利用阿波罗尼斯圆性质解决高考问题
- 格式:docx
- 大小:106.95 KB
- 文档页数:3
「高中数学」阿波罗尼斯圆在高考中的应用阿波罗尼斯圆在高考中的应用我们在学习解析几何的时候,总会碰到一些关于圆的定点和定值类的问题,我们反复的联立求解,其实这些问题中有一种情形就是著名的阿波罗尼斯圆问题。
下面我们来了解一下阿波罗尼斯圆:一、我们给出阿波罗尼斯圆的定义:在平面上给定相异的两点A、B。
设p点在同一平面上且满足p点的轨迹就是个圆,这个圆我们就称作阿波罗尼斯圆。
设M,N 分别为线段AB按定比入分隔的内分点和外分点,则MN为阿波罗尼斯圆的直径,且二、我们给出阿波罗尼斯圆的证明:以线段AB所在的直线为x轴,线段AB的中垂线为y轴,建立平面直角坐标系设AB=2c 则A(-c,0),B(c,0),P(x,y)三、了解阿波罗尼斯圆的性质:定理:A,B为两已知点,M,N分别为线段AB的定比为入,(入》0,入≠1)的内,外分点,则以MN为直径的圆o上任意点到A,B两点的距离之比等于常数入证明:以入>1为例,设AB=a,过点B做圆O的直径MN垂直的弦PQ通过以上的证明,我们可以得到如下的结论:1、当入>1时,点B在圆O内,点A在圆O外. 当0<><>2、因AP^2=AM.AQ,故AP为圆O的一条切线,若已知圆O及圆O外一点A,则可做出点A对应的点B。
只要过点A做圆O两条切线切点分别为P,Q,连接PQ与AN交于点B,反之,可作出与点B对应的点A3、过点A做圆O的切线AP(P为切点)后,PM,PN分别为∠APB的内、外角平分线。
四、阿波罗尼斯圆在高考中的应用一、常见解法:二、阿波罗尼斯圆解决:例题选讲一:例题选讲二:从2018年高考大纲中提出加入数学文化,各个模拟卷中都适当的加入数学史中的一些典故。
阿波罗尼斯对圆锥曲线有深刻的研究,其主要的成果集中于他的代表作《圆锥曲线》一书,他与阿基米德、欧几里得成为亚历山大时期的“数学三巨匠”。
阿波罗尼斯圆及其应用阿波罗尼斯圆的逆用阿波罗尼斯圆及其应用阿波罗尼斯圆的逆用【微点综述】当题目给了阿氏圆和一个定点,我们可以通过下述方法快速找到另一个定点,便于计算,令圆O 与直线OA 相交于M ,N 两点设点E 为OA 上一点,且满足PA PE =λ,由阿氏圆定理ANNE =λ,AM ME=λ,则AN =λNE ⇒OA -R =λR -OE ,∴λOE =1+λ R -OA ①同理AM =λME ⇒R +OA =λOE +R ,∴λOE =1-λ R +OA ②由①②消OA 得:2λOE =2R ,即ROE=λ,即R =λOE ,由①②消R 得:OA =λ2OE ,因此,满足条件的点E 在阿氏圆的圆心和定点A 的连线上,且ROE=λ或OAOE=λ2.【典例刨析】1.(2022·湖南·临澧一中高二开学考试)阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.下面我们来研究与此相关的一个问题,已知圆O :x 2+y 2=1上的动点M 和定点A -12,0 ,B (1,1),则2|MA |+|MB |的最小值为( )A.6B.7C.10D.112.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,圆O :x 2+y 2=1、点A -12,0 和点B 0,12 ,M 为圆O 上的动点,则2|MA |-|MB |的最大值为( )A.52B.172C.32D.223.古希腊数学家阿波罗尼斯(约前262-前190年)的著作《圆锥曲线论》是古代光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k k >0 且k ≠1 的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O 0,0 ,A 3,0 ,圆C :x -2 2+y 2=r 2r >0 上有且仅有一个点P 满足PA =2PO ,则r 的取值为( )A.1B.5C.1或5D.不存在4.已知点P 是圆x -4 2+y -4 2=8上的动点,A 6,-1 ,O 为坐标原点,则PO +2PA 的最小值为______.5.已知圆C :x -1 2+y -1 2=1,定点P 是圆C 上的动点,B 2,0 ,O 是坐标原点,则2PO +PB 的最小值为______.6.(2022江西·南昌八中高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (k >02023届高考数学专项练习且k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O (0,0),A (3,0),圆C :(x -2)2+y 2=r 2(r >1)上有且仅有一个点P 满足|PA |=2|PO |,则r 的取值为_______.【针对训练】7.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点M 与两定点Q ,P 的距离之比MQMP =λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为x 2+y 2=1,其中,定点Q 为x 轴上一点,定点P 的坐标为-13,0 ,λ=3,若点B 1,1 ,则3MP +MB 的最小值为( )A.10B.11C.15D.178.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :x 2+y 2=1和点A -12,0 ,点B (4,2),M 为圆O 上的动点,则2|MA |+|MB |的最小值为___________9.(2022安徽·合肥六中高二期中)古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知圆O :x 2+y 2=1和A -12,0 ,点B (1,1),M 为圆O 上动点,则MA +12MB 的最小值为_______.10.(2022上海金山中学高二期末)古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点A 、B ,动点P 满足PA |=λPB (其中λ是正常数,且λ≠1),则P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”.现已知两定点M (-1,0)、N (2,1),P 是圆O :x 2+y 2=3上的动点,则3PM +PN 的最小值为____________11.阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k k >0,k ≠1 的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A 、B 间的距离为2,动点P 满足PAPB=2,求PA 2+PB2的最小值.12.(2022·江苏省江阴高级中学高三开学考试)希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名他发现:“平面内到两个定点A ,B 的距离之比为定值λλ≠1 的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,A -2,1 ,B -2,4 ,点P 是满足λ=12的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q 为抛物线E :y 2=4x 上的动点,Q 在y 轴上的射影为H ,则12PB +PQ +QH 的最小值为______.参考答案1.【答案】C【分析】讨论点M 在x 轴上与不在x 轴上两种情况,若点M 不在x 轴上,构造点K (-2,0),可以根据三角形的相似性得到|MK ||MA |=|OM ||OA |=2,进而得到2|MA |+|MB |=|MB |+|MK |,最后根据三点共线求出答案.【详解】①当点M 在x 轴上时,点M 的坐标为(-1,0)或(1,0).若点M 的坐标为(-1,0),则2|MA |+|MB |=2×12+1+1 2+12=1+5;若点M 的坐标为(1,0),则2|MA |+|MB |=2×32+1-1 2+12=4.②当点M 不在x 轴上时,取点K (-2,0),如图,连接OM ,MK ,因为|OM |=1,|OA |=12,|OK |=2,所以|OM ||OA |=|OK ||OM |=2.因为∠MOK =∠AOM ,所以△MOK ∽△AOM ,则|MK ||MA |=|OM ||OA |=2,所以|MK |=2|MA |,则2|MA |+|MB |=|MB |+|MK |.易知|MB |+|MK |≥|BK |,所以|MB |+|MK |的最小值为|BK |.因为B (1,1),K (-2,0),所以(2|MA |+|MB |)min =|BK |=-2-12+0-1 2=10.又10<1+5<4,所以2|MA |+|MB |的最小值为10.故选:C 2.【答案】B【分析】令2MA =MC ,则MA MC=12,由阿氏圆的定义可知:C (-2,0),由数形结合可知2|MA |-|MB |=|MC |-|MB |的最大值.