实用midas入门教程
- 格式:doc
- 大小:2.16 MB
- 文档页数:35
midas 用户手册三册MIDAS(MId-Span Design and Analysis System)是一款用于桥梁设计、分析和评估的软件系统。
以下是MIDAS用户手册的简要介绍:第一册:基础与进阶指南1. 概述:介绍MIDAS软件系统的基本概念、特点和应用领域。
2. 基础知识:详细介绍MIDAS软件系统的界面、菜单、工具栏和常用命令等。
3. 建模方法:介绍MIDAS软件系统的建模方法,包括梁、桩、土等元素的建模和参数设置。
4. 加载与边界条件:介绍如何在MIDAS软件系统中施加各种加载和边界条件。
5. 分析与评估:介绍如何进行各种分析和评估,包括静力分析、动力分析、稳定性分析等。
6. 结果查看与后处理:介绍如何在MIDAS软件系统中查看和后处理结果,包括应力、应变、位移等。
第二册:高级功能与插件指南1. 高级建模功能:介绍MIDAS软件系统的高级建模功能,包括复杂结构建模、节点连接方式等。
2. 插件介绍:详细介绍MIDAS软件系统的各种插件,包括插件的使用方法、参数设置和注意事项等。
3. 特殊加载与边界条件:介绍如何在MIDAS软件系统中施加特殊加载和边界条件,包括地震加载、流体加载等。
4. 高级分析与评估:介绍如何进行高级分析和评估,包括稳定性分析、疲劳分析等。
5. 结果验证与校准:介绍如何在MIDAS软件系统中验证和校准结果,包括与其他软件的对比、实验数据对比等。
第三册:案例与实践指南1. 案例介绍:介绍MIDAS软件系统在实际工程中的应用案例,包括各种类型的桥梁结构、工业设施等。
2. 实践经验分享:分享MIDAS软件系统在实际应用中的经验,包括参数设置、建模技巧、结果解读等。
3. 常见问题与解决方案:总结MIDAS软件系统在实际应用中常见的问题,并提供相应的解决方案。
4. 最佳实践与优化建议:介绍如何优化MIDAS软件系统的性能和结果精度,包括参数优化、建模优化等。
希望这些简要介绍能对您有所帮助,如果需要更多关于MIDAS用户手册的详细信息,建议您查阅相关的官方文档或联系专业技术人员。
MIDAS迈达斯入门教程MIDAS(Mechanical Integrated Design and Analysis System,机械集成设计和分析系统)是一种基于计算机辅助工程技术的产品设计和工程分析的软件平台。
它是一种综合性的分析软件,可以用于进行结构、流体和多物理场的分析和仿真。
MIDAS软件的应用范围广泛,涉及到建筑、土木、机械、汽车、电子等领域。
首先,打开MIDAS软件后,您会看到一个简洁明了的用户界面。
主要界面包括了菜单栏、工具栏、工程树、工作区和结果展示等区域。
菜单栏和工具栏提供了各种功能和命令的选项,工程树用于组织和管理工程的各个部分,工作区是您进行建模和分析的主要区域,结果展示区用于显示分析结果。
在开始建模之前,首先需要创建一个新的工程文件。
您可以通过菜单栏中的“文件”选项来创建新的工程文件。
然后,选择合适的建模单元(Unit)和坐标系(Coordinate System)。
建模单元用于定义建模的单位制,坐标系用于定义建模的基准坐标。
建模完成后,接下来就可以进行分析了。
MIDAS提供了各种分析功能和工具,包括静力分析、动力分析、热力学分析、流体分析等。
您可以通过菜单栏中的“分析”选项来选择适合您的分析类型,并设置相应的分析参数和条件。
在进行分析之前,还需要定义材料和边界条件。
通过菜单栏中的“材料”选项,您可以定义材料的力学性能和热力学性质。
通过菜单栏中的“边界条件”选项,您可以定义约束和载荷等边界条件。
完成分析设置后,即可开始进行分析。
MIDAS将根据您的分析参数和条件,自动进行求解和计算。
在分析完成后,您可以通过结果展示区查看分析结果,包括变形、应力、应变、位移等。
您还可以通过菜单栏中的“报告”选项生成分析报告,以便后续的工程设计和决策。
除了上述基本功能外,MIDAS还提供了许多高级功能和扩展模块。
例如,您可以通过MIDAS Civil模块进行土木工程分析和设计,通过MIDAS FEA模块进行有限元分析,通过MIDAS GTS模块进行地质和地下工程分析等。
MIDAS教程用MIDAS学习结构力学首先,我们需要了解MIDAS的基本功能。
MIDAS主要由四个模块组成:模型构建、负荷定义、边界条件和分析求解。
模型构建模块用于创建结构模型,可以通过绘制模型、导入CAD数据或者使用现有的模板来进行。
负荷定义模块用于指定结构模型上的载荷情况,可以包括重力荷载、点荷载、分布荷载等。
边界条件模块用于设置结构模型的边界条件,如支座或约束。
分析求解模块用于进行结构力学分析,可以使用静力分析、动力分析、非线性分析等方法进行。
在开始使用MIDAS之前,我们需要明确分析的目标和步骤。
通常,结构力学分析的步骤包括:建立结构模型、应用载荷、设置边界条件、选择合适的分析方法,进行分析求解、查看分析结果。
下面我将以一个梁的弯曲分析为例,介绍如何使用MIDAS来学习结构力学。
首先,我们需要在MIDAS中创建一个新的工程文件,并在模型构建模块中绘制一个梁的结构模型。
可以使用MIDAS提供的绘图工具绘制出梁的形状,并定义梁的尺寸和材料属性。
在完成模型构建后,我们可以在负荷定义模块中指定梁上的载荷情况,比如在梁的中间施加一个集中力。
然后,我们可以在边界条件模块中设置梁的边界条件,如支座或固定约束。
完成以上步骤后,我们可以转到分析求解模块,选择合适的分析方法来进行弯曲分析。
