC 于点 D. 3、分别以 D 为圆心,m 长为半径作弧,以 C 为圆心,b 长为半径作弧,两弧交于点 A. 4、分别连接 AB、AC. 则△ABC 就是所求作的三角形. 思考: 假定△ABC 已经作出,其中 BC=a,AC=b,中线 AD=m.显然,在△ADC 中,AD=m,DC= ,AC=b,所 以△ADC 若先作出.然后由 BD= 的关系,可求得顶点 B 的位置,同样可以作出△ABC.作法请同学们自己写出.达标测试: 1、如图,DB⊥AB,DC⊥AC,垂足分别为 B、C,且 BD=CD,求证:AD 平分∠BAC.证明: ∵DB⊥AB,DC⊥AC ∴∠B=∠C=90° 在 Rt△ABD 和 Rt△ACD 中∴Rt△ABD≌Rt△ACD(HL) ∴∠1=∠2 ∴AD 平分∠BAC. 2、如图,已知 AB=AC,AB⊥BD,AC⊥CD,AD 和 BC 相交于点 E,求证: (1)CE=BE; (2)CB⊥AD.证明:(1)∵AB⊥BD,AC⊥CD ∴∠ABD=∠ACD=90° 在 Rt△ABD 和 Rt△ACD 中∴Rt△ABD≌Rt△ACD (HL) ∴∠1=∠2 在△ABE 和△ACE 中∴△ABE≌△ACE(SAS) ∴BE=CE 即 CE=BE (2)∵△ABE≌△ACE ∴∠3=∠4 又∵∠3+∠4=180° ∴∠3=90° ∴CB⊥AD 3、如图,已知一个角∠AOB,你能否只用一块三角板作出它的平分线吗?说明方法与理由.解: 能. 作法: (1)在 OA,OB 上分别截取 OM=ON (2)过 M 作 MC⊥OA,过 N 作 ND⊥OB,MC 交 ND 于 P (3)作射线 OP 则 OP 为∠AOB 的平分线 证明:∵MC⊥OA、ND⊥OB ∴∠1=∠2=90° 在 Rt△OMP 和 Rt△ONP 中 ∴Rt△OMP≌Rt△ONP(HL) ∴∠3=∠4 ∴OP 平分∠AOB. 4、如图,AB=AD,BC=DE,且 BA⊥AC,DA⊥AE,你能证明 AM=AN 吗?解:能. 理由如下: ∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90° 在 Rt△ABC 和 Rt△ADE 中∴Rt△ABC≌Rt△ADE(HL)∴∠C=∠E,AC=AE 在△AMC 和△ANE 中∴△AMC≌△ANE(ASA) ,∴AM=AN. 5、如图,CE⊥AB,DF⊥AB,垂足分别为 E、F,且 AE=BF,AD=BC,则 (1)△ADF 和△BEC 全等吗?为什么? (2)CM 与 DN 相等吗?为什么?解: (1)△ADF≌△BCE,理由如下: ∵CE⊥AB,DF⊥AB ∴∠1=∠2=∠3=∠4=90° 又∵AE=BF,∴AF=BE 在 Rt△ADF 和 Rt△BCE 中∴Rt△ADF≌Rt△BCE(HL) (2)CM=DN,理由如下: ∵△ADF≌△BCE ∴DF=CE,∠A=∠B 在△AME 和△BNF 中∴△AME≌△BNF(ASA) ∴ME=NF,又∵CE=DF ∴MC=ND. 6、如图所示,已知线段 a,b,∠α ,求作△ABC,使 BC=a,AC=b,∠ACB=∠α ,•根据作图在下面空格中 填上适当的文字或字母. (1)如图甲所示,作∠MCN=________; (2)如图乙所示,在射线 CM 上截取 BC=________,在射线 CN 上截取 AC=________. (3)如图丙所示,连接 AB,△ABC 就是_________.答案:∠α ,a,b,所求作的三角形. 7、已知线段 a 及锐角α ,求作:三角形 ABC,使∠C=90°,∠B=∠α ,BC=A.作法: (1)作∠MCN=90°; (2)以 C 为圆心,a 为半径,在 CM 上截取 CB=a; (3)以 B 为顶点,BC 为一边作∠ABC=∠α ,交 CN 于点 A.连接 AB,则△ABC 即为所求作的三角形. 8、你一定玩过跷跷板吧!如图是贝贝和晶晶玩跷跷板的示意图,支柱 OC 与地面垂直,点 O 是横板 AB 的中点, AB 可以绕着点 O 上下转动,当 A 端落地时,∠OAC=20°. (1)横板上下可转动的最大角度(即∠A′OA)是多少? (2)在上下转动横板的过程中,两人上升的最大高度 AA′,BB′有何数量关系?为什么?解: (1)∵OC⊥AB′,∠OAC=20°, ∴∠AOC=90°-20°=70°, 同理可求∠B′OC=70°, ∴∠AOA′=180°-2×70°=40°; (2)AA′=BB′, 如图所示,连接 AA′、BB′, ∵AB=A′B′,∠BAB′=∠A′B′A,AB′=B′A, ∴△A′AB′≌△BB′A,∴AA′=BB′. 9、有一池塘,要测池塘两端 A、B 间的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长 到 D,使 CD=CA,连接 BC 并延长到 E,使 CE=CB,连接 DE,量出 DE 的长,这个长就是 A、B 之间的距离。
(完整版)三角形全章知识点总结三角形全章知识点总结
1.三角形的定义
三角形是由三条边和三个内角组成的图形。
2.三角形的分类
- 根据边长分类:
- 等边三角形:三条边长度相等。
- 等腰三角形:两条边长度相等。
- 普通三角形:三条边长度都不相等。
- 根据角度分类:
- 直角三角形:有一个内角为直角(90度)。
- 钝角三角形:有一个内角大于直角。
- 锐角三角形:三个内角都小于直角。
3.三角形的性质
- 三角形内角和等于180度。
- 三角形的任意两边之和大于第三边。
- 等边三角形的三个角都相等,每个角为60度。
- 等腰三角形的两个底角相等,顶角大于底角。
- 直角三角形的两个锐角的正弦、余弦、正切关系等于对边、邻边和斜边的比值。
4.三角形的计算公式