【详解】设M x ,y ,令2MA =MC ,则MA MC=12,由题知圆x 2+y 2=1是关于点A 、C 的阿波罗尼斯圆,且λ=12,设点C m ,n ,则MA MC =x +12 2+y 2x -m 2+y -n2=12,整理得:x 2+y 2+2m +43x +2n 3y =m 2+n 2-13,比较两方程可得:2m +43=0,2n 3=0,m 2+n 2-13=1,即m =-2,n =0,点C -2,0 ,当点M 位于图中M 1的位置时,2|MA |-|MB |=|MC |-|MB |的值最大,最大为BC =172.故选:B .【点睛】关键点点睛:本题主要考查直线和圆的位置关系,圆上动点问题,解题的关键是通过数形结合知两线段距离差的最值是在两端点为起点的的射线上,属于一般题.3.【答案】C【分析】直接设点P x ,y ,根据PA =2PO 可以求得点P 的轨迹为圆,根据题意两圆有且仅有一个公共点,则两圆外切或内切,可得CC 1 =r +r 1或CC 1 =r -r 1 .【详解】设点P x ,y ∵PA =2PO 即x -32+y 2=2x 2+y 2整理得:x +1 2+y 2=4∴点P 的轨迹为以C 1-1,0 为圆心,半径r 1=2的圆,∵圆C :x -2 2+y 2=r 2的C 2,0 为圆心,半径r 的圆由题意可得:3=CC 1 =r +r 1或3=CC 1 =r -r 1 ∴r =1或r =5故选:C .4.【答案】10【分析】解法1:借助阿波罗尼斯圆的逆用,得到PO +2PA =2PA +PA ,进而根据三点共线即可求出最值;解法2:将PO +2PA =x 2+y 2+2x -6 2+y +1 2转化为=2x -3 2+y -3 2+x -62+y +1 2 ,进而结合进而根据三点共线即可求出最值.【详解】解法1:阿波罗尼斯圆的逆用假设A m ,n ,使得PO =2PA ,则x 2+y 2=2x -m 2+y -n 2,从而可得3x 2-8mx +4m 2+3y 2-8ny +4n 2=0,从而可知圆心坐标为4m 3,4n3,所以4m 3=4,4n 3=4,解得m =n =4,即A 3,3 .所以PO +2PA =2PA +PA ≥2A A =26-3 2+-1-3 2=10.即PO +2PA 的最小值为10.解法2:代数转逆法由x -4 2+y -4 2=8,得x 2+y 2=8x +8y -24.PO +2PA =x 2+y 2+2x -6 2+y +1 2=2x 2+y 24+x -62+y +1 2=2x2+y 2 -34x 2+y 2 +x -62+y +1 2=2x 2+y 2-6x +6y -18 +x -62+y +1 2=2x -3 2+y -3 2+x -62+y +1 2x -32+y -3 2+x -6 2+y +1 2表示的是动点x ,y 与3,3 和6,-1 之间的距离之和,当且仅当三点共线时,和最小,故PO +2PA ≥26-3 2+3+1 2=2×5=10.5.【答案】5【分析】解法1:阿波罗尼斯圆的逆用,设B m ,n ,使得PB =2PB ,利用两点间的距离公式化简可求得B 32,12 ,得直线BB 与圆C 相交,则2PO +PB =2PO +PB ≥2OB ,从而可求得其最小值,解法2:代数转逆法,2PO +PB =2x 2+y 2+x -2 2+y 2=2x 2+y 2+x -32 2+y -12 2 ,可得当点O ,P ,B 32,12 共线,且P 在OB 之间时取得最小值.【详解】解:解法1:阿波罗尼斯圆的逆用设B m ,n ,使得PB =2PB ,则x -2 2+y 2=2x -m 2+y -n 2 ,整理,得x 2-4m -1 x +y 2-4ny +2m 2+n 2-2 =0,即[x -2(m -1)]2+(y -2n )2=2m 2+2n 2-8m +8=2(m -2)2+2n 2所以2m -1 =1,2n =1,从而B 32,12.经验证,知直线BB 与圆C 相交.从而2PO +PB =2PO +PB ≥2OB =2⋅94+14=2⋅52=5.所以2PO +PB 的最小值为5.解法2:代数转逆法2PO +PB =2x 2+y 2+x -22+y 2=2x 2+y 2+12x 2+y 2-2x +2=2x 2+y 2+x2+y 2 -12x 2+y 2 -2x +2 =2x 2+y 2+x 2+y 2-122x +2y -1 -2x +2 =2x 2+y 2+x 2+y 2-3x -y +52=2x 2+y 2+x -322+y -122≥2⋅94+14=2⋅52=5.所以2PO +PB 的最小值为5.故答案为:5【点睛】关键点点睛:此题考查点与圆的位置关系,考查阿波罗尼斯圆的逆用,解题的关键是根据阿波罗尼斯圆,设B m ,n ,使得PB =2PB ,化简后将问题转化为2PO +PB =2PO +PB ≥2OB ,考查数学转化思想,属于较难题.6.【答案】5【分析】设动点P x ,y ,根据题意求出点P 的轨迹方程可知轨迹为圆,由题意可知两圆相外切,再讨论内切和外切列方程即可得求解.【详解】设动点P x ,y ,由PA =2PO ,得x -3 2+y 2=4x 2+4y 2,整理得x +1 2+y 2=4,即点P 的轨迹方程为:x +1 2+y 2=4,又因为圆C :(x -2)2+y 2=r 2(r >1)上有且仅有一个点P 满足x +1 2+y 2=4,所以两圆相切,圆x +1 2+y 2=4的圆心坐标为-1,0 ,半径为2,圆C :x -2 2+y 2=r 2r >0 的圆心坐标为2,0 ,半径为r ,两圆的圆心距为3,当两圆外切时,r +2=3,得r =1,因为r >1,故r =1舍去,当两圆内切时,r -2 =3,r >1,得r =5.故答案为:5.7.【答案】D【分析】设Q a ,0 ,M x ,y ,根据|MQ ||MP |=λ和x 2+y 2=1求出a 的值,由3|MP |+|MB |=|MQ |+|MB |,两点之间直线最短,可得3|MP |+|MB |的最小值为BQ ,根据坐标求出BQ 即可.【详解】设Q a ,0 ,M x ,y ,所以MQ =x -a 2+y 2,由P -13,0 ,所以PM =x +13 2+y 2,因为|MQ ||MP |=λ且λ=3,所以x -a 2+y 2x +13 2+y2=3,整理可得x 2+y 2+3+a 4x =a 2-18,又动点M 的轨迹是x 2+y 2=1,所以3+a 4=0a 2-18=1,解得a =-3,所以Q -3,0 ,又MQ =3|MP |,所以3|MP |+|MB |=|MQ |+|MB |≥BQ ,因为B (1,1),所以3|MP |+|MB |的最小值BQ =1+32+1-0 2=17,当M 在位置M 1或M 2时等号成立.故选:8.【答案】210【分析】设M (x ,y ),令2|MA |=|MC |,根据圆x 2+y 2=1是关于点A 、C 的阿波罗尼斯圆,且λ=12,求得点C 坐标,再连接BC ,由直线段最短求解.整理得:【详解】设M (x ,y ),令2|MA |=|MC |,则|MA ||MC |=12,由题知圆x 2+y 2=1是关于点A 、C 的阿波罗尼斯圆,且λ=12,设点C (m ,n ),则|MA ||MC |=x +12 2+y 2(x -m )2+(y -n )2=12,整理得:x 2+y 2+2m +43x +2n 3y =m 2+n 2-13,比较两方程可得:2m +43=0,2n 3=0,m 2+n 2-13=1,即m =-2,n =0,所以点C (-2,0),如图所示:当点M 位于图中M 1、M 2的位置时,2|MA |+|MB |=|MC |+|MB |的值最小,最小为210.故答案为:2109.【答案】102【分析】根据阿波罗尼斯圆的性质,结合两点间线段最短进行求解即可.【详解】令2MA =MC ,则MA MC=12.由题意可得圆x 2+y 2=1是关于点A ,C 的阿波罗尼斯圆,且λ=12设点C 坐标为C m ,n ,则MA MC =x +12 2+y 2x -m 2+y -n2=12整理得x 2+y 2+2m +43x +2n 3y =m 2+n 2-13由题意得该圆的方程为x 2+y 2=1,所以2m +4=02n =0m 2+n 2-13=1 ,解得m =-2n =0 所以点C 的坐标为(-2,0),所以2MA +MB =MC +MB ,因此当点M 、C 、B 在同一条直线上时,2MA +MB =MC +MB 的值最小,且为(1+2)2+(1-0)2=10,故MA +12MB 最小为102.故答案为:10210.【答案】26【分析】在x 轴上取S -3,0 ,由△MOP ∼△POS 可得PS =3PM ,可得3PM +PN ≥SN ,利用两点间距离公式可求得结果.【详解】如图,在x 轴上取点S -3,0 ,∵OM OP =OP OS =33,∠MOP =∠POS ,∴△MOP ∼△POS ,∴PS =3PM ,∴3PM +PN =PS +PN ≥SN (当且仅当P 为SN 与圆O 交点时取等号),∴3PM +PN min =SN =-3-22+0-1 2=26.故答案为:26.11.【答案】36-242【分析】以经过A 、B 的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点P x ,y ,根据已知条件可得出点P 的轨迹方程,利用代数法可得出PA 2+PB 2=2OP 2+2,数形结合可求出OP 的最小值,即可得解.【详解】以经过A 、B 的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A -1,0 、B 1,0 ,设点P x ,y ,因为PA PB=2,即x +1 2+y 2x -12+y2=2,整理可得x 2+y 2-6x +1=0,即x -3 2+y 2=8,所以点P 的轨迹是以C 3,0 为圆心,22为半径的圆,则PA2+PB 2=x +1 2+y 2+x -1 2+y 2=2x 2+y 2 +2=2OP 2+2,当点P 为线段OC 与圆C 的交点时,OP 取得最小值,所以,PA 2+PB 2 min =2×3-22 2+2=36-24 2.12.【答案】x +2 2+y 2=4; 10-1##-1+10.【分析】设点P 坐标,根据题意写出关于x 与y 的关系式化简即可;由PA =12PB ,QH =QF -1,代入12PB +PQ +QH 中,即可取出最小值.【详解】设点P (x ,y ),∵λ=12,∴PA PB =12⇒(x +2)2+(y -1)2(x +2)2+(y -4)2=12⇒x +2 2+y 2=4.抛物线的焦点为点F ,由题意知F 1,0 ,QH =QF -1,∵PA =12PB ,∴12PB +PQ +QH min =PA +PQ +QF -1 min =AF -1=-2-1 2+12-1=10-1.故答案为:x +2 2+y 2=4;10-1.。