在分析求解完成后,我们可以在MIDAS中查看分析结果,比如最大应力、位移等。
除了基本的结构力学分析,MIDAS还提供了许多高级功能和工具,可以帮助工程师进行结构设计和优化。
例如,MIDAS可以通过参数化建模来实现结构的自动化设计,可以通过灵敏度分析来优化结构的性能。
此外,MIDAS还可以进行静态和动态耦合分析,能够模拟结构在地震或风载作用下的响应。
MIDAS还可以进行非线性分析,可以模拟结构在大变形、材料非线性或接触非线性等情况下的行为。
总结而言,MIDAS是一款功能强大的结构力学软件,可以帮助工程师进行结构分析、设计和优化。
MIDAS基础教程MIDAS(Mixed Data Sampling)是一种基于混合数据采样理论的统计方法,用于分析经济和金融数据的高频和低频关系。
MIDAS方法通过将高频数据转化为低频数据,以便更好地利用高频数据的信息,从而提高低频数据的预测能力和统计效率。
本篇文章将介绍MIDAS方法的基本原理和如何进行MIDAS模型的估计和预测。
首先,我们来了解MIDAS方法的基本原理。
在金融和经济领域,我们通常会面对两种数据频率:高频数据和低频数据。
其中,高频数据通常是指每日、每小时、每分钟或每秒钟的频率,低频数据则是以更长时间间隔为单位的数据,例如每月或每季度的频率。
MIDAS方法的核心思想是将高频数据的信息转化为低频数据的信息,从而提高低频数据的预测能力。
具体来说,MIDAS方法通过建立一个高频数据与低频数据的关系模型来实现。
这个关系模型通常被称为MIDAS模型。
MIDAS模型的一般形式可以表示为:Y(t)=β0+∑(j=1,J)βjX(t-j/k)+ε(t)其中,Y(t)表示低频数据的值,X(t-j/k)表示高频数据的值,β0是常数项,βj是系数,ε(t)是误差项。
J是MIDAS模型的滞后阶数,k是高频数据与低频数据之间的转换比例。
接下来,我们来介绍如何进行MIDAS模型的估计和预测。
通常,MIDAS模型的估计可以通过两个步骤来完成:参数估计和转换比例的选择。
首先,我们需要对参数进行估计。
参数估计可以使用最小二乘法来进行,通过最小化残差平方和来求解模型的系数。
在进行参数估计之前,我们需要进行高频数据与低频数据之间的转换。
通常,有两种常用的转换方式:均值和方差转换。
均值转换可以用于将高频数据转化为低频数据的平均值,方差转换则可以用于将高频数据转化为低频数据的方差。
其次,我们需要选择合适的转换比例。
转换比例k是一个关键参数,它决定了高频数据与低频数据之间的转换方式。
选择合适的转换比例可以提高模型的预测能力和统计效率。
01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);钢材规范混凝土规范图1材料定义对话框图1收缩徐变函数定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
操作指南Modeling, Integrated Design & Analysis Softwareㅡ目录第一部分. 操作指南1. 关于GTS 51.1 概要 / 5 1.2 程序安装 / 6 1.2.1 系统配置 / 6 1.2.2 安装顺序 / 7 1.2.3 安装驱动程序 / 9 1.2.3 登记密钥 / 112. 开始之前 22.1 了解GTS / 12 2.1.1 GTS的操作流程 / 12 2.1.2 GTS的建模方式 / 16 2.1.3 分析体系 / 33 2.2 界面的构成 / 37 2.2.1 工作窗口 / 39 2.2.2 工作目录树 / 41 2.2.3 特性窗口 / 44 2.2.4 输出窗口 / 47 2.2.5 主菜单 / 50 2.2.6 工具条和图标菜单 / 51 2.2.7 关联菜单 / 52 2.3 选择与视图 / 53 2.3.1 选择 / 53 2.3.2 视图控制 / 6712.3.3 模型显示 / 69 2.3.4 数据输入 / 742.4 使用联机帮助 / 76 2.5 使用MIDAS/GTS的主页 / 77 2.6 输入/输出文件 / 79附录. 工具条和图标菜单 / 82 标准工具条 / 82 撤销/重做工具条 / 83 选择工具条 / 84 工作平面工具条 / 86 捕捉工具条 / 87 视图工具条 / 88 测量工具条 / 91 函数工具条 – 曲线 / 92 函数工具条 – 面 / 98 函数工具条 – 实体 / 103 函数工具条 – 几何体 / 108 函数工具条 – 自动/映射划分网格 / 111 函数工具条 – 伸展网格 / 116 函数工具条 – 网格 / 121 函数工具条 – 分析 / 125 函数工具条 – 后处理数据 / 129 函数工具条 – 后处理命令 / 131关于GTS1. 关于GTS1.1 概要GTS (Geotechnical and Tunnel analysis System) 是包含施工阶段的应力分析和渗透分 析等岩土和隧道所需的几乎所有分析功能的通用分析软件。