- 周长(P):P = a + b + c,其中a、b、c分别为三角形的三边长度。
- 面积(A):A = 1/2 * 底 * 高,其中底为底边长度,高为顶点到底边的垂直距离。
5.三角形的重要定理
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为对应的内角。
- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的三边长度,C为对应的内角。
- 正切定理:tanA = sinA/cosA,其中A为三角形的一个内角。
以上是关于三角形的全章知识点总结。
希望能对您的学习有所帮助!。
第一章图形的初步认识考点一、线段垂直平分线,角的平分线,垂线1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
3 垂线的性质:性质 1 :过一点有且只有一条直线与已知直线垂直。
性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
考点二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
同一平面内,两条直线的位置关系只有两种:相交或平行。
4、平行线的性质(1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补。
考点三、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
第二章三角形考点一、三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形底和腰不相等的等腰三角形三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)三角形斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
第五部分尺规作图一、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图.最基本最常用的尺规作图通常称基本作图.一些复杂的尺规作图都是由基本作图组成的.二、五种基本作图:1.作一条线段等于已知线段已知:如图,线段a.求作:线段AB,使AB=a作法:(1)作射线AP;(2)在射线AP上截取AB=a,则线段AB就是所求作的图形.2.作一个角等于已知角已知:如图,已知∠AOB.求作:∠A’O’B',使∠A’O’B’=∠AOB作法:(1)作射线O′A′;(2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O′为圆心,以OM的长为半径画弧,交O′A′于M′﹔(4)以M′为圆心,以M的长为半径画弧,交前弧于N′﹔(5)连接ON′并延长到B′.则∠A′O′B′就是所求作的角.3.作已知线段的垂直平分线已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则直线PQ就是所求作的MN的垂直平分线.4.作已知角的角平分线已知:如图,∠AOB,求作:射线OP,使∠AOP=∠BOP(即oP平分∠AOB).作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于12MN的线段长为半径画弧,两弧交∠AOB内于P;(3)作射线OP.则射线OP就是∠A0B的角平分线.5.过一点作已知直线的垂线已知:如图,直线B及外一点P.求作:直线CD,使CD经过点P,且CD⊥AB.作法:(1)以Р为圆心,任意长为半径画弧,交AB于M、N;(2)分别以M、N圆心,大于MN长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD.则直线就CD是所求作的直线.三、题型练题型一用尺规作线段例1.如图,在平面内有三个点A,B,C.(1)按下面的要求作图:(要求:利用尺规,不写画法,保留作图痕迹,不写结论)①连接AB ,AC ,作射线BC ;②在射线BC 上作线段BD ,使BD BC AB =+.(2)已知6AB =,4BC =,点P 是BD 的中点.将点P 标在(1)所画的图中,并求线段CP 的长.【分析】(1)①根据线段,射线的定义画出图形即可.②根据要求作出图形即可.(2)利用线段和差定义以及线段的中点的性质解决问题即可.【详解】解:(1)①如图,线段AB ,AC ,射线BC 即为所求作.②如图,线段BD 即为所求作.(2)∵BD =BC +AB =4+6=10,又∵BP =PD ,∴PB =12BD =5,∴PC =PB -BC =5-4=1.【点睛】本题考查作图-复杂作图,线段,射线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.变式11.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;②延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;②见解析;(2)1cm【解析】【分析】(1)①根据题意画出图形即可;②根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可.【详解】(1)①如图,②如图,(2)如图,2cm,AB BC AB == ,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.∵点E 是线段BD 的中点,13cm 2DE DB ∴==,1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.