阿波罗尼斯圆及其应用在数学的广袤领域中,阿波罗尼斯圆是一个具有独特魅力和重要应用价值的概念。
它不仅在理论上丰富了我们对几何图形的理解,还在实际问题的解决中发挥着重要作用。
要理解阿波罗尼斯圆,首先得从它的定义说起。
阿波罗尼斯圆是指平面内到两个定点的距离之比为常数(不为 1)的点的轨迹。
简单来说,如果有两个固定的点 A 和 B,一个动点 P 到 A 和 B 的距离之比始终是一个定值 k(k 不等于 1),那么点 P 的轨迹就是一个阿波罗尼斯圆。
那么,如何来确定这个圆呢?假设两个定点 A 和 B 的坐标分别为(x1, y1) 和(x2, y2),距离之比为 k,我们可以通过一系列的代数运算来找到这个圆的方程。
这其中涉及到距离公式以及一些代数变形,虽然过程可能稍显复杂,但最终得出的结果却能清晰地描述这个圆的特征。
阿波罗尼斯圆有着许多有趣的性质。
比如说,圆心一定在线段 AB的中垂线上。
而且,当两个定点之间的距离固定,比值 k 变化时,圆的大小和位置也会相应地改变。
接下来,让我们看看阿波罗尼斯圆在实际中的应用。
在物理学中,它可以用来研究带电粒子在电场中的运动轨迹。
当电场强度的分布满足一定条件时,粒子的运动轨迹可能就会是一个阿波罗尼斯圆。
这为我们分析粒子的运动规律提供了有力的工具。
在工程设计中,阿波罗尼斯圆也能大显身手。
例如在道路规划中,如果要设计一条曲线道路,使得车辆从一个固定点出发,到另一个固定点的行驶时间与距离之比保持恒定,就可以利用阿波罗尼斯圆的原理来进行规划。
在数学竞赛和高考中,阿波罗尼斯圆也常常作为考点出现。
它可能会隐藏在一些看似复杂的几何问题中,需要我们敏锐地发现并运用其相关知识来求解。
例如,给出一些点的位置关系和距离条件,让我们判断某个点是否在特定的阿波罗尼斯圆上,或者求与阿波罗尼斯圆相关的最值问题。
再举一个具体的例子,假设在一个平面直角坐标系中,有两点 A(-3, 0) 和 B(3, 0),动点 P 满足|PA| = 2|PB|,我们可以通过计算得出点P 的轨迹方程,进而分析其性质和相关应用。
例说阿波罗尼斯圆的应用ʏ贵州省遵义地区仁怀市周林高中 卢艳华圆是高考考查的热点,几乎在每套高考试卷中都能看到圆的影子,其中以阿波罗尼斯圆为背景的考题层出不穷㊂它既可作为数学文化试题直接考查,也可以逆向考查点的定位或线段之间的数量关系,常以线段比例的形式隐含在平面解析几何或立体几何等相关知识中,成为知识交汇处命题的着眼点,备受命题人的青睐㊂同学们遇到阿波罗尼斯圆问题时,常需挖掘题中隐含条件,根据圆的特殊性质找到特定方法,与平面几何知识相结合,不断地转化求解㊂一㊁阿波罗尼斯圆的定义我们知道,到两定点距离之和(大于两定点间距离)为定值的点的轨迹是椭圆,到两定点距离之差的绝对值(小于两定点间距离)为定值的点的轨迹是双曲线,那么到两定点距离之商(大于零且不等于1)为定值的点的轨迹是什么呢?古希腊数学家阿波罗尼斯(A p o l l o n i u s )在他的著作‘圆锥曲线论“中回答了这个问题,并给出了阿波罗尼斯圆的定义:在平面内,已知两定点A ,B 之间的距离为2a (常数),动点P 到A ,B 的距离之比为常数λ(λ>0,且λʂ1),则点P 的轨迹是半径r =2λa|λ2-1|的圆,且圆心与两定点共线㊂这就是阿波罗尼斯轨迹定理,该圆称为阿波罗尼斯圆,简称为阿氏圆㊂图1证明:如图1,以线段A B 的中点O 为坐标原点㊁直线A B 为x 轴㊁线段A B 的垂直平分线为y 轴,建立平面直角坐标系㊂则A (-a ,0),B (a ,0)㊂设P (x ,y ),由|P A ||P B |=λ,得(x +a )2+y2(x -a )2+y 2=λ,两边同时平方,整理得x 2+y 2-2(λ2+1)a λ2-1㊃x +a 2=0,化为x -λ2+1λ2-1a2+y 2=2λλ2-1a 2㊂所以点P 的轨迹是以λ2+1λ2-1a ,0 为圆心,r =2λ|λ2-1|a 为半径的圆,且圆心与两定点A ,B 共线㊂容易得到阿波罗尼斯圆的如下性质㊂①圆上任意一点满足:|P A ||P B |=λ(常数),当λ>1时,点B 在该圆内,点A 在该圆外;当0<λ<1时,点B 在该圆外,点A 在该圆内㊂②圆的半径r =λ|A B ||λ2-1|,若以线段A B的中点为坐标原点㊁直线A B 为x 轴㊁直线A B 的垂直平分线为y 轴建系,则圆心坐标为λ2+1λ2-1㊃|A B |2,0㊂③设圆与x 轴的交点分别为C ,D (设C 在A ,B 之间),由阿波罗尼斯圆的定义知,|P A ||P B |=|C A ||C B |=|D A ||D B |=λ(常数),根据三角形内㊁外角平分线定理的逆定理,得P C ,P D分别为әA P B 的内角øA P B 及对应外角的角平分线,C ,D 分别为线段A B 的内分点和外分点,我们称C ,D 调和分割线段A B ,显然有P C ʅP D ,线段C D 为圆的直径㊂④平面内到A ,B 两点距离之比分别为λ和1λ(λ>0,且λʂ1)的点的轨迹是两个外离的半径相等的阿氏圆,且半径均为λ|A B ||λ2-1|㊂二㊁阿波罗尼斯圆的教材背景现行高中数学教材在编写时十分注重对数学史题材的引入及应用,如新人教B 版教材(2019年版)‘数学选择性必修第一册“中多次涉及阿波罗尼斯圆,有以下题目㊂1.(第116页习题2-3C 第1题)已知әA B C 中,A B =3,A C =2B C ,求әA B C 的面积的最大值㊂2.(第120页例4)已知动点M 到O (0,0)的距离与到A (3,0)的距离之比为12,求M 的轨迹方程,并说明轨迹曲线的形状㊂3.(第121页习题2-4B 第1题)求到两定点A (-1,2),B (3,2)的距离之比为2的点的轨迹方程㊂4.(第121页习题2-4B 第3题)已知动点M 到点(a ,0)的距离等于到点(b ,0)的距离的2倍(其中a ʂb ),求点M 的轨迹方程,并指出轨迹曲线的形状㊂尽管教材中未提及阿波罗尼斯圆的概念,但平面解析几何中常常会涉及平面内两点间的距离,三角形角平分线的性质等,属于必备知识,所以我们需要适度地拓展学习,以便提高解题的关键能力和学科素养㊂三、阿波罗尼斯圆的应用举例1.对阿波罗尼斯圆的深刻理解图2例1 (多选题)如图2,圆C 与x 轴相切于T (1,0),与y 轴正半轴交于A ,B 两点(B 在A 的上方),且|A B |=2,过点A 任意作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,则以下结论中正确的有( )㊂A.|N A ||N B |=|M A ||M B |B .|N B ||N A |-|M A ||M B |=2C .|N B ||N A |+|M A ||M B |=22D .|N B ||N A |㊃|M A ||M B |=22解析:依题意,设圆心C (1,r )(r 为圆C的半径),由|A B |=2,得r =12+12=2㊂故圆心C 的坐标为(1,2),圆C 的标准方程是(x -1)2+(y -2)2=2㊂令x =0,得A (0,2-1),B (0,2+1)㊂设圆O 与y 轴的正㊁负半轴分别交于点E ㊁F ,则|E A |=2-2,|E B |=2㊂从而|E A ||E B |=2-22=2-1,|F A ||F B |=22+2=2-1,即|E A ||E B |=|F A ||F B |,所以圆O 是以A ,B 为定点,且比值为λ=2-1的阿波罗尼斯圆,故|N A ||N B |=|M A ||M B |,选项A 正确㊂由上可知,|N B ||N A |=|E B ||E A |=2+1,|M A ||M B |=|E A ||E B |=2-1㊂所以|N B ||N A |-|M A ||M B |=(2+1)-(2-1)=2㊂|N B ||N A |+|M A ||M B |=(2+1)+(2-1)=22,|N B ||N A |㊃|M A ||M B |=(2+1)㊃(2-1)=1㊂因此,B ㊁C 正确,D 错误㊂故选A B C ㊂评注:本题通过线段A B 的内㊁外分点E ㊁F 为圆直径的两端点,即内㊁外角平分线与y 轴两交点,回归几何本原,从而得到阿波罗尼斯圆㊂根据阿波罗尼斯圆定义的纯粹性和完备性,我们不难发现,给定平面内的两点A ,B ,若动点M 满足:|M A ||M B |=λ(常数λ>0且λʂ1),则M 必在阿波罗尼斯圆上;反之,阿波罗尼斯圆上的任意一点M 都满足|M A ||M B |=λ(常数λ>0且λʂ1)㊂2.