北京迈达斯技术有限公司目录建立模型①设定操作环境 (2)定义材料 (4)输入节点和单元 (5)输入边界条件 (8)输入荷载 (9)运行结构分析 (10)查看反力 (11)查看变形和位移 (11)查看内力 (12)查看应力 (14)梁单元细部分析 (15)表格查看结果 (16)建立模型②设定操作环境 (19)建立悬臂梁 (20)输入边界条件 (21)输入荷载 (21)建立模型③建模 (23)输入边界条件 (24)输入荷载 (24)建立模型④建立两端固定梁 (26)输入边界条件 (27)输入荷载 (28)建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18 材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存(保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);钢材规范混凝土规范图1材料定义对话框图1收缩徐变函数定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
目 录建立模型○1设定操作环境 ...................................................................................................... ...................................................................................................... 22 定义材料............................................................................................................ ............................................................................................................ 44 输入节点和单元 ................................................................................................... ................................................................................................... 55 输入边界条件 ...................................................................................................... ...................................................................................................... 88 输入荷载............................................................................................................ ............................................................................................................ 99 运行结构分析 .................................................................................................... 10 查看反力.......................................................................................................... 11 查看变形和位移 ................................................................................................. 11 查看内力.......................................................................................................... 12 查看应力.......................................................................................................... 14 梁单元细部分析梁单元细部分析((Beam Detail Analysis) ................................................................. 15 表格查看结果 . (16)建立模型○2 设定操作环境 .................................................................................................... 19 建立悬臂梁建立悬臂梁....................................................................................................... 20 输入边界条件 .................................................................................................... 