题型二用尺规作垂线例2.如图,在△ABC 中,AB =AC ,AD 为BC 边上的中线.用直尺和圆规作DE ⊥AB 于点E (不要求写作法,保留作图痕迹)【分析】以点D 为圆心,BD 长为半径画弧,交AB 于点G ,然后以点B .E 为圆心,大于BE 长的一半画弧,交于一点F ,连接DF ,交AB 于点E ,则DE 即为所求,【详解】解:由题意可得如图所示:则DE 即为所求,【点睛】本题主要考查垂直平分线的尺规作图,掌握常规的尺规作图方法是解题的关键.变式22.尺规作图:如图,已知ABC .请在AC 边上找一点D ,使ABD △的周长等于+AB AC .(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】△ABD 的周长=AB +AD +BD ,要使ABD △的周长等于+AB AC ,即BD =CD ,故只需做边BC的垂直平分线交AC于点D.【详解】解:如图所示,点D为所求点.【点睛】本题主要考查垂直平分线的尺规作图,能够将问题转化为常规的尺规作图是解题的关键.题型三用尺规作一个角等于已知角例3.“经过已知角一边上的一点作“一个角等于已知角”的尺规作图过程如下:已知:如图(1),∠AOB和OA上一点C.求作:一个角等于∠AOB,使它的顶点为C,一边为CA.作法:如图(2),(1)在0A上取一点D(OD<OC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC.所以∠CCA就是所求作的角此作图的依据中不含有()A.三边分别相等的两个三角形全等B.全等三角形的对应角相等C.两直线平行同位角相等D.两点确定一条直线【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可.【详解】解:由题意可得:由全等三角形的判定定理SSS 可以推知△EOD ≌△GCF ,故A 正确;结合该全等三角形的性质对应角相等,故B 正确;作射线CG ,利用两点确定一条直线,故D 正确;故选:C .【点睛】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断.变式33.如图,点B 是射线AC 上一点,利用尺规作//BE AD ,依据是:______.(保留作图痕迹,不写作法)【答案】作图见解析,同位角相等,两直线平行【解析】【分析】在∠CAD 的内部,利用尺规作∠CBE ,使得∠CBE =∠A 即可.【详解】解:如图,AD ∥BE 的依据是:同位角相等,两直线平行.【点睛】此题主要考查了平行线的判定与作图,关键是熟练掌把握作一个角等于已知角的作图方法.题型四用尺规作角的和与差例4.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)【分析】作∠AOC =α∠,然后在∠AOC 内部作∠BOC =β∠,即可得到AOB αβ∠=∠-∠.【详解】解:作∠AOC =α∠,然后在∠AOC 内部作∠BOC =β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.【点睛】此题考查的是基本作图,掌握利用尺规作图作一个角等于已知角是解决此题的关键.变式44.已知∠α、∠β,用尺规画出∠AOB=2∠α-∠β.(不写作法,标明字母)【答案】见解析【解析】【分析】根据用尺规作图作角等于已知角作图即可.【详解】解:分别以∠α、∠β的顶点为圆心,任意长度为半径作弧,分别交∠α、∠β的边于P 、Q 、M 、N ;作射线OB ,以O 为圆心,以相同长度为半径作一个优弧,交射线OB 于点C ,以C 为圆心,PQ 的长度为半径作弧,交优弧于点D ,作射线OD ,再以D 为圆心,PQ的长为半径作弧,交优弧(∠DOB外部)于点E,作射线OE,然后以E为圆心,MN的长为半径作弧,交优弧(∠EOB内部)于点A,作射线OA,如图所示:∠AOB=2∠α-∠β,∠AOB即为所求.【点睛】此题考查的是用尺规作图作角等于已知角,掌握用尺规作图作角等于已知角是解决此题的关键.题型五用尺规作平行线例5.已知直线l及直线l外一点D,要求利用尺规作图过D点作直线l的平行线.对如图所示的两种作法,下列说法正确的是()A.两种作法都正确B.两种作法都错误C.左边作法正确,右边作法错误D.右边作法正确,左边作法错误【分析】左边利用同位角相等求平行线,右边利用内错角相等求平行线;【详解】作法1:通过同位角相等来确定平行线的另一点F,作法2:通过内错角相等来确定平行线的另一点F,作法2中,,先作BAC ∠的平分线,∴EAC EAB=∠∠再以点D 为圆心DA 为半径作圆,交BAC ∠的平分线于点F ,∴DA DF =,∴DAF DFA ∠=∠,∴DFA FAB ∠=∠,即内错角相等,连接DF ,∴//DF AB (内错角相等,两直线平行)∴两种作法都正确故选:A .【点睛】本题考查尺规作图规范和平行线的判定,解题的关键在于明白尺规作图的原理.变式55.如图,过直线l 外一点Р作它的平行线2l ,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行【答案】D【解析】【分析】根据基本作图痕迹可知内错角相等,再根据平行线的判定解答即可.【详解】解:由作图可知,内错角相等,则这两条直线平行,故选:D .【点睛】本题考查基本尺规作图-作角、平行线的判定,理解题意,根据作图痕迹得出内错角相等是解答的关键.题型六用尺规作三角形例6.尺规作图:如图,已知线段a ,b ,c ,求作ABC ,使AB a b =-,AC b =,BC c=(不写作法,保留作图痕迹)【分析】首先作线段BD=a,在BD上截取AD=b,再分别以A、B为圆心,b,c为半径画弧,两弧相交点C,连接BC,AC,则△ABC即为所求作.