阿波罗尼斯圆的逆用例2 已知圆x 2+y 2=1和点A (-2,0),是否存在异于A 的定点B 和常数k ,满足:对于圆上任意一点P ,都有|P B |=k |P A |(k >0,且k ʂ1)?若有,求出点B 的坐标及常数k 的值;若无,请说明理由㊂解析:设点B (b ,0),P (x ,y ),由|P B |=k |P A |,得(x -b )2+y 2=k ㊃(x +2)2+y 2,化简得(1-k 2)x 2+(1-k 2)㊃y 2-(2b +4k 2)x =4k 2-b 2㊂所以x 2+y 2-2b +4k 21-k 2x =4k 2-b21-k2㊂因为该圆上的任意一点P ,都有|P B |=k |P A |,所以动点P 的轨迹方程是x 2+y 2=1,即-2b +4k21-k 2=0,且4k 2-b21-k 2=1,也即2b +4k 2=0,4k 2-b 2=1-k 2,解得b =-12或b =-2㊂当b =-12时,k =12,符合题意;当b =-2时,k =1,不合题意㊂故点B 坐标是-12,0,常数k =12㊂评注:阿波罗尼斯圆能实现点与圆的相互转化,解决一些由圆求点或由点求圆的问题㊂从本题中我们可以得到一个结论:已知一个定圆和一个定点,即可确定λ和另一个定点,且圆心与两定点共线,这是阿波罗尼斯圆的逆用㊂3.以阿波罗尼斯圆为背景的数学文化的渗透例3 古希腊数学家阿波罗尼斯在其著作‘圆锥曲线论“中证明了这样一个命题:平面内与两个定点距离之比为常数k (k >0,且k ʂ1)的点的轨迹是圆,后人把这个圆称为阿波罗尼斯圆㊂已知定点A (-2,0),B (2,0),动点C 满足|A C |=2|B C |,则点C 的轨迹为阿波罗尼斯圆,记此圆为圆P ㊂已知点D 在圆P 上且在第一象限内,直线A D 交圆P 于另一点E ,连接E B 并延长交圆P 于点F ,连接D F ㊂若øD F E =30ʎ,则直线A D 的斜率为( )㊂A.3913 B .2613C .34D .134解析:设C (x ,y ),由|A C |=2|B C |,得(x +2)2+y 2=2(x -2)2+y 2,化为x -1032+y 2=649,得半径r =83㊂|O P |=103,|A P |=|A O |+|O P |=2+103=163㊂图3由øD P E =2øD F E =60ʎ,得|P E |=|P D |=83,则әD P E 为等边三角形,过圆心P 作P G ʅD E 于点G ,如图3所示㊂则|P G |=|P E |s i n 60ʎ=433,所以|A G |=4133,k A D =t a nøP A G =|P G ||A G |=4334133=3913㊂故选A ㊂评注:对于数学文化试题,一般会配有较长的文字描述,首先应读懂题意,然后借助已知中提供的有效信息和结论进行求解,这些信息,往往就是提示,甚至是解题工具,应重视并充分利用㊂另外本题对圆的性质也进行了挖掘,如同弧所对的圆周角与圆心角的关系,所以适当运用平面几何知识,常常可以简化复杂烦琐的计算㊂4.阿波罗尼斯圆在平面解析几何中的应用例4 已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且|A K |=2|A F |,则әA F K 的面积为㊂解析:在y 2=8x 中,有F (2,0),准线l :x =-2,得K (-2,0)㊂由|A K |=2|A F |知,λ=2,点A 的轨迹为阿波罗尼斯圆㊂设该圆的方程为(x -a )2+y 2=r 2(r >0),由阿波罗尼斯圆的性质,得a =λ2+1λ2-1㊃|O F |=2+12-1ˑ2=6,r =2λλ2-1㊃|O F |=2ˑ22-1ˑ2=42㊂圆的方程为(x -6)2+y 2=32,与y 2=8x 联立,得x A =2,y A =ʃ4,故әA F K 的面积为12ˑ|K F |ˑ|y A |=12ˑ4ˑ4=8㊂评注:本题虽然也可以利用抛物线定义和三角函数求解,但本解法独辟蹊径,由两线段长度的倍数关系联想到阿波罗尼斯圆,再转化为两曲线的交点问题得到解决㊂一般地,如果存在这样一个三角形:一边确定,另两边长度成比例(比值不为1),可以考虑用阿波罗尼斯圆的性质来探求点的位置㊂5.转化为两点间距离例5 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足|c -a |=12,则|a +b -c |+2|c -b |的最小值为㊂图4解析:设O A ң=a ,O B ң=b ,O C ң=c ,a +b =O D ң,则|c -a |=|A C ң|=12㊂从而点C 在以点A 为圆心㊁12为半径的圆上,如图4所示㊂由题意知,|a +b -c |+2|c -b |=|C D ң|+2|B C ң|㊂设|C D |=2|C M |,则|C D |+2|C B |=2(|C M |+|C B |),由阿波罗尼斯圆知,点M 在直线D A 上㊂由r =λ|DM ||λ2-1|,得2|DM |22-1=12,解得|DM |=34㊂所以2(|C M |+|C B |)ȡ2|B M |=2|B D |2+|DM |2=21+342=52,当且仅当C ,B ,M 三点共线且C 在B ,M 之间时取等号,即|a +b -c |+2|c -b |的最小值为52㊂评注:本题是一个复杂的平面向量的模的问题㊂设|C D |=2|C M |,对隐含条件深入挖掘,层层转化,揭示了点C 的轨迹为阿波罗尼斯圆,于是问题的背景便豁然开朗㊂这种 无中生有 的手法,巧妙地将所求最小值转化为圆上的点到定点B 的最小距离㊂6.转化为直线与圆的位置关系例6 在平面直角坐标系x O y 中,已知直线l :y =k (x -2)-4,k ɪR ,点A (-2,0),B (1,0)㊂若直线l 上存在点P ,使得|P A |=2|P B |,则实数k 的取值范围是㊂图5解析:由题意知,满足|P A |=2|P B |的点P 的轨迹为阿波罗尼斯圆,其半径r =λ|A B ||λ2-1|=2ˑ322-1=2㊂以线段A B 的中点为坐标原点㊁A B 的垂直平分线为y '轴,建立新的直角坐标系x O 'y',如图5所示㊂则y '轴与y 轴之间的距离为12,在新坐标系下,由公式知圆心的横坐标为x 0=λ2+1λ2-1㊃a =22+122-1ˑ32=52,且圆心在直线A B 上㊂所以在原坐标系中,圆心的横坐标为52-12=2=r ,即圆与y 轴相切,得圆的方程为(x -2)2+y 2=4㊂又点P 在直线l 上,所以直线l 与圆有公共点,圆心(2,0)到直线l :k x -y -2k -4=0的距离d =4k 2+1ɤr=2,解得k ȡ3或k ɤ-3,即实数k 的取值范围是(-ɕ,-3]ɣ[3,+ɕ)㊂评注:本题在求阿波罗尼斯圆的方程时,为了使用公式 x 0=λ2+1λ2-1㊃a,需重新建系,注意新旧坐标之间的转换㊂当然也可以设P (x ,y ),直接由|P A |=2|P B |,得(x +2)2+y 2=2(x -1)2+y 2,化为(x -2)2+y 2=4,即得圆心坐标和半径㊂本题实际上是在直线与阿波罗尼斯圆有公共点的条件下寻找关于k 的不等关系,通过比较圆心到直线距离与圆半径的大小得解㊂(责任编辑 徐利杰)。
数理化解题研究2021年第01期总第494期基于阿波罗尼斯圆背景下的高考数学张丽群(福建省莆田擢英中学351100)指导教师:许君林摘 要:本人在阿波罗尼斯圆的背景下加强对此圆有关试题的认识,并把该圆的性质加入到抛物线动点求最值的基本题型中,形成1 +1大于2的创新题.关键词:阿氏圆;抛物线;最值中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0052 -03一、试题展示试题希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A ,B 的距离之 比为定值A (入H1)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平 面直角坐标系%0y 中,A ( -2,0) ,A'(1,0),则动点P 满足 鵲)_入二2的阿氏圆方程为—•若Q 为抛物线E :y 2_ 12%上的动点,点Q 在E 的准线上的垂足为点H.若有点C (-3,4)侧2 PC + QH + QP 的最小值为 •二、设计过程1.命题意图阿氏圆这样经典的数学文化课题的研究,渗透现代 数学思想方法•本题考查对阿氏圆数学文化的理解,也考查曲线与方程,抛物线动点中线段和差求最值问题•此题 设计旨在体现(普通高中数学课程标准)修订中对数学文 化的考查.考查推理论证能力、逻辑推理能力、运算求解 能力,考查数形结合思想、转化化归思想,考查直观想象、数学抽象、逻辑推理、数学运算、数据分析等核心素养•体 现了基础性、综合性、应用性、创新性等.表1学科核心素养的表现及其级别知识要点考查的核心素养核心素养表现素养级别阿波罗尼斯 圆定义逻辑 推 理、 数 学运算、数学抽象要求学生通过已知的比例关系[PA] _2,思考如何转化为动点P 的坐标关系.通过构建关于动点P 坐标的方程,从而探索到动点P 满足的轨迹方程,即为题目信息给的阿氏圆的方程(% +3): + y 2 4.