21 输入荷载. (21)建立模型○3 建模建模............................................................................................................... 22 输入边界条件 .................................................................................................... 24 输入荷载. (24)建立模型○4 建立两端固定梁 (26)输入边界条件 .................................................................................................... 27 输入荷载. (28)建立模型○5○6○7○8简要简要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。
北京迈达斯技术有限公司目录建立模型①设定操作环境 (2)定义材料 (4)输入节点和单元 (5)输入边界条件 (8)输入荷载 (9)运行结构分析 (10)查看反力 (11)查看变形和位移 (11)查看内力 (12)查看应力 (14)梁单元细部分析 (15)表格查看结果 (16)建立模型②设定操作环境 (19)建立悬臂梁 (20)输入边界条件 (21)输入荷载 (21)建立模型③建模 (23)输入边界条件 (24)输入荷载 (24)建立模型④建立两端固定梁 (26)输入边界条件 (27)输入荷载 (28)建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18 材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存( 保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
MIDAS学习技巧(经典)1、如何利用板单元建立变截面连续梁(连续刚构)的模型?建立模型后如何输入预应力钢束?使用板单元建立连续刚构(变截面的方法)可简单说明如下:1)首先建立抛物线(变截面下翼缘) ;2)使用单元扩展功能由直线扩展成板单元,扩展时选择投影,投影到上翼缘处。
;3)在上翼缘处建立一直线梁(扩展过渡用),然后分别向横向中间及外悬挑边缘扩展成板单元;4)使用单元镜像功能横向镜像另一半;5) 为了观察方便,在单元命令中使用修改单元参数功能中的修改单元坐标轴选项,将板单元的单元坐标轴统一起来。
在板单元或实体块单元上加预应力钢束的方法,目前设计人员普遍采用加虚拟桁架单元的方法,即用桁架单元模拟钢束,然后给桁架单元以一定的温降,从而达到加除应力的效果。
温降的幅度要考虑预应力损失后的张力。
这种方法不能真实模拟沿钢束长度方向的预应力损失量,但由于目前很多软件不能提供在板单元或块单元上可以考虑六种预应力损失的钢束,所以目前很多设计人员普遍在采用这种简化分析方法。
MIDAS目前正在开发在板单元和块单元上加可以考虑六种预应力损失的钢束的模块,以满足用户分析与设计的要求。
2、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可以在主梁之间隔一定间距用横向虚拟梁连接,并且将横向虚拟梁的两端的弯矩约束释放。
此类问题关键在于横向虚拟梁的刚度取值。
可参考有关书籍,推荐E.C.Hambly写的"Bridge deck behaviour",该书对梁格法有较为详尽的叙述。
3、如果梁与梁之间是通过翼板绞接,Midas/Civil应如何建模模拟梁翼板之间的绞接?可否自己编辑截面形式可以在定义截面对话框中点击"数值"表单,然后输入您自定义的截面的各种数据。
您也可以在工具>截面特性值计算器中画出您的截面,然后生成一个截面名称,程序会计算出相应截面的特性值。
目录建立模型①建立模型②建立模型③建立模型④建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁 6@2 = 12 m截面 : HM 440×300×11/18材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘’ 为名保存( 保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple ) 单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3.点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
默认设置中没有包含输入节点和单元所需的图标,用户可根据需要将所需工具条调出,其方法如下。
1. 在主菜单选择工具>用户定制>工具条2. 在工具条选择栏勾选‘节点’, ‘单元’, ‘特性’3. 点击4.工具>用户定制>工具条工具条>节点 (开), 单元 (开), 特性 (开)图2. 工具条编辑窗口 将调出的工具条参考图3拖放到用户方便的位置。
(a )调整工具条位置之前(b )调整工具条位置之后图3. 排列工具条也可使用窗口下端的状态条(图3(b))来转换单位体系。
移动新调出的工具条时,可通过用鼠标拖动工具条名称(图3(a)的①)来完成。