【详解】为所作.解:如图,ABC【点睛】=-.此题主要考查了复杂作图,关键是作出线段AB a b变式66.如图所示,已知△ABC,请你画一个△A1B1C1,使A1B1=AB,C1B1=CB,∠B1=∠B,(要求:尺规作图,不写作法,保留作图痕迹)【答案】见解析【解析】【分析】根据已知三角形,利用SAS进而得出全等三角形即可.【详解】解:如图所示,△A1B1C1即为所求.【点睛】此题主要考查了复杂作图以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.题型七结合尺规作图的全等问题例7.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A ′O ′B ′=∠AOB 的依据是()A .SASB .SSSC .AASD .ASA【分析】根据尺规作图的痕迹可知,,OD O D OC O C CD C D ''''''===,从而利用SSS 证明COD C O D '''△≌△,则可证明AOB AO B '''∠=∠.【详解】根据尺规作图的痕迹可知,,OD O D OC O C CD C D ''''''===,()COD C O D SSS '''∴△≌△AOB A O B '''∴∠=∠故选:B .【点睛】本题主要考查全等三角形的判定及性质,掌握尺规作图是关键.变式77.小刚自己研究了用直尺、圆规平分一个已知角的方法:(1)在OA 和OB 上分别截取OD OE =.(2)分别以D,E为圆心,以大于12DE长为半径作弧,在AOB∠的内部两弧交于点C.(3)作射线OC,则有AOC BOC∠=∠.你能指出作法中的道理吗?【答案】见解析【解析】【分析】利用画法得到OE=OD,CE=CD,加上OC为公共边,可根据“SSS”证明△COD≌△COE,据此可以得∠AOC=∠BOC.【详解】解:由作法得:OE=OD,CE=CD,而OC为公共边,即OC=OC,∴△COD≌△COE(SSS),∴∠AOC=∠BOC.【点睛】本题考查了基本作图以及全等三角形的判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.题型八用尺规作角的平分线例8.如图,按下列要求作图:(1)用尺规作出ABC的角平分线CD;(2)用尺规在BC 找出点P ,使2APC B ?(要求有明显的作图痕迹,不写作法)【分析】(1)根据角平分线的作法作出∠ACB 的平分线即可;(2)作AB 的垂直平分线,交BC 于点P 即可.【详解】解:(1)如图,CD 即为所作;(2)如图,点P 即为所作.可得:AP =BP ,∴∠P AB =∠B ,∴∠APC =2∠B .【点睛】本题考查了尺规作图,垂直平分线的性质,三角形外角的性质,解题的关键是理解题意,利用外角的性质分析∠APC =2∠B ,从而得出作法.变式88.已知,PBC ∠的边PB 上有一点A 、E ,过点E 作EF ∥BC .(1)用尺规作PBC ∠的平分线,交EF 于点D ;(只保留作图痕迹)(2)在(1)的前提下,连结AD 并延长交BC 于G .①求证:BE =ED ;②如果点E 是AB 的中点,直接写出 ABD 和 ABG 的形状.【答案】(1)见解析;(2)①证明见解析,②ABD △是直角三角形,ABG 是等腰三角形【解析】【分析】(1)根据角平分线尺规作图方法画图即可;(2)①利用角平分线得出的角相等以及平行线得出的角相等,进行等量代换,可得出∠ABD =∠EDB ,进而得出BE =ED ;②根据①中BE =ED ,再加上E 是AB 的中点,可得BE =ED =AE ,根据角相等以及三角形内角和可得出∠BDA =90°;在ABG 中,根据中位线可得D 为AG 中点,且BD ⊥AG ,根据三线合一可得出AB =BG ,即可得出答案.【详解】解:(1)作图如下图所示:(2)①如图:∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵EF ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =ED .②ABD △是直角三角形,ABG 是等腰三角形.证明如下:E 为AB 中点,BE AE ∴=,BE =ED ,∴BE =ED =AE ;EBD EDB ∴∠=∠,EAD EDA ∠=∠,则在ABD △中180EBD EDB EAD EDA ∠+∠+∠+∠=︒,90EDB EDA ∴∠+∠=︒,ABD ∴∆是直角三角形;ED ∥BG ,E 为AB 中点,∴D 为AG 中点,90BDA ∠=︒ ,BA BG ∴=,ABG 是等腰三角形;故答案为:ABD △是直角三角形,ABG 是等腰三角形【点睛】本题考查利用角的等量代换进行几何图形的综合证明.重点掌握等角对等边,等边对等角,以及中位线的相关定理.题型九作圆和确定圆心例9.如图,已知弧AB ,利用直尺和圆规作弧AB 所在的圆的圆心O ,(要求保留作图痕迹)【分析】在弧上找一点C,连接AC和BC,分别作AC和BC的垂直平分线,交于点O即可.【详解】解:如图,点O即为所作.【点睛】本题主要考查了确定圆心,解题的关键是利用垂直平分线的交点得到圆心.变式99.如图,在大圆中有一小圆O.按下列要求尺规作图(保留作图痕迹,不需要写步骤).(1)作大圆的圆心P.(2)作直线l,使其将两圆的面积均二等分.【答案】(1)见解析;(2)见解析【解析】【分析】(1)任作两条不平行的弦,作出其垂直平分线,两条垂直平分线的交点即为圆心;(2)过圆心的直线把圆的面积分为面积相等的两部分,那么过两圆连心线的直线可把两圆分为面积相等的两部分.