逻辑推理素养一、 数学运算素养二、 数学抽象素养三逆用阿氏圆直观想象、数学抽象、数学运算、 逻辑推理借助数形结合的思想,构建过渡性命题:在KC 线段中寻找点D ,使得线段比例筈_鴛KC KP_ 1.通过直观感知,对第一问阿氏圆的数学文化背景比较熟悉的学生能够直观感知 到点D 的特殊位置,锻炼学生形成通过数据认识事物本质的品质.直观想象素养三、 数学抽象素养二、 数学运算素养一、 逻辑推理素养三抛物线的定 义数学运算、直观想象探索发现:可以将QH 这一长度利用抛物线的定义进行转化,最终得到QH _ QF .数学运算素养一、直观想象素养二2.命题过程点的特殊位置找等 量关系要求学生通过上面对三个长度的转化,整理可以得到:1 PC + QH + QP _直观想象素养二、直观想象、逻辑 2 逻辑推理素养一推理、数学运算 PD + QF + QP .直观感知到:题目所求的最值问题即为通过抛物线外一点,求 逻学运理素养二、到焦点的距离最小问题.即通过把复杂的代数关系转化为几何关系理解. 数学运算素养二线段和差最 值直观想象、数学要求学生结合上面的等量转化,通过观察图形中的动点P , Q 的运动轨迹,探索发现当直观想象素养三、数学运算素养一、运算、逻辑推理 D ,F ,P ,Q 四点共线时,即可寻取得最小值. 数学堆理素养一、逻辑推理素养三本题的选材主要参考四个部分的内容:收稿日期:2020 -10 -05作者简介:张丽群(1989. 2 -),女,福建省莆田人,本科,中学二级教师,从事高中数学教学研究.—52—2021年第01期总第494期数理化解题研究第一部分:新课标《人教版•必修2》在第四章平面解析几何初步,第4.1节圆与方程介绍了圆的标准方程和一般方程基础知识后,在第⑶页习题4.1B组第3题⑵•原题1已知点M与两个定点0(0,0),A(3,0)的距离比为2,先利用信息技术手段,探求点M的轨迹,然后求出它的方程.第二部分:2013年江苏卷17题.原题2在平面直角坐标系%Oy中,点A(0,3),直线/:y=2%-4.设圆C的半径为1,圆心在/上.(1)若圆心C也在直线y=%-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.第三部分:2017年普通高等学校招生全国统一考试I卷理科数学第10题.原题3已知F为抛物线C:y2=4%的焦点,过F作两条互相垂直的直线Z],/2,直线A与C交于A,B两点,直线12与C交于D,E两点,则AB+DE的最小值为()•A.16B.14C.12D.10第四部分:各省市质检卷.22已知椭圆+y=1的左、右焦点分别是F],F2,点p 169为椭圆上的动点,点A(2,1),则PA+PF2的最大值为三、解答分析1.考点分析解析几何,数学文化,隐形圆,线段和、差最值.2.解法呈现解法1(1)设P(%,y),则由{J'=入=2,得%-1)2+犷=2,化简,得(%+3)2+y2=4.a/(%+2)2+y2(2)由(1)知(%+3)2+y2=4,且点C(-3,4),(这步骤是阿氏圆逆用创新点和难点),设D(-3,1),则PD=2PC(破题点:隐含条件)•设抛物线E:y2=12%的焦点为F(3,0)则;PC+ 0〃+QP=PD+QF+QP M DF=37.当D,F,P,Q四点共线时取得最小值.解法2(1)同解法1;(2)设(%+3)2+y2=4的圆心为K(-3,0),半径厂=2.连接KP,PD,PC,厂=KP=2,且KC=4,D(-3,1).则KC=KD=2,得△KDP7KPC.(由阿氏圆的性质也可得到:C=KD=1)•KC r2KP所以KC=KDKP-2=Dp.所以|PD|=yl PC|.所以1PC++QP=PD+QF+ QP M DF=37.四、试题评析本题的核心知识点是在阿氏圆的背景下运用其性质,与常规的抛物线动点求线段和差最值问题相结合得到的创新题.本题参考原题的出题方式:题型可为填空题,也可分解为解答题,本次设计为填空题,重点考查平面解析几何相关内容•结合课程标准,圆锥曲线高考题以椭圆、抛物线为模型展开,并结合其他平面几何知识,以圆,三角形,四边形为载体进行拓展.因此,保留(1)(2) (3)原题中的模型框架,对其他的条件进行强化、延伸•本试题的后续改编将侧重于题根题源的总结,改编的立意主题仍然是考查圆锥曲线的基本定义,保证改编试题不脱离高中数学课程标准•五、命题拓展新课标《人教版•必修2》在第四章平面解析几何初步第4.1节圆与方程介绍了圆的标准方程和一般方程基础知识后,在第131页习题4.1B组第3题:已知点M与两个定点0(0,0),A(3,0)的距离的比为2,先利用信息技术手段,探求点M的轨迹,然后求出它的方程•这个命题条件是:①平面上两定点0(0,0),A(3,0);②在同一平面上动点M与两个定点0(0,0),A(3,0)的距离比为1;③动点轨迹是一个定圆•数学阿氏圆的定义跟圆锥曲线的定义一样,具有很强的逻辑顺序.如果改变这个顺序,我们可以拓展很多新的命题方式.方案1问题延伸(求定比入).在平面直角坐标系%Oy中,A(-2,0),A'(1,0),则动点P在(%+3)2+y2=4上运动,问是否存在这样的常数入,使得pa=入?若存在,求出常数入;若不存在,请说明理由.方案2问题延伸(求另一定点)•在平面直角坐标系%Oy中,已知点A(-2,0),则动点P在(%+3)2+y2=4上运动,是否平面上存在点A',使得满足PJJ=入=2?若存在,求出定点A';若不存在,请说明理由.方案3问题延伸(求两个定点)•在平面直角坐标系%Oy中,动点P在(%+3)2+y2=4上运动,问:在%轴上是否存在两个定点A,A'(不包括原—53—数理化解题研究2021年第01期总第494期点),使得满足pA -入-2?若存在,求出定点A , A a ;若不存在,请说明理由.方案4问题延伸(求定点和定比)•在平面直角坐标系%0y 中,已知定点A ( -2,0),动点 P 在(% +3)2+ y 2 -4上运动,问:在%轴上是否存在两个 定点A (不包括原点),使得满足pA -入-2?若存在,求出定点A 及常数入;若不存在,请说明理由•方案5问题延伸(阿氏圆与椭圆双曲线+三角形面 积的结合) •希腊著名数学家阿波罗尼斯与欧几里得、阿基米德 齐名•他发现:“平面内到两个定点A ,B 的距离之比为定 值A (入H1)的点的轨迹是圆”•后来人们将这个圆以他的 名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角%2 y 2坐标系%0y 中,笃+打-1(% > b >0),设椭圆长轴的两个%b顶点A ,B ,椭圆短轴的两个顶点C ,D ,则动点P 满足jPDj-入-2的阿氏圆方程为 •已知A PCD 面积的最大值为3 , A PAB 面积的最小值为2,求椭圆方程六、命题反思通过解读(2017年版高中数学课程标准),深刻领悟 到高考评价体系中对数学考查内容的“基础性、综合性、应用性、创新性”的定位•要结合教材内容对数学文化这一概念认真学习,特别是对教材中渗透的数学文化内容 要充分重视,重点研究;结合近年新课标试题中出现的与数 学文化有关的试题进行学习,重点关注题源、考法命题形式参考文献:[1 ]朱波.“阿波罗尼斯圆”妙用[J ].考试(高中数学版),2010(Z5) :42 -43.[2 ]王雪峰.数学及高考中的阿波罗尼斯圆[J ].中学数学教学参考,2009(04) :61 -62.[责任编辑:李璟]活用函数性质中“二级结论”突破抽象函数难题咼振宁(山东省新泰市第一中学271200)摘 要:函数问题中的一类难点就是抽象函数问题,抽象函数是问题中没有给出具体的函数解析式,而只给出该函数所具备的某些性质的函数•抽象函数问题因能有效考查学生抽象思维能力、逻辑推理能力以及后 继学习的潜能一直备受命题者的青睐•但由于它具有较强的综合性、技巧性与灵活性,不少学生面对这类问题时常感觉束手无策.虽然抽象函数具有一定的抽象性,构思新颖,且性质隐而不露,但抽象函数都是以中学阶段所学的基本初等函数为背景•本文结合实例谈谈如何利用函数性质中常用的二级结论,来突破抽象函数问题.关键词:抽象函数;函数单调性;函数奇偶性;函数周期性;函数对称性中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0054 -02抽象函数问题是高中数学的难点,也是高考的热点问题,是教师讲解的重点问题•抽象函数问题由于没有给 出具体的函数解析式,而只给出该函数所具备的某些性 质,不少学生面对这类问题时常感觉束手无策.虽然抽象 函数具有一定的抽象性,构思新颖,且性质隐而不露,但抽象函数都是以中学阶段所学的基本初等函数为背景. 通过函数运算能够促进学生数学思维的发展,通过常见 的“二级结论“解决数学问题,可优化数学运算的过程,使 学生逐步形成规范化、程序化的思维品质,养成一丝不荷、严谨求实的科学精神.一、奇函数的最值性质已知函数代%)是定义在区间D 上的奇函数,则对任意的% e D ,都有/(%) + /( -%) -0.特别地,若奇函数f (%) 在D 上有最值,则/ ( %)m ax + / ( %)min -0,且若0丘D ,则/(0) -0•例]设函数/( %) - ( % + 12)2 +泅%的最大值为M ,最% + 1收稿日期:2020 -10 -05作者简介:高振宁(1983. 4 -),男,本科,中学一级教师,从事高中数学教学研究.— 54—。
!关于阿波罗尼斯圆的解读与应用探究"江苏省通州高级中学!李欣荣阿波罗尼斯圆在高中数学中十分常见!其是古希腊著名数学家阿波罗尼斯对圆锥曲线深入研究而总结的数学性质规律!探究阿波罗尼斯圆的性质特征有助于深入认识圆的定义!可有效解决相关圆类问题!下面对其加以探究!供读者参考!!问题引出!.!习题回顾在苏教版必修!的教材中有如下一道习题%已知点D)&!%*与两个定点0)"!"*!(),!"*的距离之比为#!!那么点D的坐标应满足什么关系+画出满足条件的点D形成的曲线!解析 对于上述问题!可由题意得&!*%槡!)&",*!*%槡!$#!!化简整理得)&*#*!*%!$&!显然满足条件的点D所形成的曲线是以点)"#!"*为圆心$!为半径的圆!)图略*!."问题一般化将本题进行一般化!思考如下问题%动点D到两定点(和'的距离的比值为一定值!即D($"D'!那么点D的轨迹曲线还是圆吗+基于对上述实例的猜想!显然可知点D的轨迹还是圆!具体证明可采用如下代数几何方法%设('$!B)B&"*!D($"D'!以('的中点为坐标原点!('所在直线为&轴建立平面直角坐标系!则可推知点()"B!"*!')B!"*!再设点D)&!%*!由D($"D'!可得)&*B*!*%槡!$")&"B*!*%槡!!整理可得)"!"#*&!"!B)"!*#*&*)"!"#*%!$B!)#""!*!当"$#时!&$"!此时点D的轨迹为线段('的垂直平分线&当"$#时!有&""!*#"!"#B)*!*%!$&"!B!)"!"#*!!则其轨迹可视为是以点"!*#"!"#B!")*为圆心!以!"B"!"#长为半径的圆!"深入探索".!定义认识实际上!在高中数学中我们将上述所探究的轨迹称之为阿波罗尼斯圆!也称阿氏圆!其是古希腊数学家阿波罗尼斯在著作"圆锥曲线论#中提出的一个著名问题%在平面内给定两点(和'!设点+在同一平面内且满足+(+'$")"&"!"$#*!则点+的轨迹是一个圆!对于上述定义!需要关注阿波罗尼斯圆条件与结论的三个要素%一是两定点&二是线段长之间的定比&三是轨迹为圆的条件!"&"!"$#!对上述证明过程进一步推导!我们可以发现以下几点%)#*阿波罗尼斯圆上的任意一点均满足+(+'$"!)"&"!"$#*&)!*设点)为阿波罗尼斯圆的圆心!则点)始终在直线('上!且半径长为!"B"!"#$""!"#('&),*圆心)虽然在('所在直线上!但不一定位于两点之间!且)(0)'等于半径的平方!"."性质总结阿波罗尼斯圆是一种特殊的几何模型!该圆的一些性质在高中数学解题中十分常用!合理利用可提高解题效率!下面总结三条常用的性质!性质! 设('$7!(+#+#'$(+!+!'$"!则(+#$"7#*"!+#'$7#*"!(+!$"7""#!'+!$7""#!则所作得的阿波罗尼斯圆的直径为+#+!$!7""!"#$!7""#"!圆的面积可表示为'!7""!"#)*!!性质" 当"&#时!点'位于圆0内!点(位于&$备习备考解法探究!"!!年!月上半月Copyright©博看网. All Rights Reserved.!圆0外&当"%"%#时!点(位于圆0内!点'位于圆0外!性质# "$0(N $N 0'!"!$0(00'!"越大!则圆越小!上述总结了阿波罗尼斯圆的三条重要性质!其中性质#是关于圆常规属性的描述!可结合问题条件直接构建圆的方程&性质!则是对定义中定点(和'与圆位置关系的描述!显然与线段比值"密切相关!利用该性质可直接确定点(!'与圆轨迹的位置!利于图形绘制&性质,则直接构建了圆半径与线段0(和0'的关系!并基于圆半径7""#"分析了圆大小与"的关系!有利于解析动态圆的大小变化!在实际解题时要充分理解阿波罗尼斯圆的三条性质要点!合理利用性质转化问题条件!构建解题思路!#应用探究阿波罗尼斯圆的性质条件在高中圆锥曲线考题中应用十分广泛!可正向引用圆的性质!也可逆向使用阿波罗尼斯圆的定义!下面结合不同类型考题开展应用探索!例题!如图#所示!在2(')中!已知')$&!@56)$!@56'!则当2(')的面积取得最大值时!')边上的高为!图#图!解析 以')中点为坐标原点0!线段')所在直线为&轴建立平面直角坐标系!如图!所示!由题意可推知点')"!!"*!))!!"*!已知@56)$!@56'!则('$!()!可设点()&!%*!则)&*!*!*%槡!$!)&"!*!*%槡!!整理可得&"#",)*!*%!$+&%!则点(的轨迹是以点>#",!")*为圆心!-,为半径的圆!分析可知!当2(')的面积取得最大值时!高最大!则点(到&轴的距离最远!故点(的坐标为#",!L -,)*!则')边上的高为-,!评析#上述探究三角形取得最大值时')上的高!解析过程分两步进行!第一步!构建坐标系求点(的轨迹方程$第二步!探究2(')面积最大值时点(的坐标!若能把握其中的阿波罗尼斯圆!则可以结合对应公式直接确定圆的方程!本题目中7$&!"$!!则圆的半径为N $7""#"$!!"#!$-,!圆心为"!*#"!"#B !")*!则圆心>的坐标为#",!")*!则圆的方程为&"#",)*!*%!$+&%!$反思总结阿波罗尼斯圆的性质特点在高中数学中十分重要!也是高考的考查重点!掌握阿氏圆的性质特点!对于动点问题的转化求解极为有利!教学中要强化定义!整理性质!引导学生探索问题求解的方向!及阿氏圆知识的利用思路!下面提出两点建议!$.!关注模型题源拓展衍生应用课本并没有将阿波罗尼斯圆作为核心内容进行讲解!但其隐含在教材的习题中!其解析方法和知识背景也是高考模型问题的根本!具有极高的研究价值!教学中要引导学生关注模型题源!深刻理解模型定义!挖掘模型性质!阿氏圆的定义及性质有正向和逆向两种使用思路!教学中笔者建议采用知识拓展的模式!引导学生全面了解其应用思路!提升学生解题的灵活性!$."合理多解探究强化模型认识从上述例题的探究中可发现!对于与阿氏圆相关的圆锥曲线问题!一般有常规和模型两种突破思路!其中常规法的推理过程较为繁复!在推导动点轨迹时计算量大!而利用阿氏圆的定义及性质则可直接求解轨迹方程!有效降低了思维难度!教学中笔者建议对阿波罗尼斯圆相关问题开展一题多解!引导学生采用多种方法解析问题!帮助学生积累简算经验!提升解题能力!同时在多解探究中!可强化学生对模型的认识!培养学生的模型意识!参考文献%#&施德仪!关于+阿氏圆,模型的探究与思考%B &!数学教学通讯!!"!"(!,)!%!&顾旭东!王金忠!探+源,觅+圆,!才能+方圆,***对一道课本习题的再认识%B &!中学数学(上)!!"!"(##)!%,&李慧华!张艳宗!巧用阿氏圆解距离和差的最值问题%B &!高学数学教与学!!"!"(#+)!-'$!"!!年!月上半月解法探究复习备考Copyright ©博看网. All Rights Reserved.。
阿波罗尼斯圆(Apollonian Circle)是一个由古希腊数学家阿波罗尼斯发现的几何图形。
在这个轨迹中,一个点到两个定点的距离之比等于一个常数。
下面是一个关于阿波罗尼斯圆的例题:
在△ABC中,AB=AC=5,BC=8,点D在BC上,且BD=2,求点D 到AC边的距离。
解法:
我们可以利用阿波罗尼斯圆的性质来解这个问题。
首先,我们以点A为圆心,以AC为半径画一个圆,与BC交于点D'。
根据阿波罗尼斯圆的定义,点D'到A的距离与到C的距离之比等于BC与BD'的距离之比,即:
$\frac{AD^{\prime}}{AC} = \frac{BC}{BD^{\prime}}$
由于AB=AC=5,BC=8,BD'=BC-BD=8-2=6,我们可以得到:
$\frac{AD^{\prime}}{5} = \frac{8}{6}$
解得:$AD^{\prime} = \frac{20}{3}$
然后,我们在△ABC中,利用面积相等的方法可以得到:
$\frac{AD^{\prime} \times AC}{2} = \frac{AB \times CD}{2}$
将上面求得的$AD^{\prime} = \frac{20}{3}$代入得:
$\frac{\frac{20}{3} \times 5}{2} = \frac{5 \times CD}{2}$
解得:$CD = \frac{20}{3}$
所以,点D到AC的距离为$\frac{20}{3}$。