【详解】解:(1)任作大圆的两条弦AB、CD,分别作AB和CD的中垂线l1与l2,l1的l2交点O'就是大圆的圆心.(2)过O,O′作直线l可等分两圆的面积.【点睛】本题考查了作图-复杂作图,用到的知识点为:弦的垂直平分线经过圆心;两圆的连心线所在的直线把两圆分为面积相等的两部分.题型十无刻度直尺作图例10.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果).(1)如图1,E是平行四边形ABCD边AD上一点,过点A画一条直线,使其与EC平行;(2)如图2,正六边形ABCDEF(六边相等,六角相等的六边形),在图中画一条直线,使其垂直平分AF;(3)如图3,⊙O是四边形ABCD的外接圆,且AB=BC=CD,在图中画一条异于BC的直线,使其与AD平行.【分析】(1)连接AC,BD交于点O,作直线OE交BC于F,作直线AF即可.(2)连接AE ,BF 交于点G ,连接BD ,CE 交于点H ,作直线GH 即可.(3)作直径BE ,CF ,作直线EF 即可.【详解】解:(1)如图1,直线AF 即为所求作.(2)如图2,直线GH 即为所求作.(3)如图3,直线EF 即为所求作.【点睛】本题考查作图-复杂作图,线段的垂直平分线,平行四边形的性质,正多边形和圆等知识,解题的关键是理解题意,灵活运用所学知识解决问题.例11.创新作图.(1)如图1,已知BE ,CD 是ABC 的角平分线,请你仅用无刻度的直尺作出BAC 的平分线;(2)如图2,已知ABC DCB ∠=∠,且BD ,CA 分别平分ABC ∠与DCB ∠,AC 与BD 相交于O ,请你仅用无刻度的直尺作出BOC ∠的平分线.【分析】(1)连接AO 并延长交BC 于P ,则利用三角形的三条角平分线相交于一点可判断AP 平分∠BAC ;(2)BA 和CD 的延长线相交于E ,连接EO 并延长交BC 于P ,利用三角形的三条角平分线相交于一点可判断EP 平分∠BEC ,利用等腰三角形“三线合一”的性质得到BP =PC ,由于OB =OC ,再利用等腰三角形“三线合一”的性质可判断OP 平分∠BOC .【详解】(1)如图所示:AP 是BAC ∠的平分线;(2)如图所示:OP 是BOC ∠的平分线.∵BD ,CA 分别平分ABC ∠与DCB ∠,AC 与BD 相交于O ,∴EP 平分∠BEC ,∵ABC DCB ∠=∠,∴EB =EC ,∴BP =PC ,∵ABC DCB ∠=∠,且BD ,CA 分别平分ABC ∠与DCB ∠,∴OBC OCB ∠=∠,∴OB =OC ,∴OP 平分∠BOC .【点睛】本题考查了运用三角形三条角平分线相交于一点巧作角平分线,运用等腰三角形“三线合一”性质巧作角平分线.第(2)补全三角形再运用三角形三条角平分线相交于一点以及等腰三角形“三线合一”性质巧作角平分线是解题的关键.变式1010.作图题(网格作图题,仅用无刻度的直尺作图)(1)找一格点B 使AB AC⊥(2)求作点P 关于AC 的对称点Q【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据网格,找到AB ⊥AC 即可;(2)根据网格过P 点作AC 的垂线,再找到对应点即可.【详解】(1)如图,B 点为所求;(1)如图,Q 点为所求;【点晴】此题主要考查对称性的作图,解题的关键是熟知网格中对称性的特点.四、实战练11.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;②延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;②见解析;(2)1cm【解析】【分析】(1)①根据射线和直线的定义作图即可,②作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得.【详解】解:(1)①如图所示:②如图所示:(2)由图可知2AB cm =,236AE cm =⨯=,116322OA AE cm ∴==⨯=,1OB OA AB cm∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.12.如图,在ABC 外找一个点A '(与点A 不重合),并以BC 为一边作A BC ' ,使之与ABC 全等,且ABC 不是等腰三角形,则符合条件的点A '有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】本题是开放题,要想使△A ′BC 与△ABC 全等,先确定题中条件,再对应三角形全等条件求解.【详解】解:如图:以B 点为圆心,CA 为半径上下画弧,C 点为圆心,BA 为半径上下画弧,两弧相交分别得到点A '、1A ';以C 点为圆心,CA 为半径画弧,以B 点为圆心,BA 为半径画弧,两弧的交点得到点2A ',所以符合条件的点A ′有3种可能的位置.故选:C .【点睛】本题考查了全等的判定综合.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法去求证.13.如图,在ABC 中,,50AB AC A =∠=︒,根据作图痕迹,可知CBD ∠=()A.80︒B.60︒C.45︒D.50︒【答案】D【解析】【分析】由等腰三角形的性质和三角形内角和定理即可求出.【详解】解:∵AB =AC ,∴11==(180)(18050)6522ABC ACB A ∠∠︒-∠=︒-︒=︒.由作图痕迹可知BC =BD ,∴==65BDC BCD ∠∠︒.∴180=180656550CBD BDC BCD ∠=︒-∠-∠︒-︒-︒=︒.故选D .