专题42 阿波罗尼斯圆【方法点拨】一般地,平面内到两个定点距离之比为常数的点的轨迹是圆,此圆被叫做“啊波罗尼斯圆” (又称之为圆的第二定义).说明:(1) 不妨设(),0A a - ,(),0B a ,()0,0,1AP BP a λλλ=>>≠,再设 (),P x y ,则有()()2222y a x y a x +-=++λ,化简得:2222221211⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-a y a x λλλλ,轨迹为圆心a a 12011222-⎪⎪⎭⎫ ⎝⎛-+λλλλ,半径为,的圆.(2) 满足上面条件的啊波罗尼斯圆的直径的两端是按照定比λ内分AB 和外分AB 所得的两个分点(如图,有=AM ANBM BNλ=). (3)设P 是圆上的一点(不与M N 、重合),则PM PN 、是三角形PAB 的内、外角平分线,PM PN ⊥.(4)逆向运用:给定圆O 和定点A (A 不在圆O 上且不与O 重合),则一定存在唯一一个定值λ和一个定点B ,使得对于圆O 上的任意一点P 都有PA PBλ=.【典型题示例】例1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值为 . 【答案】22【分析】已知三角形的一边长及另两边的关系欲求面积的最大值,一种思路是利用面积公式、余弦定理建立关于某一边的目标函数,最后利用基本不等式求解;二是紧紧抓住条件“AC =2BC ”,符合 “啊园”,建系求出第三个顶点C 的轨迹,挖出“隐圆”,当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.(1)λλ≠【解析一】设BC =x ,则AC 2x , 根据面积公式得ABC S ∆=21sin 1cos 2AB BC B x B ⨯=-, 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆=()22221281241416x x x x --⎛⎫--=⎪⎝⎭由三角形三边关系有2222x x x x+>+>⎪⎩解得222222x <<,故当212,23x x ==时ABC S ∆128216=【解析二】以AB 所在的直线为x 轴,它的中垂线为y 轴建立直角坐标系, 则A (-1,0),B (1,0),设C (x ,y ) 由AC =2BC ,即AC 2=2BC 2所以(x +1)2+y 2=2[(x -1)2+y 2],化简得(x -3)2+y 2=8 故点C 的轨迹方程为(x -3)2+y 2=8(y ≠0),当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.例2 已知等腰三角形腰上的中线为3,则该三角形面积的最大值为________. 【答案】2【分析】本题解法较多,但各种解法中,以利用“啊圆”为最简,注意到中线上三角形两边之比为2∶1,符合啊波罗尼斯圆定理,挖出“隐圆”,易求得最大值为2. 【解析一】如图1,ABC ∆中,AB AC =,AD DC =,3BD =设AD CD m ==,则2AB m =, 22cos 23ADB m∠=在ABD ∆中,在BDC ∆中,22cos 23CDB m∠由cos cos 0ADB CDB ∠+∠=可得,2262BC m =-,所以2253cos 4m A m-=,则429309sin m m A -+-= 故2242591639309ABCm m m S ∆⎛⎫--+ ⎪-+-⎝⎭==易知当253m =时,面积的最大值是2. 点评:避免求边BC ,优化此解法,考虑ABD ∆中,有2253cos 4m A m -=,而2ABC ABD S S ∆∆=,同样可解.【解析二】以BD 中点O 为原点,BD 所在直线为x 轴建立如图2所示的平面直角坐标系,设(),A x y ,则2AB AD =,即2222334x y x y ⎡⎤⎛⎛⎢⎥+=+ ⎢⎥⎝⎭⎝⎭⎣⎦, 整理得,225343x y ⎛+= ⎝⎭,即有3y ≤32ABC S BD y y ∆=⨯=≤.【解析三】以BC 中点O 为原点,BC 所在直线为x 轴建立如图3所示的平面直角坐标系,设(),0C m ,(),0B m -,()0,A n ,则,22m n D ⎛⎫ ⎪⎝⎭,所以2223322m n BD ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,而223422232m n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤⋅=, 当且仅当3n m =时,取等.【解析四】如图4,作AO BC ⊥于点O ,交BD 于点G ,则G 为ABC ∆的重心,43322ABCm n S mn ∆==⋅⋅则有2233BG CG BD ===所以133sin 2sin 22ABC BGC S S BG CG BGC BGC ∆∆==⨯⋅∠=∠≤,当2BGC π∠=时,取等.例3 已知圆22:1O x y +=和点()2,0A -,若定点(),0B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有MB MA λ=,则 (1)b = ; (2)λ= . 【答案】(1)12b =-;(2)12λ=.【分析】其实质是啊圆的逆用,设出点的坐标,恒成立问题转化为与点的坐标无关,即分子为零.【解答】设(),M x y ,则22221,1x y y x +==-,2222222222222251||()21122||(2)44154254b b MB x b y x bx b x b bx b MA x y x x x x xλ++-+-++-+-=====-++++++-++, 所以λ为常数,所以25102b b ++=,解得12b =-或2b =-(舍去),所以2124b λ=-=.例4 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PBP A 为一常数,则点B 的坐标为___________.【答案】⎝⎛⎭⎫-95,0 【分析】本题的实质是“逆用啊圆”. 【解析一】假设存在这样的点B (t,0).当点P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBP A 为一常数. 设P (x ,y ),则y 2=9-x 2, 所以PB 2P A2=⎝⎛⎭⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB P A =35为常数.【解析二】假设存在这样的点B (t,0),使得PBP A 为常数λ,则PB 2=λ2P A 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去). 故存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数35. 例5 啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为(0,1)λλλ>≠,那么点M 的轨迹就是啊波罗尼斯圆,简称啊氏圆.已知在平面直角坐标系中,圆22:4O x y +=、点()1,0A -和点()0,1B ,M 为圆O 上的动点,则2||+||MA MB 的最小值为_________. 17【分析】逆用“啊圆”,将2||MA 中系数2去掉化为“一条线段”, 从而将2||+||MA MB 化为两条线段的和,再利用“三点共线”求解.【解析】因为啊圆的圆心、两定点共线,且在该直线上的直径的端点分别是两定点构成线段分成定比的内外分点所以另一定点必在x 轴上,且()2,0-内分该点与()1,0A -连结的线段的比为2 故该点的坐标为()4,0-设()4,0C -,则圆22:4O x y +=上任意一动点M 都满足||=2||MC MA 所以2||+||=||+||MA MB MC MB又因为||+||||17MC MB BC ≥M B C 、、共线时,等号成立所以2||+||MA MB. 点评:1. 已知两定点、啊圆的圆心三点共线;2. 啊圆的在已知两定点所在直线上的直径的两端点,分别是两定点构成线段分成定比的内、外分点.例6 古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在.【解析】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A 错误;根据对称性可知,当()()6,0,12,0,D E --时,12PD PE=,故B 正确; 对于C 选项,222cos =2AP PO AO APO AP PO +-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+,()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC.【巩固训练】1.(多选题)在平面直角坐标系中,三点()1,0A -,()1,0B ,()0,7C ,动点P 满足PA =,则A.点P 的轨迹方程为()2238x y -+= B.PAB △面积最大时PA =C.PAB ∠最大时,PA =D.P 到直线AC 2. 在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 3. 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有MB =λMA ,则(1)b =________; (2)λ=________.4.在△ABC 中,|AB|=2,|AC|=k|BC|(k >1),则当△ABC 面积的最大值为2√2时, k = .5.点P 是圆C :x 2+y 2=1上动点,已知A (-1,2),B (2,0),则P A +12PB 的最小值为________.6.啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比|MQ||MP|=λ(λ>0,λ≠1),那么点M 的轨迹就是啊波罗尼斯圆.已知动点M 的轨迹是啊波罗尼斯圆,其方程为x 2+y 2=1,定点Q 为x 轴上一点,P(−12,0)且λ=2,若点B(1,1),则2|MP|+|MB|的最小值为( )A.√6 B. √7 C. √10 D. √117.已知)1,0(A,)0,1(B,)0,(tC,点D是直线AC上的动点,若BDAD2≤恒成立,则最小正整数t的值为.8.在平面四边形ABCD中,,,.若,则的最小值为.9.已知22(1)4x y-+=,__________.【答案或提示】1. 【答案】ABD【解析】由题意可设(),P x y,由PA=,可得222PA PB=,即()()2222121x y x y⎡⎤++=++⎣⎦,化简可得()2238x y-+=,故选项A正确;对于选项B,2AB=,且点P到直线AB的距离的最大值为圆()2238x y-+=的半径r,即为,所有PAB△面积最大为122⨯⨯=,此时(3,P,所以PA==B正确;对于选项C,PAB∠最大时,为过点A作圆()2238x y-+=的切点,求得切点不为(3,±,则PA≠C错误;对于选项D,直线AC的方程为770x y-+=,则圆心()3,0到直线AC的距离为5=,所以点P到直线AC距离最小值为55-=,故选项D 正确;故选ABD.2. 【答案】⎡-⎣.【解法一】设满足条件PB=2P A的P点坐标为(x,y),则(x-4)2+y2=4(x-1)2+4y2,化简得x2+y2=4.要使直线x-y+m=0有交点,则|m|2≤2.即-22≤m≤22.【解法二】设直线x-y+m=0有一点(x,x +m)满足P A=2PB,90BAD∠=︒2AB=1AD=43AB AC BA BC CA CB⋅+⋅=⋅12CB CD+则(x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0 (*) 方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-2 2≤m ≤22. 3. 【答案】 (1)-12 (2)12【解析】 (1)因为点M 为圆O 上任意一点,所以不妨取圆O 与x 轴的两个交点(-1,0)和(1,0). 当M 点取(-1,0)时,由MB =λMA ,得|b +1|=λ; 当M 点取(1,0)时,由MB =λMA ,得|b -1|=3λ. 消去λ,得|b -1|=3|b +1|.两边平方,化简得2b 2+5b +2=0, 解得b =-12或b =-2(舍去).(2)由|b +1|=λ,得λ=12.4.【答案】√2【分析】本题考查轨迹方程的求解,以及新定义,直线与圆的位置关系的应用,属于较难题.根据条件得到点C 的轨迹方程(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0,作图,可得当点C 到AB 的距离d 等于其所在圆半径r 时,面积最大,通过面积求得r ,进而得到k .【解析】如图,不妨设A(1,0),B(−1,0),C (x,y), 则|AC|=k|BC|,可化为(x −1)2+y 2=k 2[(x +1)2+y 2], 整理可得(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0, 即(x +k 2+1k 2−1)2+y 2=(k 2+1k 2−1)2−1,圆心(−k 2+1k 2−1,0),r 2=(k 2+1k 2−1)2−1,由图可知当点C 到AB(x 轴)距离最大时,△ABC 的面积最大, 即当点C 到AB 的距离d 等于半径r 时,面积最大, ∴△ABC 面积的最大值是12×2r =2√2,解得r =2√2, 故有(k 2+1k 2−1)2−1=(2√2)2,解得k =±√2,k =±√22, 因为k >1,所以k =√2. 故答案为:√2.5.【答案】52【提示】已知动点轨迹为圆,将12PB 转化为P 到一个定点的距离,即求动点到两个定点距离之和. 6.【答案】C【分析】令2|MP|=|MQ|,则2|MP|+|MB|=|MQ|+|MB|,由啊波罗尼斯圆的定义及已知可求得点Q 的坐标,进而利用图象得解.本题以啊波罗尼斯圆为背景,考查学生在陌生环境下灵活运用知识的能力,考查创新意识,逻辑推理能力及运算求解能力,考查数形结合思想,属于拔高题.【解析】由题意可得圆x 2+y 2=1是关于P ,Q 的啊波罗尼斯圆,且λ=2,则|MQ||MP|=2, 设点Q 的坐标为(m,n),则√(x−m)2+(y−n)2√(x+12)2+y 2=2, 整理得,x 2+y 2+4+2m 3x +2n 3y +1−m 2−n 23=0,由已知该圆的方程为x 2+y 2=1,则{4+2m =02n =01−m 2−n 23=−1,解得{m =−2n =0, ∴点Q 的坐标为(−2,0),∴2|MP|+|MB|=|MQ|+|MB|,由图象可知,当点M 位于M 1或M 2时取得最小值,且最小值为|QB|=√(−2−1)2+1=√10. 故选:C . 7. 【答案】4【解析】直线AC 的方程为1=+y tx即0=-+t ty x ,设),(y x D BD AD 2≤ 即224BD AD ≤∴])1[(4)1(2222y x y x ++-≤-+98)31()34(22≥++-y x 表示圆外区域及圆周上的点 直线0=-+t ty x 与圆98)31()34(22=++-y x 相离或相切 所以3221|3134|2≥+--t t t ,化简得0142≥+-t t 解得32+≥t 或32-≤t∴正整数t 的值的值为4.8.【提示】已知可化为: ,故,点的轨迹是圆;所求 中含系数不同,需化一,由于,故应构造出 或,这里所求圆的圆心在直线AB 上,故需在直线AB 上寻求一点E ,使CE =2CB ,将化为一条线段,逆用“啊波罗尼斯圆”即可.9. 【提示】为使所求具有几何意义,利用已知22(1)4x y -+=进行常数代换,12. 43AB AC BA BC CA CB ⋅+⋅=⋅2=AB AC BA BC AB AC AB CB AB ⋅+⋅=⋅+⋅=3CA CB ⋅C 12CB CD +11=(2)22CB CD CB CD ++12CD 2CB 2CB。
阿波罗尼斯圆在高考中的应用
作者:李婷婷
来源:《文存阅刊》2018年第13期
摘要:近些年来,在高考中以阿波罗尼斯圆为背景的试题层出不穷,成为命题的热点问题。
本文从一道高考试题及解法入手,进而追溯其根源,再给出相关试题,及其阿波罗尼斯圆给我们所带来的一些启示,进一步加强对与阿波罗尼斯圆相关试题的认识。
关键词:阿波罗尼斯圆;高考试题;解题
一、高考试题及解法
二、追根溯源
1.(人教A版必修2教材习题4.1B组第3题)已知点M与两个定点O(0,0),A(3,0)的距离的比为,求点的轨迹方程。
2.(人教A版必修2教材复习参考题B组第2题)已知点M(x,y)与两个定点M1,M2距离的比是一个正数m,求点M的轨迹方程,并说明轨迹是什么图形(考虑m=1和m≠1两种情形)。
将这些问题一般化,我们可以给出:已知平面上两点A,B,则所有满足且不等于1的点的轨迹是一个圆,我们称这个圆为“阿波罗尼斯圆”。
三、相关试题
四、教学建议及反思
通过对阿波罗尼斯圆的认识,给我们也带来了一些启示:高考试题皆来源于教材,因此,在教学过程中,要重视教材中的例题、习题,并要挖掘出其问题的本质、根源,让学生知其然亦知其所以然。
参考文献:
[1]2006年高考数学四川卷.
[2]2008年高考数学江苏卷.
作者简介:
李婷婷(1994年—),女,汉族,河南商丘人,在读硕士,硕士,河南师范大学数学与信息科学学院,研究方向:学科教学(数学)。
利用阿波罗尼斯圆性质解题
1、课本呈现
(人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比
为 ,求点M 的轨迹方程 。
(人教A 版144页B 组第2题)已知点M 与两个定点 , 距离的比是一个正
数m,求点M 的轨迹方程,并说明轨迹是什么图
形(考虑m=1和m 两种情形)。
2、定义:一般的平面内到两顶点A ,B 距离之比为常数 ( )的点的轨迹 为圆,此圆称为阿波罗尼斯圆
性质:①当1>λ时,点'A 在圆O 内,点A 在圆O 外;
当10<<λ时,点A 在圆O 内,点'A 在圆O 外。
②所作出的阿波罗尼斯圆的半径为|AA'|1r λλ
=-,圆心为⎪⎪⎭⎫ ⎝⎛'⋅+0,1-122A A λλ ③'
OA r r OA ==
λ λ越大,圆越小. 例题1、满足条件AB = 2,AC = BC 的∆ABC 的面积的最大值是( )
变式1、在等腰 ABC 中,AB=AC ,D 为AC 的中点,BD=3,则 ABC 面积的
最大值为
2、在 ABC 中,AC=2,AB=mBC(m>1),恰好当B= 时 ABC 面积的最大,
m=
例2、 已知圆C: 定点 其中P 为圆C 上的动点,则 PO+PB 的最小值为
变式1、已知P 在边长为2的正三角形ABC 的内切圆上运动,则BP AP 2+的最小
值是_______
2、已知点P 在圆4:22=+y x O 上运动,)4,4(),0,4(B A ,求BP AP 2+的最小 值
例题3、在ABC ∆中,AD AC AB ,2=是A ∠的平分线,且.kAC AD =
①求k 的取值范围;
②若ABC ∆的面积为1,求k 为何值时,BC 最短.
4、在ABC ∆中,AD 、BE 分别为中线,
若b a 35=,则BE
AD 的取值范围 .
5、已知△ABC 的面积为1,∠A 的角平分线交对边BC 于D ,AB=2AC ,且AD=kAC ,
则当k=________时,边BC 的长度最短.
6、(2015湖北理科卷14题)如图,圆C 与x 轴相切与点()0,1T ,与y 轴正半轴
交于两点B A ,(B 在A 的上方),2=AB
①圆C 的标准方程为 .
②过点A 任作一条直线与圆1:22=+y x O 相较于N M ,两点,下列三个结论: 其中正确结论的序号是 。
(写出所有正确结论的序号) ①
MB MA NB NA =;②2=-MB MA NA NB ;③22=+MB MA NA NB。