【点睛】本题考查等腰三角形的性质和三角形内角和定理,根据作图痕迹得出BC =BD 是解答本题的关键.14.如图,已知三角形ABC ,CD 平分∠ACB .(1)以D 为顶点,在边AB 右侧作∠ADE =∠ABC ,交AC 于点E (要求:尺规作图,不写做法,保留作图痕迹)(2)在(1)所作的图中,求证:DE =CE .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据作一个角等于已知角的方法作∠ADE =∠ABC 即可;(2)根据ADE ABC =∠∠,可得到//DE BC ,再利用角平分线的性质和平行线的性质可以得到ECD EDC ∠=∠,由等腰三角形的判定即可求解.【详解】(1)如图所示:∠ADE 即为所求(2)∵ADE ABC=∠∠∴//DE BC∴EDC DCB∠=∠又∵CD 平分ACB∠∴ECD DCB∠=∠∴ECD EDC∠=∠∴DE CE=【点睛】本题主要考查了相同角的尺规作图,角平分线的定义,平行线的性质和判定,等腰三角形的判定,熟悉掌握等角的尺规作图方法是解题的关键.15.如图,将ABC 绕点A 按逆时针方向旋转DAC ∠的度数得到AED .(1)尺规作图:确定AED 的顶点E 的位置(保留作图痕迹,不写作法与证明过程);(2)连接AE ,DE ,设BC 的延长线交DE 于点G ,连接AG .求证:AG 平分DGB ∠.【答案】(1)作图见解析,(2)证明见解析.【解析】【分析】(1)作∠EAB =∠DAC ,截取AE =AB 即可;(2)作AN ⊥DE ,AC ⊥BC ,交ED 延长线于N ,BG 于M ,证AN =AM 即可.【详解】解:(1)点E 位置如图所示;(2)证明:作AN ⊥DE ,AC ⊥BC ,交ED 延长线于N ,BG 于M ,由旋转可知AED ≌ABC ,DE =BC ,∴12AED S DE AN =⋅ ,12ABC S BC AM =⋅ ,∴1122DE AN BC AM ⋅=⋅,∴AN AM =,∴AG 平分DGB ∠.【点睛】本题考查了尺规作图和角平分线的判定,解题关键是明确尺规作图方法,熟练运用角平分线的判定证明.16.如图,ABC 中,点D ,E 分别在边AB ,AC 上,求作线段DE ,使//DE BC ,且DE DB =(保留作图痕迹,不写作法)【答案】见解析.【解析】【分析】先作ABC ∠的角平分线BE ,交AC 于点E ,再作DEB CBE ∠=∠,角的边DE 交AB 于点D ,根据内错角相等,两直线平行得到//DE BC ,最后根据等角对等边得到DE DB =.【详解】解:如图,线段DE 即为所求.【点睛】本题考查尺规作图—作角平分线、作一个角等于已知角,涉及内错角相等,两直线平行、等角对等边等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.如图,已知四边形ABCD.用尺规作图在对角线AC上求作一点P,使得ADP△△的面积(不写作法,保留作图痕迹)的面积等于ADB【答案】作图见解析.【解析】【分析】只需要作BP∥AD,利用三角形面积公式可判断△ADP的面积等于△ADB 的面积.【详解】解:如图,点P为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P,PQ l.求作:直线PQ,使得//小于同学的作法:如下,(1)在直线l的下方取一点O;交直线l于点C,D(点C在左侧),(2)以点O为圆心,OP长为半径画圆,O连接CP;于点Q,N(点Q与点P位于直线(3)以点D为圆心,CP长为半径画圆,交Ol同侧);(4)作直线PQ;所以直线PQ即为所求.请你依据小于同学设计的尺规作图过程,完成下列问题.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明:中,按要求解答下列问题:如图,ABC(ⅰ)尺规作图:(保留作图痕迹,不必写作法与证明)∠的平分线BD交AC于点D;①作ABC②过点D作BC的平行线交AB于点E;(ⅱ)根据作出的正确图形,判定BDE的形状是________.【答案】(1)图见解析;(2)(ⅰ)图见解析;(ⅱ)等腰三角形.【解析】【分析】(1)按照小于同学的作法、圆的画法即可得;∠的平分线,再参照(1)的作法作(2)(ⅰ)先根据角平分线的尺规作图画出ABC平行线即可得;(ⅱ)先根据角平分线的定义可得EBD CBD ∠=∠,再根据平行线的性质可得EDB CBD ∠=∠,从而可得EBD EDB ∠=∠,然后根据等腰三角形的判定即可得.【详解】解:(1)如图,直线PQ 即为所求.(2)(ⅰ)尺规作图如下所示:(ⅱ)BD Q 平分ABC ∠,EBD CBD ∴∠=∠,//DE BC ,EDB CBD ∴∠=∠,EBD EDB ∴∠=∠,BDE ∴ 是等腰三角形.【点睛】本题考查了角平分线的尺规作图、平行线的尺规作图、等腰三角形的判定等知识点,熟练掌握尺规作图的方法是解题关键.19.某小区为方便M 、N 两幢住宅楼的住户投放分类后的垃圾,拟在小区主路AB AC、的交叉区域内设置一个垃圾投放点P,现要求P点到两条道路的距离相等, ,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹)且使PM PN【答案】见解析【解析】【分析】因为使P到AB、AC两条道路的距离相等,所以点P应在∠BAC的平分线上;而且要使PM=PN,所以点P还应在MN的中垂线上,即∠BAC的平分线和MN 的中垂线的交点,即为点P.【详解】解:点P即为所求.【点睛】此题考查角平分线的性质和线段垂直平分线的性质以及作法,难度中等.20.如图,有一块三边长分别为3cm,4cm,5cm的三角形硬纸板,现要从中剪下一块底边长为5cm的等腰三角形.在图中用直尺和圆规作出一个符合要求的等腰三角形(不写作法,保留作图痕迹).【答案】图见解析.【解析】【分析】作线段AB的垂直平分线MN,交BC于点D,连接AD即可得.△即【详解】解:作线段AB的垂直平分线MN,交BC于点D,连接AD,则ABD为所求,如图所示:【点睛】本题考查了线段垂直平分线的尺规作图、等腰三角形,熟练掌握线段垂直平分线的尺规作图是解题关键.五、培优练21.在10×6的网格中建立如图的平面直角坐标系,△ABC的顶点坐标分别为A(0,3),B(6,3),C(4,6)仅用无刻度的直尺在给定网格中按要求完成画图.(1)在CB上找点D,使AD平分∠BAC;(2)在AB上找点F,使∠CF A=∠DFB;(3)在BC上找点M、N,使BM=MN=NC.[(1)(2)画在图1中,(3)画在图2中].【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)取格点E使AE=AC=5,作出CE的中点P,利用等腰三角形的性质得到AP平分∠CAE,延长AP交BC于D;(2)取C点关于AB的对称点Q,连接DQ交AB于F,利用对称得到∠CF A=∠QF A,利用对顶角相等得到∠DFB=∠QF A,所以∠CF A=∠DFB;(3)利用平行线分线段成比例定理,线段BC与平行格线的交点为M、N.【详解】解:(1)如图1,点D为所作;(2)如图1,点F为所作;(3)如图2,点M、N为所作.【点睛】本题考查尺规作图,涉及等腰三角形的性质、平行线分线段成比例、轴对称等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
件五四制2023-11-04CATALOGUE 目录•尺规作图的基本知识•等腰三角形的尺规作图•直角三角形的尺规作图•等边三角形的尺规作图•四边形的尺规作图01尺规作图的基本知识尺规作图是指使用无刻度的直尺和圆规进行图形绘制的方法。
直尺用于画直线,圆规用于画圆或弧线。
尺规作图的精度取决于绘图者的技能和经验。
尺规作图的基本概念确定三角形的三条边或三个顶点的位置。
确定已知条件选择绘图方法遵循几何定理根据已知条件选择适当的绘图方法,如直接绘制、等分线段、平行线等。
在绘制过程中,遵循几何定理,如等腰三角形的等边对等角,直角三角形的勾股定理等。
03三角形的尺规作图原则0201确定三角形的三条边或三个顶点的位置。
确定已知条件根据已知条件选择适当的绘图方法,如直接绘制、等分线段、平行线等。
选择绘图方法使用直尺和圆规按照选择的绘图方法绘制三角形。
绘制图形检查所绘制的图形是否符合要求,如是否符合几何定理,是否满足题目要求等。
检查图形三角形的尺规作图步骤02等腰三角形的尺规作图定义有两边长度相等的三角形叫做等腰三角形。
性质等腰三角形两腰相等,两底角相等,顶角角平分线是底边的中垂线。
等腰三角形的定义和性质等腰三角形的尺规作图方法方法一根据等腰三角形的性质,通过作图工具画出两腰相等,底角相等的三角形。
方法二利用圆规和直尺,先画一条线段,然后分别以这条线段的两个端点为圆心,以大于这条线段的一半长度为半径画弧,得到两个交点,连接这两个交点得到等腰三角形的底边,再分别以这两个交点为圆心,以大于两交点距离的一半长度为半径画弧,得到两个交点,连接这两个交点得到等腰三角形的两腰。
示例一已知线段AB,分别以A和B为圆心,以大于AB的一半长度为半径画弧,得到两个交点C 和D,连接CD得到线段AC和BC,再分别以C和D为圆心,以大于CD的一半长度为半径画弧,得到两个交点E和F,连接EF得到线段CE和DF,则三角形ACE和三角形BDF为等腰三角形。
4 三角形的尺规作图学习目标1. 经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。
2. 能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。
知识详解1. 已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.从图中可知,是两边夹角,所以可先作一条线段等于已知线段中的任一条,然后以所作的线段为角的一边,它的一端点为角的顶点作角.使这个角等于已知角,再在角的另一边截取已知线段的另一条,最后连结,组成三角形。
2. 学习作图要注意以下几点:(1)要学会正确使用作图工具(这里主要是指直尺、圆规),作出合乎要求的几何图形;(2)要学会用几何作图语言来准确表达作图问题;(3)要勤动手画,多动口说3. 在几何作图中,通常先画出所要求作的图形的草图,然后根据草图把已知事项具体化。
【典型例题】例1:如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A、DE⊥ACB、DE∥ABC、CD=DED、CD=BD【答案】B【解析】解:依据题意画出右图可得知∠1=∠2,AE=DE,∴∠2=∠3,∴∠1=∠3,即DE ∥AB.例2:用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【答案】A【解析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案:在△ONC和△OMC中,ON=OM,NC=MC,OC=OC,∴△ONC≌△OMC(SSS)。
∴∠AOC=∠BOC。
故选A。
例3:如图,在△ABC中,∠C=900,∠CAB=500,按以下步骤作图:①以点A为圆心,小于AC的长为半径,画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边与点D,则∠ADC的度数为【答案】65°【解析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质有∠GAB=25°。
用尺规作三角形及三角形全等应用(基础)【学习目标】1.知道基本作图的常用工具,并会用尺规作常见的几种基本图形;2.根据三角形全等判定定理,掌握用尺规作三角形及作一个三角形与已知三角形全等;3.能利用三角形全等解决实际生活问题,体会数学与实际生活的练习,并初步培养将实际问题抽象成数学问题的能力.【要点梳理】要点一、基本作图1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图常见并经常使用的基本作图有:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作角的平分线;4.作线段的垂直平分线;5.作三角形.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.第3、4条基本作图,在第5章再详细叙述,本节重点叙述其他三个基本作图.要点二、三角形全等的实际应用在现实生活中,有很多问题需要用全等三角形的知识来解决.【典型例题】类型一、基本作图1、作图:已知线段a、b,画一条线段使它等于2a﹣b.(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)已知:求作:结论:【思路点拨】可先画出一条线段等于2a,然后再在这条线段上截去b,剩余线段即为所求线段.【答案与解析】解:已知:线段a、b,求作:线段AC,使线段AC=2a﹣b.【总结升华】本题考查有关线段的基本作图,相加在原来线段的延长线上画出另一条线段,相减在较长的线段上截去.举一反三:【变式】(2015•魏县二模)如图,点C在∠AO B的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【答案】D.类型二、作三角形2、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.举一反三:【变式】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;求作:△ABC,使得∠B=α,∠C=α,BC=b.结论:如图,△ABC为所求.类型三、三角形全等的实际应用3、如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.【思路点拨】先根据SAS判定△BEM≌△CFM,从而得出CF=BE,即测量BE之间的距离相当于测量CF之间的距离.【答案与解析】解:能.证明:连接EF∵AB∥CD,(已知)∴∠B=∠C(两线平行内错角相等).∵M是BC中点∴BM=CM,在△BEM和△CFM中,∴△BEM≌△CFM(SAS).∴CF=BE(对应边相等).【总结升华】本题考查了全等三角形的应用;关键是要把题目的问题转化为证明对应边相等.举一反三【变式】要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【答案】B.4、(2016春•芦溪县期末)为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?【思路点拨】利用全等三角形的判定方法得出△CPD≌△PAB(ASA),进而得出AB的长.【答案与解析】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33﹣8=25(m),答:楼高AB是25米.【总结升华】此题主要考查了全等三角形的应用,正确把握全等三角形的判定方法是解题关键.举一反三【变式】小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B. 第3块C.第2块D.第1块【答案】C.。
第一部分三角形考点一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
8、三角形的面积 三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。
如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、三角形全等的判定 三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”)4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
考点四、相似三角形1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
2、相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
用数学语言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC;(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。
3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
5、相似多边形(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。
第二部分 解直角三角形考点一、直角三角形的性质 (3~5分) 1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A(3)倒数关系 tanA •tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。